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In a seminal book, Minsky and Papert define the perceptron as a limited implementation

of what they called “parallel machines.” They showed that some binary Boolean functions

including XOR are not definable in a single layer perceptron due to its limited capacity

to learn only linearly separable functions. In this work, we propose a new more

powerful implementation of such parallel machines. This newmathematical tool is defined

using analytic sinusoids—instead of linear combinations—to form an analytic signal

representation of the function that we want to learn. We show that this re-formulated

parallel mechanism can learn, with a single layer, any non-linear k-ary Boolean function.

Finally, to provide an example of its practical applications, we show that it outperforms

the single hidden layer multilayer perceptron in both Boolean function learning and image

classification tasks, while also being faster and requiring fewer parameters.

Keywords: signal perceptron, perceptron, learning function spaces, parallel machines, neural networks

1. INTRODUCTION

During the last decade, machine learning has pushed the boundaries of what is possible in most, if
not every, subdomain of artificial intelligence where training data is available. Examples include
but are not limited to natural language processing (Devlin et al., 2019), image classification
(Simonyan and Zisserman, 2015; He et al., 2016), cyber security (Ferrag et al., 2020), and
reinforcement learning (Silver et al., 2016). Most neural networks architectures such as feed-
forward neural networks (also called multilayer perceptrons) (Bebis and Georgiopoulos, 1994)
contain perceptrons as one of their fundamental elements. However, as a function approximator,
this learning mechanism poses a major limitation, it can only learn linearly separable patterns
(Minsky, 1969). It is shown that, for the binary Boolean function space, only 14 of the 16 possible
functions are linearly separable. Additionally,when increasing the amount of variables, the number
of linearly separable functions decreases exponentially (Gruzling, 2007). Therefore, to approximate
any function from a Boolean function space, amultilayer perceptron (MLP) with at least one hidden
layer is required (Baum, 1988; Cybenko, 1989). These proofs opened up a whole branch of analysis
of theoretical bounds for MLP architectures (Stathakis, 2009). Huang and Babri (1997) specifically
showed that the single hidden layerMLPwith sigmoid activation function requires that the number
of hidden nodes must be as high as the number of training samples in order to learn a small error
function approximation. This can be problematic, as shown in later since the number of training
samples needed to approximate any function from a function space can increase exponentially.
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Furthermore, such theoretical analysis only discusses a particular
architecture, this can also be problematic as each new architecture
requires an in-depth analysis. That is, the problem of finding
topological bounds becomes intractable as the amount of
layers and activation functions changes. The same problem
arises with novel types of perceptrons, such as complex-
valued neurons, generalized neurons, morphological neurons,
and wavelet neurons (Kulkarni and Venayagamoorthy, 2009;
Zhang, 2013; Mondal et al., 2020), which can learn but not all

non-linear separable functions with a single layer.
We believe that overcoming the issue of non-linear

separability for a single mathematical structure is a step
forward toward processing optimization and easier analysis
for more complex machine learning models such as the ones
previously mentioned. In order to solve this problem, we appeal
to the mathematical definition of function learning mechanisms,
namely parallel machines (Minsky, 1969), that can learn a subset
of functions from a given function space. In this work, we are
specifically concerned with the type of parallel machines which
are able to learn any function from finite function spaces.

Consequently, the main purpose of this paper is to provide a
new parallel machine that combines signal processing and neural
network techniques in order to create a new kind of function
learning mechanism. This new type of mechanism will extend
the capabilities of current single layer perceptrons for learning
any function from a function space where the domain and co-
domain are finite1. Ideally, we would like such a mechanism to
be able to define any function space with as few parameters as
possible. To address this issue, we focus on mechanisms that use
linear combination of analytic signals instead of affine functions.

We will show that this mechanism is able to learn whole
Boolean function spaces. For Boolean functions, a multilayer
perceptron (MLP) needs at least one hidden layer to approximate
any function from the k-ary Boolean function space with almost
negligible error (Hertz et al., 1991). The same follows for
more novel architectures where multiple layers are required.
Our proposed mechanism can learn any function with just a
single layer and without error. Furthermore, unlike its MLP
counterpart, its definition doesn’t require to specify a particular
activation function and requires less operations to compute
the function. This result in a more efficient learning method
with smaller spatial and computational complexity as we will
show later.

Our contributions can be summarized as follows: First, we
discuss how the ideas of analytic signals and neural networks
can be interrelated by providing the necessary background
theory. Second, we introduce a new function learningmechanism
based on a linear combination of analytic signals, the signal

perceptron, along with the necessary mathematical definitions.
Third, we provide a definition of the Rosenblatt perceptron
(Rosenblatt, 1958) and the MLP with one hidden layer in terms
of parallel machines, in order to demonstrate their structural
differences against the signal perceptron. Fourth, we provide
the mathematical proof that demonstrates the capability of the

1In Section 4.3 we provide a variation of such mechanism that can work with

continuous domains.

signal perceptron to learn any function from any k-ary Boolean
function space, avoiding a topological analysis of the architecture
which is required for its counterparts (unless an equivalent
proof is devised). Fifth, we showcase that our novel mechanism
can be trained using two different learning method algorithms
along with their corresponding pseudocode. Sixth, we further
propose two more variations of the signal perceptron defined
over the real space, in order to use the signal perceptron to solve
practical problems such as image classification.We compare such
variations along with the signal perceptron and demonstrate
their experimental advantages over the MLP, including some
practical computer vision problems. Finally, we provide a
discussion where we summarize the main advantages of the
signal perceptron against other neurons from the literature that
attempt to solve the non-linear separability problem, followed by
the potential limitations of the signal perceptron and promising
directions for future work.

2. RELATED WORK

The perceptron has been an essential component of function
approximation methods, and its inherent issues have resulted
in several important lines of work (Kim and Adali, 2002;
Zhang, 2013; Tavanaei et al., 2019; Mondal et al., 2020). These
attempts extend or modify the original perceptron so that it can
operate over different domains, highlighting the importance of
extending the original idea. Unfortunately, these extensions do
not solve the problem of learning the linear separable functions
with a single layer, they must necessarily have multiple layers.
Extensions that try to solve this issue with a single layer are
usually defined over bigger domains, for instance, many studies
focus on extensions that operate over complex values (Clarke,
1990; Cheolwoo and Daesik, 1998; Kim and Adali, 2002). Such
extensions also provide limited solutions to the linear separability
problem. As an example, Nitta (2003) encodes real inputs into
complex value scalars and defines a linear combination of
complex values and weights. This transforms the perceptron into
a mapping R → C → R. Since Boolean functions are mappings
of the form B → B rigorous rules and specific activation
functions are required to perform such encoding and decoding.
Moreover, the linear separability analysis is performed only over
the binary Boolean function space (Boolean functions of only two
variables). As an extension of that, Amin et al. (2008) includes
an experimental analysis that attempts to compute every ternary
Boolean function. However, it fails to learn every function thus
proving that this mechanism can only learn non-linear functions
of arity 2 or less.

The perceptron’s importance as a mathematical structure is
not limited to computer science, several areas have proposed their
versions to overcome its issues or exploit certain characteristics in
their domains. Some examples of these new types of perceptrons
are: software perceptrons (Rosenblatt, 1958; Maass, 1997; Ritter
and Urcid, 2003; Huh and Sejnowski, 2018), biochemical
perceptrons (Cazé et al., 2013; Banda and Teuscher, 2014;
Blount et al., 2017), and hardware perceptrons (Pisarev et al.,
2020). In Section 6.2 we will provide a comparative analysis
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against complex-valued neurons and other prominent proposals
of neurons against our proposed architecture to remark the
contributions of this paper.

It is also important to mention the theoretical analysis of the
MLP which was the proposed solution for solving the non-linear
separability problem (Baum, 1988; Cybenko, 1989). As stated in
Section 1, some effort toward defining the topological boundaries
for MLPs (Kůrková, 1992; Huang and Babri, 1997; Huang,
2003) has been conducted, but it has been limited to particular
architectures and particular activation functions. Furthermore,
the analysis over the amount of parameters is assessed by the
amount of training samples (i.e., sample complexity). Since we
are interested in mechanisms that are able to learn the whole
functional space, analysis for the topological bounds should
consider the scenario when the training samples equals the size
of the domain. An example of this type of analysis was done by
Baum (1988), which proved that the single hidden layer MLP
can learn any formula in disjunctive normal form. We will show
that thanks to this analysis, in conjunction with Huang and Babri
(1997), we can calculate the correct spatial complexity of a single
hidden layer MLP that can learn any k-ary Boolean function.

3. BACKGROUND THEORY DESCRIPTION

3.1. Function Spaces
Most of the discussion in this paper will be directed toward
mathematical structures that are able to learn functions from a
finite function space. The finite function space1 is defined as the
set of all possible functions that have domainm

k, wheremk is the
set {(x0, ..., xk−1) | xj ∈ m}, and co-domain n. When a function-
learning structure is defined, we expect that such a mathematical
method will at least be able to learn a subset of the function
space. The perceptron defined by Rosenblatt (Rosenblatt, 1958)
is a clear example of such a method, where the subset of learnable
functions are the linearly separable functions. By extension, the
closer a method is to learning the entirety of a function space,
the more expressive will the structure be. Due to this, in order to
properly assess how expressive a given method is, it is important
to first understand how to calculate a function space’s size.

The function space size |1| is the number of all possible
functions from a given function space 1 and is defined by the
formula:

|1| = nm
k

(1)

where k is the amount of variables taken by the function (i.e., the
arity of the function), while n andmk are the number of elements
that belong to the co-domain n and domainm

k, respectively.
For simplicity, this study focuses on the type of function

spaces where the set of elements of the domain and co-domain
are identical. That is, function spaces of the form {0, 1...., n −

1}k → {0, 1...., n− 1}. However, most of our analysis will revolve
around the two element function space (i.e., the k-ary Boolean
function space).

Shannon (1938) showed that it is possible to obtain any k-
ary Boolean function frommultiple simple (k− 1)-ary functions.
This achievement demonstrated that any Boolean function can
be obtained by its corresponding circuit. Furthermore, Shannon

TABLE 1 | Every possible unary Boolean function.

x1 f0 f1 f2 f3

0 0 1 0 1

1 0 0 1 1

TABLE 2 | Every possible binary Boolean function (a.k.a logical connectives).

