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Data-driven approaches are becoming increasingly common as problem-solving tools

in many areas of science and technology. In most cases, machine learning models

are the key component of these solutions. Often, a solution involves multiple learning

models, along with significant levels of reasoning with the models’ output and input.

However, the current tools are cumbersome not only for domain experts who are not

fluent in machine learning but also for machine learning experts who evaluate new

algorithms and models on real-world data and develop AI systems. We review key

efforts made by various AI communities in providing languages for high-level abstractions

over learning and reasoning techniques needed for designing complex AI systems. We

classify the existing frameworks based on the type of techniques and their data and

knowledge representations, compare the ways the current tools address the challenges

of programming real-world applications and highlight some shortcomings and future

directions. Our comparison is only qualitative and not experimental since the performance

of the systems is not a factor in our study.

Keywords: machine learning, artificial intelligence, integration paradigms, programming languages for machine

learning, declarative programming, probabilistic programming

1. INTRODUCTION

The goal of conventional programming is to automate tasks that are explainable as a set of step-by-
step instructions. The main goal of AI has been to develop programs that make intelligent decisions
and solve real-world problems, possibly dealing with “messy" real world input that could make it
difficult to handle using “conventional" programming. The earlier AI problem solvers were expert
systems that attempted to model the way experts reason and make decisions using a set of logical
rules. Programming languages like Lisp1 and Prolog were designed to make programming such
systems easy even for non-expert users. The idea was to represent the domain knowledge using a
set of logical rules, and use the rules in a logical reasoning process hidden from the programmers.

From the traditional AI perspective, this is a declarative programming paradigm where we
program for the what and not the how. The expert programs could go beyond an independent
set of rules and turn to logical programs with a Turing-complete expressivity, supporting logical
inference, for example, by unification and resolution. However, real-world problems are complex
and often involve many interdependent components. Most importantly, there is a need to

1Though Lisp was not originally designed for logic programming, in later versions McCarthy decided to enrich it for

AI programming.
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interact with naturally occurring data — text, speech, images
and video, streams of financial data, biological sequences—and
to reason with respect to complex concepts that often cannot
be written explicitly in terms of the raw observed data. It has
become evident that formalizing complex problem solving using
programming a finite set of deterministic logic-based rules is
not possible, nor is it possible to write a conventional structured
program, even with a Turing-complete language, for supporting
intelligent decision-making based on naturally occurring data.
Consequently, there has been a rapid paradigm shift from formal
modeling to data-driven problem solving. This has affected not
only core AI problems like natural language understanding,
computer vision, and game playing but also real-world problems
in many areas including cognitive sciences, biology, finance,
physics, and the social sciences. It is becoming progressively
common for scientists to think about data-driven solutions using
machine learning techniques.

Machine learning has been defined as the study of
computer programs that can learn to perform tasks from
experience/data (Mitchell, 1997). However, this is not the
currently dominating view of machine learning. In the current
view, programs are reduced to functions of predefined form
that map input to output and learning is an optimization
process driven by an objective function also of a predefined
form. Thus, machine learning focuses on learning models
based on classification, regression, or clustering objective
functions rather than generic programs and problem solvers
for arbitrary tasks. Nevertheless, considering machine learning
models as “computer programs” provides a larger capacity
to express and explain models that can solve complex
real-world problems using various learning and reasoning
components. Therefore, we suggest that this perspective needs to
be systematically investigated.

Current machine learning (ML) and AI technologies do not
provide easy ways for domain experts who are not ML/AI experts
to develop applications; as we show later, they provide rather
cumbersome solutions along multiple dimensions. Even for AI
experts when inventing new techniques, they need to evaluate
those on messy real-world data rather than on well-formed toy
problems, which means that both users and developers will need
to spend a tremendous amount of time and effort due to missing
values, formatting errors, anomalies, not to mention “simply” the
ambiguity and variability inherent in naturally occurring data.

Building today’s complex AI systems, however, requires
extensive programming time and skills in addition to the ability
to work with various reasoning and learning paradigms and
techniques at a rather low level of abstraction. It also requires
extensive experimental exploration for model selection, feature
selection, and parameter tuning due to lack of theoretical
understanding or tools that could be used to abstract over these
subtleties. Conventional programming languages and software
engineering paradigms have not been designed to support the
challenges faced by users of AI Systems. In particular, they were
not designed to deal withmessy, real-world data at an appropriate
level of abstraction. While the use of data-driven methods,
incorporating expert, domain and task specific information, is
always important at the application level, programming expert

knowledge into current data-driven models in an intuitive way is
highly challenging. There is a need for innovative paradigms that
seamlessly support embedded trainable models, abstract away
most low-level details, and facilitate reasoning with respect to
these at the right level of abstraction.

We believe that this problem is at the heart of many
interesting and fundamental research questions and that it
goes beyond simply developing good toolboxes and libraries
for ML and AI approaches based on existing techniques.
Particularly, it requires integrating well-established techniques;
dealing with multiple research challenges in data and knowledge
representation and reasoning; integration of various machine
learning formalisms; and innovations in programming languages
and software development.