(x2, x1) f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15

(0, 0) 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

(0, 1) 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

(1, 0) 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

(1, 1) 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

recalls that in infinitesimal calculus it is shown that any function
(providing it is continuous and all derivatives are continuous)
may be expanded in a Taylor Series. By analogy, proving that the
new learning mechanism can also learn any function from the k-
ary Boolean function space would be a step toward proving that it
is also able to express any function. To this end, we next provide
the formal definition of a k-ary Boolean function space.

Definition 1. The k-ary Boolean function space is a set that
contains all possible k-ary Boolean functions. A Boolean k-ary
function is a mapping of the form {0, 1}k → {0, 1}. Where {0, 1}
is the Boolean set B and k is a natural number that defines the
number of variables used.

Based on Definition 1 and Equation 1, the size of a k-ary

Boolean function space is given by the formula 22
k
. Thus, the

amount of possible functions for the unary and binary Boolean
function spaces will be 4 and 16, respectively. These are shown in
Tables 1, 2.

Table 1 contains the trivial functions: f0 (False), f1 (inverse
function), f2 (identity function) and f3 (True). The same follows
in Table 2, which showcases the logic connectives for all binary
Boolean functions. We can find some of the most common
functions used in propositional logic which are f1 (AND
operator), f7 (OR operator), and f6 (XOR operator).

3.2. Parallel Machines and the Rosenblatt
Perceptron
The perceptron or Rosenblatt perceptron, is defined as a
mathematical method used for binary classification (Rosenblatt,
1958). Such a mechanism is described as a particular
implementation of a mathematical structure called a “parallel
machine” (as shown in Figure 1). Parallel machines are
mathematical structures that make decisions by adding evidence
obtained from many small experiments (Minsky, 1969). This is
gathered by calculating a set of partial operations that can be
computed simultaneously, thus the name “parallel machine.”

Following the ideas of Section 3.1 we will treat parallel
machines as mathematical structures that learn a subset of
functions from some function space of the form {0, ..., n− 1}k →
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FIGURE 1 | From left to right: The abstract definition of parallel machine and the perceptron as a parametric implementation of the parallel machine. Figures based on

the diagrams depicted in the book Perceptrons (Minsky, 1969).

{0, ..., n − 1}. Strictly speaking, this definition differs from the
definition first proposed by Minsky and Rosenblatt where the
function spaces are of the form {0, ..., n − 1}k → {0, 1}, which
are binary classifiers.

Definition 2. A parallel machine 9 :X → Y is a mathematical
function of the form:

9(x̄) = �(ϕ1(x̄), ...,ϕn(x̄)) (2)

where the functions of the finite set 8 = {ϕi :X → Z}
are computed independently of each other and the function
� :Zn → Y is a function that combines all results with respect
to some specification.

For practical implementations, it is necessary to mention that
each function belonging to the set 8 will be a parametric
function. That is, it will depend in at least one parameter per
partial operator.

Definition 3. The perceptron is a learning structure capable
of computing all linear functions in some given set 8. The
Rosenblatt perceptron is:

9(x̄) = �(ϕ1(x̄),ϕ2(x̄), ...ϕn(x̄))

=

n
∑

i=1

αiϕi(x1, ..., xk) > θ

=

n
∑

i=1

αi ∗ xi + b > θ

(3)

It is important to state that for the perceptron n = k+ 1 where k
is the arity of x̄. In order to guarantee that each function ϕi(x̄) in
the set8 is linear, each ϕi defined can only depend on a particular
coordinate from the vector x̄ = (x1, ..., xn). The last term b which
is defined by the partial operation ϕn(x̄) is a constant function

called bias. The join function � is replaced by summing up all
ϕn(x̄) and then applying an activation function which depends on
the parameter θ . The threshold given by θ makes the perceptron
behave as a binary classifier by outputting 1 if the sum is greater
than θ , otherwise 0.

3.3. Signal Processing Background
The first functional implementations of the perceptron were
mainly used to define filters as well as for equalization problems.
Such are usually solved by signal processing methods (Wilson
and Tufts, 1994; Kim and Adali, 2002). This was mainly due to its
capabilities for automated learning and function approximation.
Nonetheless, signal processing, creation of filters, and function
approximation were always handled by Fourier analysis (Smith,
2010). Fourier analysis is a set of mathematical tools for
signal processing; the most commonly used ones are Fourier
series and Fourier transforms. The main idea of these tools is
that periodic continuous functions can be decomposed into a
(possibly infinite) sum of individual elements called sinusoids.
Depending on the Fourier series definition (Smith, 2010), the
sinusoids may either be real or complex functions. We will focus
on the particular case where the function is defined as a sum of
positive frequency complex sinusoids.

Definition 4. A complex sinusoid is a complex parametric
function of the form:

s(x) = αeiωx (4)

where α ∈ C defines the amplitude and phase of the signal2 and
ω ∈ R defines its frequency.

When the frequency of the complex sinusoid is positive, then
it is called an analytic sinusoid. This is important for signal
process analysis, as any real function can be encoded with

2For analytic signals the α parameter is a complex number that defines the

amplitude and the phase of a signal. For the case of the real signals the α parameter

is a real number representing amplitudes and half phase shift.
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FIGURE 2 | Modifying the parameters of an analytic sinusoid with amplitude 1

phase 0 and frequency π . The sinusoid in red represents the imaginary part of

the complex sinusoid and the blue represents the real part. (A) The original

signal, (B) the signal with a phase-shift, (C) the signal with a change of

amplitude and phase-shift, and (D) a signal with a change of amplitude phase

and frequency.

only positive frequency sinusoids by simply generating a phase-
quadrature component for each real sinusoidal by applying a
Hilbert transform filter (Smith, 2010). This transformation allows
us to reduce the amount of sinusoids required to define a real
function by half, with the trade-off of using complex-valued
functions. That is, amplitudes phases and frequencies will be
defined by complex numbers.

Figure 2 illustrates how an analytic sinusoid can be
transformed by changing the complex parameter α, which
will modify the amplitude and phase of the signal. It is important
to notice that when α ∈ R the only phase shift allowed is half the
period. This can be achieved with negative real numbers. Thus,
in signal processing there are only positive amplitudes since a
negative amplitude will yield a phase shift of half the period of
the signal.

Stating that, under the assumption that infinite sinusoids
with different frequencies are provided, we can learn or define
any analytic signal by finding the correct parameters for
each sinusoid.

Definition 5. A k-dimensional analytic signal is a function that
maps C

k ⇒ C. Any k-dimensional analytic signal can be
expressed as an infinite sum of k-dimensional complex sinusoids:

s(x̄) =
∑

ω̄∈Rk

αωe
i(ω̄·x̄) (5)

where x̄ ∈ C
k and αω ∈ C.

Since Definition 5 assumes an infinite amount of sinusoids, the
number of parameters α will also be infinite. The next section
presents a new function learning method that overcomes this
issue. Under the assumption of Section 3.1 that the function space
is finite, our method can have a mathematical structure that adds
a finite sum of signals to represent any function from a given
finite function space.

4. SIGNAL PERCEPTRON

In this section, we introduce a new type of mechanism for
learning functions that combines the structure of “parallel
machines” with the type of functions used in signal processing
into a unifiedmethod that we call signal perceptron. This section
will discuss the original implementation and two variations of
such parallel machines. We provide the theoretical definition,
implementation, and analysis of these parallel machines. The
analysis will be used to prove the expressiveness of our new
methods against the perceptron (Rosenblatt, 1958) and the MLP
defined in Sections 3.2 and 4.4, respectively. We will prove that
signal perceptrons are not only able to learn complete Boolean
functional spaces, but also that their space and computational
complexity is smaller than the MLP, making them a more
memory and computational efficient learning method.

4.1. Signal Perceptron Definitions
As discussed in Section 3.1 we are interested in implementations
of parallel machines capable of learning any function from
any function space. Since increasing the number of values in
the domain/co-domain renders an exponential increase on the
function space size, proofs and analyses of this section will be
constrained to Boolean function spaces for the sake of exposition.
We continue by defining the general form of a signal perceptron,
where each partial operator is a fixed frequency analytic sinusoid.
Each sinusoid depends on a parameter α ∈ C, which defines the
amplitude and phase of the sinusoid.

To give the definition of the signal perceptron we’ll give an
ordering to the setmk = {(x0, ..., xk−1) | xj ∈ m} in the following

way: for each j ∈ {0, ...,mk − 1} we define ω̄j = (ω0
j , ...,ω

k−1
j ),

where ω0
j ...ω

k−1
j is the representation of j in base m of length

k (in the Boolean case this means that this representation
uses k bits).

Definition 6. A m
k signal perceptron (SP) is a parametric

function of the form,

s(x̄) =

mk−1
∑

j=0

αje
iπ

m−1 (ω̄j·x̄) (6)

wherem, k ∈ N, ω̄j ∈ m
k, αj ∈ C and ω̄j · x̄ is the dot product.

From Definition 6, we can deduce that the signal perceptron
is a parametric parallel machine where each ϕ ∈ 8 is a k-
dimentional analytic sinusoid and the function � is the sum
operator. As shown in Figure 3, the amount of partial operators
ϕ ∈ 8 for the signal perceptron is equal to the domain space
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FIGURE 3 | From left to right: The Implementation of the MLP with one hidden layer as a parallel machine and the implementation of the signal perceptron.

size |mk| = mk. This number is the upper-bound of the amount
of sinusoids required to generate any function of the function
space 1. That is, most of the functions from 1 will require
less sinusoids to be defined. In other words, when obtaining
the values of each α it is possible that some will be 0 making
some partial operators unnecessary. Also, since the number of
parameters coincides with the number of possible realizations
of the domain size mk, the learning process of the α’s can be
obtained by treating each possible configuration of the inputs as
a system of linear equations.

To better demonstrate such properties, Equation 6 can be
reduced for the particular case where the functional space is the
Boolean space, yielding the following:

s(x̄) =

2k−1
∑

j=0

αje
iπ(ω̄j·x̄) (7)

It’s worth noticing that Equation 7 is the general definition for
any k-ary Boolean function space. We can further expand this
formula for the particular case of the binary Boolean function
space, as shown in Example 1.

Example 1. By expanding Equation 7 for binary Boolean
functions we obtain:

s(x̄) = α0,0e
iπ(0∗x2+0∗x1) + α1,0e

iπ(1∗x2+0∗x1 )

+α0,1e
iπ(0∗x2+1∗x1) + α1,1e

iπ(1∗x2+1∗x1)
(8)

This gives us:

s(x̄) = α0,0 + α1,0e
iπ(x1) + α0,1e

iπ(x2) + α1,1e
iπ(x1+x2) (9)

As shown in Algorithm 1 we can obtain the set of parameters
α for a particular function, by defining a system of linear

equations where each equation is a particular realization of the
input variables. The process for obtaining the α’s of a particular
function is done by generating the signal perceptron’s equation
matrix as shown in Definition 7.

Definition 7. The signal perceptron learning method can
be defined as a system of linear equations of the form:














e
( iπ
(m−1)

(ω̄0·x̄0)) ... e
( iπ
(m−1)

(ω̄
mk−1

·x̄0))

. .

. .

. .

e
( iπ
(m−1)

(ω̄0·x̄mk−1
))
... e

( iπ
(m−1)

(ω̄
mk−1

·x̄
mk−1

))



























α0

.

.

.
αmk−1













=













y0
.
.
.

ymk−1













Each row of the matrix is defined by some vector x̄j which is
one possible realization of the domain. The vector ᾱ represents
the parameters to be learned and, the vector ȳ is the expected
output of each possible realization of x̄j.

Then such matrix is multiplied by the vector of weights that
defines the α’s, which is equal to the vector ȳ which defines the
function. The learning process amounts to calculate the inverse
of the matrix and multiply it by the objective function ȳ to find
the values of the α’s that define such function.

An example of this implementation for the binary Boolean
function space is illustrated in Table 2. We defined a signal
perceptron as shown in Equation 7 and obtained the parameters
of all binary Boolean functions which are depicted in Table 3.

It is important to note that in practice, it will be virtually
impossible to define the signal perceptron matrices for bigger
arities, as we will usually not have the output value for every
possible domain realization. Nonetheless, the implementation
depicted in Algorithm 1, is necessary in order to prove that the

Frontiers in Artificial Intelligence | www.frontiersin.org 6 June 2022 | Volume 5 | Article 770254

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Mendez Lucero et al. Signal Perceptron

Algorithm 1 Learning algorithm for the signal perceptron based
on a system of linear equations.

1: Input: batch of all x̄ ∈ m
k, vector equation Y that is the labels

for each x̄ ∈ m
k. (i.e., objective function)

Calculate the equation matrix Amk×mk where for each
element of the matrix aij,ω̄, x̄ are the representation of i, j in
base m of length k, respectively. aij is defined by replacing

each x̄ ∈ m
k into the signal perceptron equation:

aij = e
iπ

m−1 (ω̄·x̄).
Calculate inverse of matrix Amk×mk : Amk×mk

−1

Calculate vector of α̂: Amk×mk
−1 · Y

TABLE 3 | Table of all parameters required by the signal perceptron to define

every binary Boolean function (as defined in Table 2).

Function α1,α2,α3,α4 Function α1, α2, α3, α4

0 0 0 0 0, 0, 0, 0 1 0 0 0 0.25, 0.25, 0.25, 0.25

0 0 0 1 0.25, –0.25, –0.25, 0.25 1 0 0 1 0.5, 0, 0, 0.5

0 0 1 0 0.25, 0.25, –0.25, –0.25 1 0 1 0 0.5, 0.5, 0, 0

0 0 1 1 0.5, 0, –0.5, 0 1 0 1 1 0.75 0.25, –0.25, 0.25

0 1 0 0 0.25, –0.25, 0.25, –0.25 1 1 0 0 0.5, 0, 0.5, 0

0 1 0 1 0.5, –0.5, 0, 0 1 1 0 1 0.75, –0.25, 0.25, 0.25

0 1 1 0 0.5, 0, 0, –0.5 1 1 1 0 0.75, 0.25, 0.25, –0.25

0 1 1 1 0.75, –0.25, –0.25, –0.25 1 1 1 1 1, 0, 0, 0

These were obtained by running an implementation of Algorithms 1 and 2.

Algorithm 2 Gradient descent based learning algorithm for the
signal perceptron.

Input: S ⊆ X of mk domain and labels Y , vector of weights
α̂, learning rate γ , number of iterations iter

Generate signal perceptron formkspace:smk (x̄)
For i in iter :

Calculate the gradient of loss ∇f (α̂old)
Assuming loss is MSE:

∇f (α̂old) =















df
dα1
.
.
.
df
dαn















=













−2
N

∑

x̄∈S e
iπω̄1·x̄(y− smk (x̄))

.

.

.
−2
N

∑

x̄∈S e
iπω̄n·x̄(y− smk (x̄))













Update the weights: α̂new = α̂old − γ∇loss(α̂old)
2: Output: α̂

signal perceptron can learn any function for any k-ary Boolean
function space as we will show in Section 4.2.

Before moving to such proof, we want to mitigate practical
concerns regarding the learning of functions, using limited
samples of the domain. That is, given a limited dataset we want
to define an alternative learning algorithm that will allow the
signal perceptron to approximate some function. For this reason,
we define Algorithm 2, which allows us to overcome the need
of providing the whole domain space by using gradient descent
(Bottou et al., 2018).

Interestingly, just as Algorithm 1, the implementation of
Algorithm 2 allowed us to learn the same parameters depicted
in Figure 3 when learning all functions from the binary Boolean
function space.3 An in-depth analysis of the hyperparameters
used to solve this task is discussed in Section 5.

4.2. Signal Perceptron: A Universal
Boolean Function Learner
Following the definition of Algorithm 1, we will now proceed
with the proof that the perceptron is a universal Boolean learning
machine. This is based on the theorem for the general signal
perceptron formula of Equation 6:

Proposition 1. For all functions of the form f :mk → m1, there

exists a set of αω ∈ C
mk

such that

f (x̄) =
∑

ω̄∈mk

αωe
iπ(ω̄·x̄)
m−1

In other words, Proposition 1 states that any function from any
functional spacemk can be expressed using the signal perceptron
parametric function. As stated before, we are interested in the
Boolean space where logic connectives reside. Due to this, we will
prove Proposition 1 only for the Boolean case, that is for all k-ary
Boolean functions, which will be defined as the Theorem:

Theorem 1.: For all k-ary Boolean functions, f : 2k → 2, there
exists a set of complex coefficients {αω̄j}ω̄j∈2k

such that:

f (x̄) =

2k−1
∑

j=0

αω̄je
iπ(ω̄j·x̄) (10)

Proof. Let f : 2k → 2 be any k-ary Boolean function. In order to
find the coefficients {αω̄j} from Equation 10, we have to solve the
system of equations

{s(ω̄j) = f (ω̄j)}
2k−1
j=0

This system has a unique solution if and only if the coefficient
matrix

Ak = (eiπω̄j·ω̄l )j,l = ((−1)ω̄j·ω̄l )j,l where j, l ∈ {0, ..., 2k − 1} (11)

is invertible. We will prove this by showing that the matrices are
of the form

Ak+1 =

(

Ak Ak

Ak −Ak

)

which means that they are precisely the Walsh matrices. This
family of matrices are also Hadamard matrices Kanjilal (1995),
which satisfy that AkA

t
k
= At

k
Ak = 2kI, i.e., they are orthogonal

and in particular invertible. We will proceed to prove this by

3Both Implementations can be found in the following GitHub repository: https://

github.com/miguelamendez/SignalPerceptron.
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diving the matrix in 4 blocks

Ak+1 =

(

A B
C D

)

where each block is a 2k × 2k matrix and prove that
Ak = A = B = C = −D. Let’s denote Ak = (αjl) and define the

matrices in the following way. For all 0 ≤ j, l ≤ 2k − 1:

A = (ajl) : = (αjl) = ((−1)ω̄j·ω̄l )

B = (bjl) : = (αj(l+2k)) = ((−1)
ω̄j·ω̄(l+2k) )

C = (cjl) : = (α(j+2k)l) = ((−1)
ω̄
(j+2k)

·ω̄l )

D = (djl) : = (α(j+2k)(l+2k)) = ((−1)
ω̄
(j+2k)

·ω̄
(l+2k) )

The order of the matrix is given by expressing the numbers in
base 2. Due to this, for each ω̄j, if j is greater or equal than 2k then
the last coordinate of ω̄j will be 1. Otherwise it will be 0 i.e.,

0 ≤ j ≤ 2k − 1 ⇐⇒ ωk+1
j = 0

2k ≤ j ≤ 2k+1 − 1 ⇐⇒ ωk+1
j = 1

(12)

These equivalences tell us that when j ≤ 2k − 1 or l ≤

2k − 1 the last coordinate of ω̄j will be 0. For this reason, the

inner product (ω1
j , ...,ω

k
j ) · (ω

1
l
, ...,ωk

l
) of a representation of arity

k will be the same as that of a representation of arity k − 1

((ω1
j , ...,ω

k−1
j ) · (ω1

l
, ...,ωk−1

l
)). If 2k ≤ j and 2k ≤ l then

ωk+1
j ωk+1

l
= 1. Consequently, the inner product ω̄j · ω̄l will be

(ω1
j , ...,ω

k−1
j ) · (ω1

l
, ...,ωk−1

l
)+ 1 i.e.,

ω̄j · ω̄l =



































k
∑

n=1

ωn
j ω

n
l if 0 ≤ j ≤ 2k − 1

or 0 ≤ l ≤ 2k − 1
k

∑

n=1

ωn
j ω

n
l + 1 if 2k ≤ j, l ≤ 2k+1 − 1

(13)

Since for all 0 ≤ i ≤ 2k − 1 we have

ω̄i+2k = (ω1
i , ...,ω

k
i , 1)

using 12 and 13 we obtain the following equations for all 0 ≤

j, l ≤ 2k − 1,

k
∑

n=1

ωn
j ω

n
l =

k+1
∑

n=1

ωn
j ω

n
l = ω̄j · ω̄l = ω̄j · ω̄(l+2k) = ω̄j+2k · ω̄l

by definition of A,B,C this implies that

αjl = ajl = bjl = cjl.

So Ak = A = B = C
Using Equation 13 for all 0 ≤ j, k ≤ 2k − 1

ω̄(j+2k) · ω̄(l+2k) = ω̄j · ω̄l + 1

we conclude that

djl = ((−1)
ω̄
(j+2k)

·ω̄
(l+2k) ) = ((−1)ω̄j·ω̄l+1)

= −((−1)ω̄j·ω̄l ) = −αjl

so D = −Ak

this proves that

Ak+1 =

(

Ak Ak

Ak −Ak

)

Which means that the matrices Ak are precisely Walsh matrices
of dimension 2k. This completes the proof that the matrices are
indeed invertible for all k.

As shown by the proof of Theorem 1, the type of
matrices that the k-ary Boolean signal perceptron generates
are Walsh matrices. Example 2 provides the Walsh matrices
used to calculate the parameters of any unary and binary
Boolean functions.

Example 2. Equation matrices A2x2,A4x4 generated by the signal
perceptron for solving any unary and binary Boolean function,
respectively. The real part of such complex matrices are also
called Walsh matrices which are a particular case of the family
of matrices called Hadamard matrices. The complex matrices can
also be defined with two real valued matrices, the first matrix
representing the real part and the other imaginary part as showed
for A4x4.

A2x2 =

[

1+ 0i 1+ 0i
1+ 0i −1+ 0i

]

A4x4 =









1+ 0i 1+ 0i 1+ 0i 1+ 0i
1+ 0i −1+ 0i 1+ 0i −1+ 0i
1+ 0i 1+ 0i −1+ 0i −1+ 0i
1+ 0i −1+ 0i −1+ 0i 1+ 0i









A4x4 = A+ iB =









1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1









+ i









0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0









In such example,it is shown that we can transform the complex
matrix into two real valued matrices, one representing the real
part while the other the imaginary part. This interpretation is
important because analytic signals can be also defined in terms of
two real functions, one representing the real part and the second
the imaginary part of the complex function using the identity:

s(x) = αeiωx = αcos(ωx)+ iαsin(ωx) (14)

The identity in Equation 14 is only possible when the input x is a
real number. Since for Boolean function spaces that assumption
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is always true, we can observe that the real part of the matrix
generated by the signal perceptron is defined only by the function
αcos(ωx). Because of this, we can define a variation of the signal
perceptron which is defined only by the real part which will be
discussed in the next section.

4.3. Signal Perceptron Variations
As explained above, the Walsh matrix in the complex domain is
the matrix for the real part which contains all the information
to define Boolean function spaces. For this reason, we will
proceed to define a signal perceptron that works only within the
real domain.

Definition 8. The Real Signal Perceptron (RSP) is a parallel
machine of the form:

s(x̄) =

mk−1
∑

j=0

αjcos(
π

m− 1
ω̄j · x̄) (15)

wherem, k ∈ N, ω̄j ∈ m
k, αj ∈ R and ω̄j · x̄ is the dot product.

From Definition 8, RSP can be understood as a less general
variation of the signal perceptron. Interestingly, this definition
is sufficient to guaranty that we can learn any function of the
Boolean space as explained at the end of the previous section.
While at first glance this new signal perceptron may seem a
limited and less expressive implementation, such variation has
some practical advantages over the original signal perceptron.
Some of the current deep learning libraries (e.g., PyTorch and
TensorFlow), lack the capabilities of dealing with learnable
parameters and functions defined in the complex domain. Thus,
by limiting our signal perceptron to the real domain, we can
directly integrate it in most deep learning libraries, which would
allow us to take advantage of all preexisting gradient descent
optimizers, loss functions and other deep learning functions as
we will show in Section 5.

In practice, such libraries are used to learn a particular
function from a given function space. As mentioned previously,
both the definitions of the signal perceptron and the RSP, provide
an upper bound to the amount of signals necessary to represent
the entirety of the functional space. Consequently, in order to
define a particular function, the amount of signals will be less or
equal than the upper bound.

We will next introduce a variation of the RSP that can work
with a variable number of signals. We call this variation the
Fourier signal perceptron and it is defined as:

Definition 9. The Fourier Signal Perceptron (FSP) is a parallel
machine where the amplitudes and frequencies of the signals are
learnable parameters.

s(x̄) =

n−1
∑

j=0

αjcos(ω̄j · x̄) (16)

where ω̄j, αj ∈ R and ω̄j · x̄ is the dot product.

As shown in Definition 9, the important difference between
the FSP and the RSP is the amount of signals. While the
RSP requires mk signals, the FSP can be defined using any
amount. This is possible since the frequencies are now learnable
parameters. For the particular case when the amount of signals
of the FSP equals to mk, Definition 9 becomes the same as
the RSP one, assuming that the same frequencies are used.
With this simple change, we can create a powerful function
approximator that can be used for continuous domains. As we
will show in Section 5, the FSP can be used straightforwardly
to learn image classification tasks without having the issue of
an exponential blowup in the amount of parameters required to
learn all functions.

4.4. The Multilayer Perceptron vs. the
Signal Perceptron
Before we continue with the experiments of Section 5, we will
briefly analyze the differences between the single hidden layer
MLP and the signal perceptron (SP). This is important as it will
provide clarity to better understand why the SP outperforms
the MLP in all experiments conducted. A similar analysis is
conducted in Section 6.2 for other literature neurons that claim
to solve the non-linear separability problem.

As shown in Figure 3, the single hidden layer MLP can be
defined in terms of a parallel machine as:

Definition 10. A MLP with one hidden layer is a parallel
machine, where each partial operator ϕ1(x̄), ..,ϕn(x̄) is a
perceptron and the join function � is also a perceptron.

That is:

9(x̄) = �(ϕ1(x̄),ϕ2(x̄), ...ϕn(x̄))

= �(

k
∑

i=1

α1,i ∗ xi + b1 > θ1, ...,

k
∑

i=1

αn,i ∗ xi + bn > θ)

=

n
∑

j=1

(

k
∑

i=1

αj,i ∗ xj + bj > θj) > θ

(17)

From Definition 10, the amount of perceptrons in the ’hidden
layer’ to learn any function, is equivalent to the training samples
which is n = mk as explained by Huang and Babri (1997) and
Baum (1988). Which means that the total amount of perceptrons
for the whole structure is equal tomk+ 1. Wheremk perceptrons
are used to represent the partial operators and the last perceptron
represents the� function. It is worth noticing, that for the SP and
RSP (as shown inDefinitions 6,8), the amount of partial operators
required remains the same as the ’hidden layer’ of theMLP, which
ismk.

The main difference will reside in the amount of learnable
parameters, which for the case of the MLP, the amount of
parameters required to learn any function is (k+ 1)n+ n+ 1 =

(k+ 2)n+ 1, where n = mk.
On the other hand, as depicted in Figure 3, the only learnable

parameters are the amplitudes of each signal. This makes the
spatial complexity n if the complex numbers are counted as
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one parameter, or 2n if the complex number is thought as
two separated real numbers representing the real and imaginary
part, respectively.

For the case of the RSP the amount of parameters is n and for
the FSP is kn which are always smaller than the MLP.

Regarding the structural analysis, the amount of linear and
non-linear operations is almost the same for both MLP and SP
variations. As shown in Definitions (6,8,9), the operations for
the three SP variations remains the same. First a dot product
between the frequencies and input vectors, then applying the
non-linear operation, which is a real or complex sinusoid. The
final operation is the dot product of the vector of signals by
the vector of α’s. This amounts to a total of n + 1 linear
operations and n non-linear operations, where n is the amount
of partial operators.

For the case of the MLP, based on Definition 10, we will have
the following hidden layer operations. A dot product between
the weights and input vectors, following addition of the vector of
bias then applying the non-linear operation, which could contain
extra linear operations, depending on the activation function.
Then for the second layer, the operations are: a dot product
between the output of the hidden layer and the weights of the
output layer, an addition of the bias and finally applying the
non-linear operation, which could contain extra linear operations
depending on the activation function. This give us a total of n+1
linear operations and n non-linear operations for the first layer,
and 2 linear operations plus 1 non linear operation in the second
layer. This results into a total of n+ 2 linear and n+ 2 non-linear
operations, assuming that the activation function contains only
one non-linear operation. Such assumption is usually broken,
since activation functions tend to have multiple linear and non-
linear operations. A common example is the sigmoid function,
which contains one linear operation (division) and one non-
linear operation (exponentiation). This will increase the total
number of operations to 2n+ 2 linear and n+ 2 nonlinear.

Finally, signal perceptrons are mechanisms that are able to
learn all functions exactly, given the whole domain as training
samples. At least, for the k-ary Boolean function space this
was proven analytically. In contrast, the MLP was only proven
analytically (Baum, 1988) to be a function approximator, rather
than an exact function learner. Because of this, such mechanism
require lots fine tuning of hyperparameters, specific choice of
activation functions and restructuring its topology to achieve
the same goal. That is not the case for the signal perceptron
which we showed it doesn’t require fine tuning and solve the
tasks without the need of optimizers. Even for the case that the
training samples are limited, signal perceptrons can be used as
function approximators, which outperformed the generalization
capabilities of MLP. This is shown in the experimental evaluation
in Section 5.

5. EXPERIMENTS

Now we proceed to demonstrate experimentally the signal
perceptron’s potential advantages over the one hidden layer
MLP. As stated previously, we are interested in mechanisms able

to learn all functions within a functional space with just one
structure. For this reason, our first set of experiments will be
focused on performing this task over the binary Boolean function
space as shown in Table 2. We will evaluate implementations of
the SP, RSP, FSP and the single hidden layer MLP, by measuring
the amount of learnable parameters required for each structure
to learn all functions from the functional space, the average time
that each method requires for inference and training, and finally
their learning capabilities. These are measured by the average loss
at the end of the training.

For the second set of experiments we measured the learning
capabilities of such structures when learning all functions
simultaneously. The 16 functions of the binary Boolean
function space can be learned simultaneously by defining
a signal perceptron of 16 outputs. This is possible due to
Definitions 6, 8, and 9, which show that all functions from
the functional space are sharing the same frequencies. Since
the amplitudes are the ones defining each function from the
functional space, we can exploit this property by defining a signal
perceptron of n-vectors of amplitudes. To compare learning
performance against the single hidden layer MLP, we defined the
MLP’s last layer by using n-nodes rather than a single node4.

The third part of the experiments aims at highlighting the
potential practical uses of the signal perceptron. We will focus
our attention into learning two different image classification
datasets MNIST and FashionMNIST (LeCun and Cortes, 2010;
Xiao et al., 2017) using different FSP andMLP architectures. This
is done in order to assess the performance of signal perceptrons
in function approximation and generalization when trained with
limited data.

5.1. Evaluation
For our first set of experiments, we defined an architecture that
is only able to learn one function from the binary Boolean
function space. Because of this, the training process for learning
all functions was to use the same initial learnable parameters,
every time the training algorithm starts over to learn a new
function from the the binary Boolean function space. Finally we
conducted the experiments a total of five times and averaged the
results to in order to prevent single training bias.

In order to provide a fair comparison against the MLP with
one hidden layer we will work with the following criteria:

• The MLP used by these experiments will be constructed as
shown in Definition 10 and is based on the analytic proof given
by Huang and Babri (1997). That is, our MLP will use sigmoid
activation functions and the number of perceptrons used in the
hidden layer will be equal to the number of training samples.
For the binary Boolean function space that is: mk = 22 = 4
nodes.

• The FSP variation will use the same amount of signals as the
SP and the RSP, which is equal to 4.

To evaluate spatial and sample complexity we measure the
amount of learnable parameters, the average forward time for

4Results of similar experiments are provided in the Appendix 1 for ternary

Boolean functions.
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TABLE 4 | Spatial complexity and learning times of different architectures.

Country list

Property SP NumPy RSP NumPy RSP PyTorch FSP PyTorch MLPh1 PyTorch

Learnable parameters 4 4 4 12 17

Avg forward/inference time (ms) 0.0085 0.0065 0.0409 0.0270 0.0410

Avg backward/backprop time (ms) 0.0409 0.0336 0.1698 0.1899 0.2232

Signal perceptron (SP) NumPy, real signal perceptron (RSP) NumPy, RSP PyTorch, Fourier signal perceptron (FSP) PyTorch, and single hidden layer MLP PyTorch.

TABLE 5 | Number of learned functions per method when learning the sixteen functions of the binary Boolean function Space.

Epochs LR SP NumPy RSP NumPy RSP PyTorch FSP PyTorch MLPh1 PyTorch

100 0.001 0 0 0 0 0

100 0.01 0 0 0 0 0

100 0.1 16 16 16 16 1

1,000 0.001 0 0 0 0 0

1,000 0.01 16 16 16 2 0

1,000 0.1 16 16 16 16 0

10,000 0.001 16 16 16 1 0

10,000 0.01 16 16 16 16 0

10,000 0.1 16 16 16 16 6

20,000 0.001 16 16 16 9 0

20,000 0.01 16 16 16 16 2

20,000 0.1 16 16 16 16 14

The methods compared are different implementations of the signal perceptron and the MLP with one hidden layer.

inference and average backward time during training, leading
to the results illustrated in Table 4. The signal perceptron and
the RSP implementations are the ones with the less amount
of parameters as well as the ones taking less average inference
and training runtime. This is mainly due to the fact that
the frequencies of the signals are not learnable parameters. In
contrast, the FSP and MLP take more runtime because of the
extra set of parameters required to learn all the functions. Still,
it is demonstrated that the parameters required for the FSP and
runtimes are more optimal than the MLP ones. It is important to
mention that we had to code our own NumPy implementation
of the signal perceptron as the current version of PyTorch cannot
operate properly with complex functions and parameters.

All the architectures were trained using batch gradient descent
with no dropout regularization (Srivastava et al., 2014) and the
mean squared error (MSE) loss function. The dataset used for
training consisted of all possible realizations of the domain as
depicted in Table 2. The training analysis was made by running
multiple times the training algorithm with different numbers of
epochs (100, 1,000, 10,000, 20,000) and learning rates (0.1, 0.01,
0.001), which yielded the results illustrated in Tables 5, 6.

From Table 5, we can observe the amount of functions of the
binary Boolean function space learned by each structure. We use
a threshold of 0.001 to consider that a structure learned a function
to a satisfying degree. This threshold was applied to the final loss
at the end of training.

For a more in-depth analysis of the hyperparameters, we
averaged over the final loss of the 16 possible functions. The
results are displayed in Table 6. From Table 6, we can observe
that the optimal learning rate for the SP and RSP is 0.1, since
using smaller learning rates takes the models more epochs to
converge. For the FSP, the optimal learning rate is also 0.1 but
it requires more epochs to converge as it needs to learn the
frequencies of the signals. Meanwhile, for the MLP there is no
optimal learning rate, as it never achieves the loss threshold of
less than 0.001. Not even when the amount of epochs is equal to
20,000. This happens because there are two functions from the
Boolean function space that the MLP is never able to learn. These
functions can be observed in Figure 4, being number 6 and 9,
namely the XOR and not-XOR, respectively. By using the ADAM
optimizer, the MLP can learn the functions in nearly 10000
epochs which are still more than using any signal perceptron
with gradient descent5. While in the case of the signal perceptron
variations, using the ADAM optimizer required less than 200
epochs to learn all functions.

The second set of experiments requires to learn all 16
functions that define the binary Boolean function space
simultaneously. Just as in the first set of experiments, we
evaluated the spatial complexity by measuring the amount of

5Such experiments can be found in the GitHub repository https://github.com/

miguelamendez/SignalPerceptron.
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TABLE 6 | Average final loss for different implementations of the signal perceptron and MLP with one hidden layer when learning the sixteen functions of the binary

Boolean function space.

Epochs LR SP NumPy RSP NumPy RSP PyTorch FSP PyTorch MLPh1 PyTorch

100 0.001 0.6233− 1.8718j · 10−17 0.7238 0.4258 0.2629 0.2476

100 0.01 0.0718+ 2.3059j · 10−17 0.0189 0.0164 0.1776 0.2260

100 0.1 4.2005 · 10−20 + 1.7220j · 10−34 9.4023 · 10−20 5.7768 · 10−15 0.0566 0.1868

1,000 0.001 0.6233− 1.8718j · 10−17 0.7238 0.4258 0.2629 0.2476

1,000 0.01 1.7142 · 10−18 + 4.8695j · 10−33 2.1990 · 10−18 1.4449 · 10−12 0.0656 0.1864

1,000 0.1 2.5458 · 10−32 + 2.4818j · 10−48 3.4570 · 10−32 7.2082 · 10−15 5.1609 · 10−05 0.1264

10,000 0.001 2.2651 · 10−18 + 1.2682j · 10−32 5.7428 · 10−18 1.4452 · 10−10 0.0535 0.1865

10,000 0.01 5.6787 · 10−30 + 8.6296j · 10−46 5.0416 · 10−30 1.2703 · 10−12 2.4053 · 10−05 0.1050

10,000 0.1 3.0393 · 10−32 + 6.0275j · 10−48 5.7537 · 10−32 6.9512 · 10−15 8.8542 · 10−08 0.0264

20,000 0.001 5.7354 · 10−28 + 3.5035j · 10−44 6.0837 · 10−28 1.6507 · 10−10 0.0040 0.1806

20,000 0.01 5.3189 · 10−30 + 1.4378j · 10−46 4.6655 · 10−30 1.6408 · 10−12 1.2077 · 10−05 0.0536

20,000 0.1 2.7013 · 10−32 + 5.8603j · 10−48 3.7074 · 10−32 6.5677 · 10−15 2.8152 · 10−08 0.0012

FIGURE 4 | Figure that plots the loss function of all 16 binary Boolean functions using the FSP PyTorch and the MLP PyTorch implementation using learning rate of

0.1. The graph on the right shows that even after 20,000 epochs, the MLP cannot exactly learn some of the functions.

TABLE 7 | Spatial complexity and learning times of different architectures for learning in parallel all 16 functions from the Binary Boolean Function Space for different

implementations of the signal perceptron and MLP with one hidden layer.

Property SP NumPy RSP NumPy RSP PyTorch FSP PyTorch MLPh1 PyTorch

Learnable parameters 64 64 64 72 92

Avg forward/inference time (ms) 0.0089 0.0066 0.0412 0.0273 0.0349

Avg backward/backprop time (ms) 0.0420 0.0323 0.1808 0.2238 0.2360

learnable parameters, then we also calculate the average forward
and the average backward time, as shown in Table 7.

In Table 7, we can observe an increment of parameters in the
signal variations and MLP. This is due to the multiple vectors of
α’s and multiple nodes (for the MLP last layer), required to learn
all functions at once. Nonetheless, this table follows the same
pattern as Table 4 where all SP variations outperformed the MLP
for every metric used.

During training we used the same hyperparameters, loss
function (MSE) and training method (batch gradient descent)
as in the previous experiments. The results depicted in Table 8

are the average of the five runs conducted in order to ensure
consistency and the precision of our measurements. We can
observe a similar learning pattern as in the first set of
experiments, where the optimal learning rate is also 0.1 for all
variations of the signal perceptron. Indeed, the amount of epochs
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TABLE 8 | Measuring final loss when learning all 16 functions of the binary Boolean function Space, using different implementations of the signal perceptron and MLP

with one hidden layer.

Epochs LR SP NumPy RSP NumPy RSP PyTorch FSP PyTorch MLP PyTorch

100 0.001 1.2122− 3.9221j · 10−17 0.9694 0.7269 0.8520 0.2357

100 0.01 0.0262+ 1.0550j · 10−17 0.0320 0.5925 0.3650 0.2647

100 0.1 1.0533 · 10−19 + 4.8589j · 10−34 8.5732 · 10−20 0.0828 0.1835 0.2254

1,000 0.001 1.2122− 3.9221j · 10−17 0.9694 0.7269 0.8520 0.2357

1,000 0.01 3.6959 · 10−18 + 1.7917j · 10−32 4.5429 · 10−18 0.0724 0.1837 0.2268

1,000 0.1 3.2451 · 10−32 + 4.2776j · 10−48 2.5410 · 10−32 1.2004 · 10−11 0.0894 0.1934

10,000 0.001 5.2071 · 10−18 + 2.4675j · 10−32 6.0695 · 10−18 0.0659 0.1848 0.2432

10,000 0.01 5.7437 · 10−30 + 6.4925j · 10−46 5.4604 · 10−30 4.1244 · 10−10 0.0526 0.1873

10,000 0.1 3.9144 · 10−32 + 6.5162j · 10−48 2.9243 · 10−32 3.8058 · 10−12 3.2690 · 10−10 0.1245

20,000 0.001 7.2465 · 10−28 + 1.1227j · 10−43 6.3567 · 10−28 0.0057 0.1796 0.2289

20,000 0.01 5.3793 · 10−30 + 8.4984j · 10−46 5.4062 · 10−30 3.8469 · 10−10 0.0752 0.1859

20,000 0.1 3.0273 · 10−32 + 4.4578j · 10−48 3.3691 · 10−32 3.5718 · 10−12 7.1793 · 10−11 0.0556

to achieve the loss error threshold of 0.001 increases, but this
is because of learning multiple tasks in parallel. We discovered
that the MLP encounters the same problem as in the previous
experiment and is not able to learn some of the functions.
This can be observed in Figure 5, where every signal perceptron
variation achieves zero loss in less than 4000 epochs and the MLP
is stuck at a loss of 0.2 even after 10,000 epochs.

Before we continue with the next set of experiments, it is
important to mention that we performed the same experiments
for finite domains bigger than the Boolean domain. The results
showed that all functions had an exact solution, suggesting that
the SP is not only able to learn exactly any k-ary Boolean
function but may also have the ability to learn any k-ary
m-valued function6. Such experiments can be found in the
Supplementary Material and can be replicated using the GitHub
repository.

Finally, all experiments in this part were conducted using only
an AMD Ryzen 7 2700X Eight-Core Processor CPU.

We have shown that the signal perceptron and its variations
always outperform the single hidden layer MLP when learning
an entire Boolean function space. However, we would also like
assess if this is also true when limited data is available and we
are interested in learning a subset of functions. In other words,
for the last set of experiments we were interested in measuring
the generalization properties of the signal perceptrons when
trained with practical datasets. As we mentioned above, we used
to measure such generalization capabilities for the MNIST and
FashionMNIST datasets. This two datasets consist of gray-scale
images of 28 by 28 pixels, of handwritten numbers and clothes,
respectively. All neural network architectures in this section
where trained using the training set which consist on 60,000
examples and where tested on a test set of 10,000 examples for
both MNIST and FashionMNIST.

For this set of experiments we evaluated performance of four
different architectures. The first two will be FSPs using 128 and
512 signals, respectively. The last two will be a single hidden

6This must be analytically proved though.

FIGURE 5 | Figure that plots the loss function of different architectures when

learning the whole binary Boolean space simultaneously with batch gradient

descent for 10,000 episodes and learning rate of 0.1.

layer MLP of 512 nodes, and a MLP with two layers. Five
hundred and twelve nodes in the first hidden layer and 512 in the
second hidden layer. All MLPs used ReLu activation functions,
and the weights of all architectures where initialized using the
Kaiming initialization.

As in previous experiments, before training, we evaluated the
spatial and computational complexity of the four architectures.
For this reason, we measure the amount of learnable parameters,
the average forward time in inference, and average backward time
in training obtaining the results shown in Table 9.

To ensure consistent results, the experiments were performed
five times, and each time the weights were reinitialized. The
averaged results of the five runs are shown in Table 10.

As expected both FSP architectures outperformed the MLP
variations. The most noticeable comparison is the inference and
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TABLE 9 | The spatial and computational complexity of different architectures for

learning MNIST and FashionMNIST.

Property FSP-128 FSP-512 MLPh1 MLPh2

Learnable parameters 101,632 406,528 407,050 669,706

Avg forward/inference time (ms) 0.0889 0.0894 0.1468 0.2142

Avg backward/backprop time (ms) 0.8469 1.0108 1.3031 1.1778

128 signals FSP, 512 signals FSP, MLP of 1 hidden layer (512 nodes), andMLP of 2 hidden

layers (512, 512). The results in bold letters indicate the model that has the best spatial

and computational complexity.

back-propagation runtimes between the FSP of 512 signals and
the single hidden layer MLP. While the amount of parameters is
almost the same, the MLP’s inference time is at least 40% slower
than that of the FSP and the training time is almost 30% slower.

For the training part, all the architectures were trained using
the Adam optimizer with no dropout regularization and the
cross-entropy loss function. The training analysis was made by
running multiple times the training algorithm using both the
MNIST and FahionMNIST datasets for 9 epochs with a learning
rate of 0.001.

The results depicted in Table 10 are the averages of five runs
of the same dataset. We can observe without any doubt that the
model that performs the best is the FSP of 512 signals, scoring
an average accuracy of 97.9% on the MNIST dataset and 86.3%
on the FashionMNIST. As such being at least 10% more accurate
than its MLP counterparts.

All experiments in this section were conducted on a Geforce
GTX 1650 Super GPU.

6. DISCUSSION

The main objective of the paper was to show the capability of
the signal perceptron to learn all functions for any k-ary Boolean
function space. Moreover, our experimental results imply that the
general case of the SP may be expressive enough to learn any
function, although this needs to be proven analytically. Regarding
function approximation and generalization to unseen data, we
showed that just a single signal perceptron outperforms the
MLP architectures. Nonetheless, it is important to mention that
this was achieved only with the FSP variation as there is an
exponential blow-up in the number of parameters that define the
SP and RSP in higher arities. Due to this, we will next discuss the
limitations of the signal perceptron and provide a discussion for
essential future work.

6.1. Limitations
One may reasonably develop concerns regarding the practical
applicability of the SP and RSP when dealing with larger domains
and arities. The source of such concern is the definition of
the signal perceptron. As seen in Definition 6, the amount
of learning parameters is equal to the number of signals. In
consequence, exponentially many signals might be needed to
guarantee that the whole functional space is learnable. However,
as it has already been thoroughly discussed in previous sections,
such a number is only necessary to analytically prove the
expressiveness of the signal perceptron. Sections 2 and 4.4

showed that this limitation is also present in the MLP, which
has not only an exponential blow-up but super-exponential
regarding the number of parameters required to learn the whole
functional space.

Still, as shown in Table 3, when learning particular functions
not all signals from the signal perceptron will carry information.
That is, the amplitudes of the signal are equal to zero.
As such these signals are unnecessary and can be removed,
which reduces the number of signals for certain functions. In
addition, as discussed in Section 4.3 and shown in Section 5,
when approximating functions we circumvented this apparent
limitation by using the FSP, which outperformed the MLP in
image classification tasks.

Moreover, this issue can also be potentially mitigated for the
SP and the RSP. This could be achieved by defining Neural
Networks of such mechanisms. As such we would utilize SPs
or RSPs as units just like the perceptron are used as a unit in
MLPs. Consider the following example over the MNIST dataset.
A single Boolean signal perceptron with ten outputs will require
26,272 parameters to learn the MNIST dataset. However, we could
propose a Neural Network of Boolean signal perceptrons. As an
example, the architecture could be defining the first layer with
28 ∗ 28 perceptrons of 8 inputs for each pixel. Following a second
layer with 88 perceptrons of 9 inputs, a third of 10 perceptrons
of 9 inputs, and a final layer of 10 perceptrons with 10 inputs.
By using this structure, the total number of required parameters
becomes 720∗256+512∗88+512∗10+1024∗10 = 244736, which
is less than the number of parameters used by the architectures
in Section 5. This was shown in Table 9. Since our analysis was
restricted to the capabilities of a single signal perceptron, such
experiments are left for future work.

6.2. Comparison Against Other Prominent
Neurons
As a continuation of Section 4.4, this section will consider a
brief discussion between the signal perceptron variations and
other types of neurons which attempt to solve the non-linear
separability problem on Boolean function spaces with a single
unit. This analysis is done to distinguish the contributions and
advantages of the signal perceptron over other neurons in the
literature. Having said that the analysis in this section is limited
to the learning of k-ary Boolean functions, other comparisons
for other discrete or continuous domains are out of scope.

The analysis will be focused on the following points.

• Structural Comparison. A brief analysis of the mathematical
structure of these architectures, that will be used to articulate
the main differences and similarities concerning the families
of signal perceptrons. It is important to remark that no
analysis over the function approximation capabilities will be
conducted, given that our interest relies on learning the k-ary
Boolean functions, which has been proved (and given that this
is a finite family which is in particular PAC learnable Valiant,
1984). We could ask a different question: Is the family of
mk-signal perceptrons is PAC learnable? This is certainly an
interesting question that will be addressed in future work.

• Mathematical proof. One of the main contributions in this
paper is the mathematical proof 4.2 of Theorem 1 in Section 4,
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TABLE 10 | Performance metrics by training different architectures on the MNIST and FashionMNIST datasets.

Performance metric FSP-128 FSP-512 MLPh1 MLPh2

Mnist

Avg training loss 0.0028 0.0012 0.2164 0.8635

Avg test loss 0.0805 0.0644 0.2870 0.7757

Avg accuracy 97.5% 97.9% 89.2% 67.9%

FashionMnist

Avg training loss 0.1342 0.1323 0.5977 0.7346

Avg test loss 0.4034 0.3902 0.8041 1.2000

Avg accuracy 86.0% 86.3% 68.5% 53.1%

Used architectures: 128 signals FSP, 512 signals FSP, MLP of 1 hidden layer (512 nodes), and MLP of 2 hidden layers (512, 512). The results in bold letters indicate the model that

achieved the best performance.

which allowed us to claim that the signal perceptron and
its variations can learn any k-ary Boolean function. If the
discussed work doesn’t provide such proof, then any claim
that the mechanism solves the non-linear separability problem
is likely only discussed empirically and thus is not directly
comparable to the contributions of this paper.

• Spatial Complexity. Apart from the mathematical proof, we
will look out for the topological analysis which will define
an upper bound of the number of required parameters to
learn any Boolean function.Without this upper bound, we will
not be able to discern which architecture is preferable for the
worst-case scenario.

• Learning algorithm. We will briefly describe the learning
method used to train the structure. It was shown in Section 4
that, in the case of Boolean functions, we can learn the
weights by solving a system of linear equations or by utilizing
a back-propagation algorithm. A way to compare the time
performance and computational complexity of the training
method is by comparing these algorithms. Ideally, we would
like the discussed neurons to be able to learn using back-
propagation algorithms, since this is a way to assess the time
performance and computational complexity, as it was done
in Section 5.

• Experimental results. In this article we proved analytically
that our mechanisms can learn any n-ary Boolean function.
Nonetheless, form the experimental results of Section 5
and Appendix 1, we obtained the values of each learnable
parameter of all binary and ternary Boolean functions as
depicted in Tables 3, 4. It is important to remark that learned
parameters obtained after training will yield a loss of zero. For
this reason, comparisons of experimental results will not be
measured in terms of accuracy and validation, and training
error but in terms of how many functions the neurons were
able to learn as shown inTable 5. This comparison will be done
only for papers that perform experiments for learning Binary
and ternary Boolean functions. An in-depth experimental
analysis to compare training performance, computational
complexity, and time complexity (as we did for the MLP in
Section 5.1) is out of the scope of this paper.

A summarized version of the comparison can be found in
Table 11, where we depict the key differences between the signal

perceptron variations and the other neurons that try to solve
the non-linear separability problem for Boolean functions. The
first column of the table defines the training algorithm required
for training the neurons. The second defines the upper bound
of the number of learnable parameters required to learn binary,
ternary, and any k-ary Boolean function. The third column
depicts the experimental evaluation of the learning of binary
and ternary Boolean functions, if it was conducted by the paper.
For the single hidden layer MLP, Generalized Neuron and signal
perceptron variations, results come from experiments conducted
on Section 5 and Appendixes 1, 2. Finally, in the last column, we
remark if the proposed neuron has been proven to be expressive
enough to learn exactly any k-ary Boolean function.

6.2.1. Complex-Valued Neurons
The complex valued neuronCVN (Amin et al., 2008) is a function
of the form:

ocvn1 = fact((ω̄ · eix̄)+ b)) (18)

where ω̄ ∈ C
nis a vector of complex weights, x̄ ∈ R

n, is the input
vector and b ∈ C is a complex bias. The function fact is a complex
activation function that forces a mapping of the form C → R

and is defined by:

f1act(a+ ib) = f1(sig(a), sig(b)) =

√

sig(a)2 + sig(b)2

or:

f2act(a+ ib) = f2(sig(a), sig(b)) = (sig(a)− sig(b))2

(19)

where a + ib ∈ C is the complex number, sig(x) = 1
1+e−x

is the sigmoid function, and f1, f2 are the quadratic functions
√

(x1)2 + (x2)2, (x1 − x2)
2, respectively.

The process for calculating the output of the neuron can be
summarized as follows. First the real input vector is encoded
into a complex number using the non-linear function z̄ =

eix̄. Then, the resultant complex vector z̄ is combined with the
complex weights by the dot product ω̄ · z̄ and added the bias
b. Finally the resulting number is passed through one of the
activation functions f1, f2 which force a mapping C → R From
the Equations (18,19) and the forward pass description, we can
conclude that the CVN is more closely related to Rosenblatt
perceptron from Definition 3 than to the SP variations. That is:
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TABLE 11 | Summary table that compares the signal perceptron against the Rosenblatt perceptron, the 1-hidden-layer MLP, and some neurons in the machine learning

literature that claim to solve the problem of learning non-linearly separable functions from Boolean function spaces.

Number of parameters (Upperbound) Experimental evaluation k-arity proof

Neuron Learning method 2-vars 3-vars k-vars 2-vars 3-vars Type Result

RP (Rosenblatt, 1958) BP 3 4 (k + 1) - - Math Disproven

MLP (Baum, 1988) BP 9 41 (k + 2) ∗mk + 1 16/16 241/256 Math Proven

CVN1 (Amin et al., 2008) CBP 6 8 2(k + 1) 16/16 250/256 Experimental Disproven

GN (Kulkarni and Venayagamoorthy, 2009) BP/PSO 9 11 2(k + 1)+ 3 14/16 114/256 Experimental Disproven

DMN (Ritter and Urcid, 2003) SLMP 8 48 2 ∗ k ∗mk 1/16 1/256 Math Proven

SN (Maass and Schmitt, 1997) - - - - - - Math Disproven

SP (ours) CBP/SLE 8 16 2 ∗mk 16/16 256/256 Math Proven

RSP (ours) BP/SLE 4 8 mk 16/16 256/256 Math Proven

FSP (ours) BP 8 24 k ∗mk 16/16 256/256 Math Proven

The table is divided into learning method, spatial complexity of each unit, experimental evaluation, and k-arity proof. Regarding the notation for the upper-bounds used to calculate the

spatial complexity, the m term represents the domain size which for Boolean functions is m = 2, k is the arity of the input size of each of the neurons. The symbol − means that the

information was missing, not discussed, or not proven by the paper.

Proposition 2. The CVN is a particular variation of the Rosenblatt
perceptron, where the partial operators ϕ1(x̄),ϕ2(x̄), ...ϕn(x̄) use
complex weights and the encoded input eix̄ instead of real valued
weights and the direct input. The join function � is defined by 2
non-linear functions in sequence rather than a single non-linear
activation function.

The CVN article does not provide mathematical proof that
a single unit can solve the non-linear separability problem, but
it provides an experimental analysis that shows that it is only
able to solve the problem up to the binary Boolean functions,
whichmakes it a less expressivemodel than the signal perceptron.
Also, the paper does not give a topological analysis of how many
CVNs will be required to guarantee that can learn the complete
Boolean function spaces. The only analysis is for a single unit that
defines the number of learnable parameters to be double as the
parameters used in the Rosenblatt perceptron which is 2k + 2
where k is the arity of the Boolean function.

Regarding the training algorithm, the CVN article proposes an
extension on gradient descent (CBP) to calculate the gradients for
complex functions and weights. However, the learning algorithm
is defined only to support the proposed activation functions and a
particular loss function. On the other hand, the signal perceptron
variations from Section 4.3 can be trained using normal back-
propagation as they are already defined in the real domain.
For the particular case of the signal perceptron, while it is
required to compute the partial derivatives of complex numbers,
such calculations are straightforward as shown in Algorithm 2.
Calculating the gradients is also straight forward as we have a

single non-linear function e
iπ

m−1 (ω̄j·x̄) whether the CVN requires
3 non-linear operations. One for the complex encoding eix̄ and
two for the activation functions f1, f2.

The experimental results do not seem to demonstrate that
a single unit of a CVN can learn any k-ary Boolean function.
This is observed when learning the ternary Boolean function
space where the authors of the paper discusses that only
253/256 functions were learned using the activation function
f1act and 250/256 were learned using the activation function

f2act . Unfortunately, those claims cannot be corroborated as no
learned weights were provided in the results. The paper only
provides empirical proof for the binary Boolean function space.
They provide a table from the learned parameters for all binary
Boolean functions, which shows that the CVN is only to solve
the non-linear separability problem only for the Binary Boolean
function space.

6.2.2. Generalized Neuron
TheGeneralizedNeuron (Kulkarni andVenayagamoorthy, 2009)
is a function that can be formally defined as:

ogn = γ f1(w̄
∑ · x̄+ b1)+ (1− γ )f2((

k
∏

i=1

vixi)b2) (20)

where γ , b1, b2 ∈ R are learnable parameters, w̄, x̄ ∈ Rk is a
weight and input vectors, respectively. Each variables vi, xi are the
particular values of the vectors x̄, v̄ from the dimension i and f1, f2
are activation functions defined as:

f1(x) =
1

1+ e−λ1x

f2(x) = exp(−λ2(x)
2)

(21)

where λ1, λ2 ∈ R are learnable parameters.
From Equations (20,21) we can observe that the generalized

neuron can be defined as a composition of a Rossenblat neuron
f1(w̄

∑·x̄+b1) and a neuron that uses amultiplication aggregation
function. The final output is the aggregated result of both neurons
outputs weighted by a γ parameter which defines the total
contribution of each neuron.

To our best understanding, the paper doesn’t provide a clear
justification of the structure nor provides mathematical proof of
the advantages of the GN neuron against the normal Rossenblatt
perceptron. Indeed it is clear that since GN neuron should be
more expressive than a single Rosenblatt perceptron as it can be
thought of as a composition of 2 neurons. But such composition
comes with the trade-off that the GN requires double the amount
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of parameters as the Rosenblatt perceptron. Thus, the authors of
the paper define the spacial complexity of a single unit GN as
2(k+ 1)+ 3 where k is the arity of the function.

Regarding the claim that this neuron can solve the non-
linearity separability problem on Boolean functions, the paper
doesn’t provide mathematical proof that a single unit of such
mechanism is expressive enough to learn any k-ary Boolean
function. From their experimental section, it is shown that it can
learn the binary-xor function which can be used as a claim that
can learn at least binary Boolean functions. As discussed for the
CVN Section 6.2.1, the CVNwas also able to learn binary Boolean
functions but it failed to learn non-linear separable functions
from the ternary Boolean function space when conducting their
experiments. Thus, it remains unclear how the GN would work
with ternary or higher arity functions, since as it is not obvious
that experiments for the binary case generalize to higher arities.

The training method proposed in this article is particle
swarm optimization (PSO) (Kennedy and Eberhart, 1995). The
authors expressed the preference of this algorithm over stochastic
gradient descent (SGD) since it was shown at that time that
PSO outperformed it in some experimental tasks (Gudise and
Venayagamoorthy, 2003). Since the publication of the article
several optimizations and extensions have been defined for
SGD reopening the question that PSO remains a more optimal
algorithm than any BP extension.

The experimental section in Kulkarni and Venayagamoorthy
(2009), briefly discusses the advantages of the GN against
particular implementations of the single hidden layer MLP to
learn non-linear functions. The first set of experiments compares
both structures by approximating single input continuous non-
linear functions defined over a time domain. For the Boolean
domain, the only experiment conducted was to learn the binary
XOR function. As stated before, this single experiment is not
sufficient to support any claim that the GN is expressive enough
to learn any arbitrary k-ary Boolean function. In Appendix 2 we
train multiple times the GN to learn all the binary and ternary
Boolean functions using SGD. Our experimental results show
that for the ternary Boolean function space, the GN could learn
at most 114 the 256 functions. This result provides empirical
proof of our assumption that a single unit of GN is not expressive
enough to learn any k-ary Boolean function.

6.2.3. Dendrite Morphological Neurons
A Dentrite Morphological Neuron DNM (Maass and Schmitt,
1997) is defined as a function that has the following form:

odmn = fact(

N
∧

n=1

[pn

k
∧

i=1

∧

l∈{0,1}

(−1)(1−l)(xk + wl
kn)]) (22)

Where x ∈ R
k, pn ∈ {1,−1}, wl

kn
∈ R, are the weights, and N

is the number of dendrites, and the activation function, fact , is a
step function.

In their paper, they prove a theorem that says that in a
Euclidean space Rn, for any compact subset A ⊆ R

n and ǫ > 0
there exists a single layer DMN odmn(x) = fact(g(x)) that will

divide the space in two regions, C0 = f−1(0),C1 = f−1(1) such
that for every x ∈ R

n, d(x,X) > ǫ7, if and only if x ∈ C0. It is
important to note that this theorem only proves the existence
of such function, but doesn’t say anything about its form,
in particular, about the required number of dendrites that
are needed.

How could we use a DMN to learn a Boolean function
h : 2n → 2? One way would be to take the compact set h−1(1) ⊆
R
n and use the previous theorem for any ǫ > 0. As such, there

exists a DMN f such that for all x ∈ 2n, f (x) = h(x). The
function is characterized by the weights {wl

ik
}, therefore we need

to learn 2kN parameters. Unfortunately, the theorem doesn’t
provide the number of dendrites required to learn any Boolean
k-ary function. Nonetheless, in the conclusion the authors make
the following claim:

In comparison to hidden layer neurons which generally use

sigmoidal activation functions, dendrites have no activation

functions. They only compute the basic logic functions of AND,

OR, and NOT. (Ritter and Urcid, 2003)

This means that if we express the function h as a propositional
formula with k variables in Conjunctive Normal Form (CNF),
then each dendrite is computing a clause with the function

τn(x) = pn

k
∧

i=1

∧

l∈{0,1}

(−1)(1−l)(xi + wl
in)

and the infimum of all these values is the conjunction of all the
clauses. This gives us a maximum number of dendrites needed,
2k (Russell and Norvig, 2010), which is the same as the maximum
of clauses needed. Therefore, an upper bound for the number of
parameters that are needed to learn a function h : 2k → 2 with a
DMN is 2Nk = 2k+1k, which is way higher than for the SP, whose
upper bound is 2k.

The experimental evaluation for Boolean functions given in
this paper consists only on the binary and ternary XOR. Rather
than using a back-propagation method, the authors of the paper
propose a learning method called SLMP training. This is a
supervised learning method, in which the training set is T =

{(xξ , cξ ) : ξ ∈ {1, ...,m}}, where cξ ∈ {0, 1} and xξ ∈ Cj if
cξ = j. The algorithm first calculates a DMN and if it fails it adds
another dendrite. If the number of dendrites is N (which means
that we are in the N-th iteration) then to define the function of
the n-th dendrite

τn(x
ξ ) = pn

k
∧

i=1

k
∧

i=1

∧

l∈{0,1}

rlin(x
ξ
i + wl

in)

they define the value of the coefficients as,

w1
in = −

∧

xξ∈C1

x
ξ
i w1

in = −
∨

xξ∈C1

x
ξ
i

7d(x, a) is the distance of the point x to the set A i.e., d(x,A) = inf {d(x, y)|y ∈ A}.

Frontiers in Artificial Intelligence | www.frontiersin.org 17 June 2022 | Volume 5 | Article 770254

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Mendez Lucero et al. Signal Perceptron

pn = (−1)sgn(n−1)8 rlin = (−1)1−l

Given this, and a threshold τ that depends on the degree of
accuracy ǫ, the total response of the whole neuron is given by
the function

τ (xξ ) =

k
∧

n=1

τj(x
ξ )

Then they use the Heaviside unit step hard limiter as activation
function f 9 and check if

f (τ (xξ )) = cξ

If this is false i.e., the equality is not satisfied, then they add
another dendrite and repeat the procedure.

6.2.4. Spiking Neuron
A spiking neuron of type A (SN) (Maass, 1997) is a function of
the form:

osn(t) = fact(

k
∑

i=1

hi(t − ti)) (23)

where each hi is defined by a weight wi ∈ R and a delay di ∈ R
<0

as

hi(t) =

{

0 for t < di or t ≥ di + 1,

wi for di ≤ t < di + 1
(24)

Each hi a pulse that starts at time ti with an intensity of wi and
remains for a time di. The idea is that the neuron will fire when
the sum of the pulses reaches a certain threshold determined by
the activation function. Therefore, if N is the number of pulses
of the SN, then the number of parameters needed to characterize
a SN is 2N + 1, one for the threshold and a weight and delay
per pulse.

Given that the SN neurons require weights and delay
parameters, their computational complexity will be larger than
Rosenblatt’s percepetron (which only requires the weights). A
more in-depth analysis of the advantages of the spiking neuron
against the Rosenblatt perceptron can be found at (Schmitt,
1998).

In the Theorem 2.1 (e) of their paper, they state that if k ≥

2 then there are Boolean functions that can’t be computed by
a spiking neuron with binary coding of the inputs. They also
provide an upper bound of the amount of Boolean functions that

can be computed by a SN, which is 2n
2+O(nlog(n)). Therefore, the

spiking neuron is not as expressive as the signal perceptron, given
that it doesn’t learn the space of Boolean functions.

Finally, it is important to mention that no training algorithm
nor experimental section were provided in both articles (Maass,

8sgn(x) is the signum function, that gives 1, -1 or 0 if x > 1, x < 1 or x = 0,

respectively.
9f (x) = 1 if x ≥ 0, and f (x) = 0 if x < 0.

1997; Maass and Schmitt, 1997), as their main concern is on the
definition of the SN mechanism and its learning complexity.

6.3. Future Work
A promising direction for future work is to provide an
analytic proof of Proposition 1 for the general case of the
signal perceptron as shown in Definition 6. We conducted
some preliminary experiments for different arities and n-valued
function spaces and found that the matrices generated by the
signal perceptron were all invertible matrices10. While these
results are promising, the formal proof is still required to
state that the general signal perceptron can indeed learn any
function from any finite function space. Furthermore, as shown
in the proof4.2, the k-ary Boolean signal perceptron generates
Walsh Matrices. An interesting question that arises from this
is whether the matrices formed by the general definition of the
signal perceptron are also a generalization of Walsh matrices or
Hadamard matrices. Future work could look into answering this
open question.

We haven’t formally investigated the learning complexity of
the signal perceptron variations. One way to do this, which will
be addressed in future work, is by calculating the VC Dimension
(Vapnik, 1995) of the family ofmk-SP. One way of seeing the VC
Dimension of a family of binary classifiersH is as the cardinality
of the largest set C such that any subset of C can be classified with
a classifier in H–In the literature this denoted by saying that C
is shattered by H. The VC dimension is an important quantity
in ML because it characterizes PAC learnability11, and provides
lower and upper bounds for the sample complexity of the family
of functions (Shalev-Shwartz and Ben-David, 2014). In this paper
we have proved that the family of 2k-SP has VC dimension larger
than 2k, this is a consequence that it can learn any k-ary Boolean
function12. To finish the proof that the VC dimension is finite,
we would have to prove that there exists a finite set C that can’t
be shattered by the family of 2k-SP. Given that the parameters
of the SP are determined by the amplitudes of the signals and
not the frequencies, there are good chances that this can happen
and therefore, it is PAC learnable and we can obtain bounds
for the sample complexity and give a finer comparison with the
other neurons.

As mentioned previously in Section 6.1, there exists the
potential to create neural networks of signal perceptrons.
Moreover, all the experiments conducted in Section 5 used a
single signal perceptron unit or one of its variations. This leaves
the domain of multilayer signal perceptrons and their capabilities
completely unexplored.

Last but not least, this new mechanism could be used
in combination with–or to create new variations of–existing
mechanisms and architectures used in deep learning such
as Convolutional Neural Networks (Krizhevsky et al., 2012),
Generative Adversarial Networks (Goodfellow et al., 2014),
VariationalAutoencoders (Doersch, 2016), and Transformers

10Experiments can be found in the GitHub repository.
11A family of functions has finite VC dimension if and only if it is PAC learnable.
12The set of k-ary Boolean functions is isomorphic to the subsets of the set 2k.
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(Vaswani et al., 2017). As a consequence, the capabilities of such
combinations and modifications are yet to be explored.

The scope of the present paper is limited to Boolean functions
and categorical datasets. To effectively confirm a broader scope
of the practical applications and performance of the SP against
state-of-the-art DLmodels, we would need to further explore and
analyze its performance on different types of datasets.

Finally, the use of signal perceptrons could potentially open
a whole branch of deep learning analysis. That is because the
whole architecture of the signal perceptron defines a complex
signal or a real signal. The use of signal analysis over such
architectures may lay down the basis for more interpretable deep
learning mechanisms.

6.4. Conclusions
We have defined the signal perceptron, a new mathematical
mechanism for learning functions. We proved that such a
mechanism can learn any function from any k-ary Boolean
function space with just a single unit. We also defined
two variations of the mechanism that overcome some of its
limitations. Furthermore, we showed that this novel mechanism
requires fewer parameters for learning a whole function space
when compared to the single hidden layerMLP. Our experiments
showed that the capabilities of signal perceptrons are not
restricted to just learning k-ary Boolean function spaces but
can also be used as function approximation methods. In such
a scenario, they outperformed the MLP when trained in image
classification tasks. Finally, only the DMN and Signal perceptron
variations were the only structures expressive enough to learn
any arbitrary k-ary Boolean function with a single unit. This
results from the comparison of Section 6.2 with other neurons
that attempt to solve the non-linear function learning problem
for the Boolean domain. We also showed that in terms of
spatial complexity all signal perceptron variations require fewer
parameters for the worst-case scenario than the DMN and
SN which makes it a more efficient structure for learning
Boolean functions.
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