To help closing this gap and facilitate progress in developing
what we call here Systems AI, we survey key efforts made in this
direction. We emphasize the need to use some fundamental
declarative ideas such as first-order query languages, knowledge
representation and reasoning techniques, programming
languages for multi agent systems, database management
systems (DBMS), and deductive databases (DDB). We need to
place these ideas within and around ML formalisms including
classical ML tools, deep learning libraries and automatic
differentiation tools, and integrate them with innovative
programming languages and software development techniques,
as a way to address complex real-world problems that require
both learning and reasoning models.

We proceed as follows. In the rest of Section 1, we categorize
the requirements of the AI-application programming, then we
review the main exiting paradigms and their key characteristics.
In Section 2, we clarify the ways existing paradigms address
these requirements. In Section 3, to conclude our review, we
advocate for the need for an integrated paradigm.We then clarify
the type of abstractions needed to address the shortcomings of
the existing paradigms. We use the term (declarative) Learning
based programming, coined by Roth (2005), to refer to the ideal
language that interfaces and helps designing complex learning-
based AI systems and follows a declarative style.

1.1. AI Application Requirements
We identify the following criteria as areas of need to
enrich existing frameworks with capabilities for learning-based
programming (Roth, 2005) and for designing complex AI
applications and systems.We also point to a number of questions
related to the characteristics of programming languages that
enable those requirements. See Figure 1 for a summary.

1. Easy interaction with raw, heterogeneous data: The key
question is how is communication with the data performed in
the exiting frameworks?

2. Intuitive means to specify and use domain knowledge: What
kind of knowledge is needed? Should it be declarative or
imperative? How should it be specified?

3. Express uncertainty in data and knowledge: How should
uncertainty be represented? Which underlying formalisms can
be used? What kind of expressive power is needed?
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FIGURE 1 | Related paradigms and example frameworks.

4. Access to various learning, inference and reasoning
techniques:What underlying algorithms are to be supported?

5. Ability to reuse, combine and chain models and perform
flexible inference with complex models/pipelines: How can
we support building end-to-end models from heterogeneous
components?

6. High-level and intuitive abstractions for specifying the
requirements of applications: What should be expressed in a
learning-based program? The training objective function? The
data? The knowledge? Do we need programs that can learn, or
do we need conventional programming that includes learning-
based components? Should it be a language or a library? What
should be the level of automation? Can we learn the programs
automatically?

To discuss the existing related paradigms and the key techniques
addressing them, we will use a running example—designing
an intelligent model solving a simple entity-mention-relation
(EMR) extraction task—and assume populating a knowledge
graph using such information:

Given an input text such as “Washington works for Associated
Press.,” find a model that is able to extract the semantic entity
types (e.g., people, organizations, and locations) as well as
relations between them (e.g., works for, lives in), and generate
the following output: [Washington]person [works for]worksFor
[Associated Press]organization. The chunks of text, along with the
labels, will populate a knowledge graph that contains nodes that
correspond to entities, and edges that correspond to relations
between them. Note that by “population” we mean that nodes
and edges are added for entities and relations, and strings are
assigned to these as attributes, identifying the entity type or
relation, respectively.

1.2. Related Existing Paradigms
The AI community has developed various proposals to address
the aforementioned requirements for designing intelligent

applications. Indeed, there have been various proposals within
the AI community that address the aforementioned requirements
for designing intelligent applications. We will first review the
related communities and some of the frameworks to provide
the big picture. We will refer back to these frameworks in the
following sections when we compare them. The key issues with
these frameworks are that:

• One still needs deep mastery of ML and AI techniques and
methodologies in order to engineer AI systems, and this
knowledge far exceeds what most application programmers
have.

• None of these paradigms covers all the requirements in one
unified framework.

Figure 1 shows a rough picture of various paradigms that are
related to learning-based programming in one way or another.
The right side shows the six requirements from intelligent
applications. In themiddle, we point to eight different paradigms,
some tightly related, that deal with languages and tools for high-
level machine learning and declarative programming. The left
side shows concepts related to learning to learn programs.

Probabilistic Programming Languages (PPLs). These
languages are designed to describe probabilistic models
and perform probabilistic inference. Given that estimating the
parameters of probabilistic models andmaking predictions based
on probabilistic inference is one of the main class of techniques
used in machine learning, probabilistic programming languages
help users to design and use probabilistic models without
worrying about the underlying training and inference algorithms.
Examples include Figaro (Pfeffer, 2016), Venture (Mansinghka
et al., 2014), Stan (Carpenter et al., 2017), and InferNet (Minka
et al., 2014).

Probabilistic Logic Programming (PLP). The aim of these
languages is to combine the capacities of probability theory and
deductive logic. When compared to probabilistic programming
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languages, in addition to the logical reasoning aspect, they
bring in capabilities of higher order and compact logical
representations of the domain knowledge. The parameters of
the PL programs are trained from data, and they can make
predictions based on probabilistic logical reasoning. Examples
are ProbLog (De Raedt et al., 2007) and PRISM (Sato and
Kameya, 1997).

Statistical Relational Learning (SRL). This discipline deals
with languages that are able to describe complex relational
structures and express uncertainty. They do not always rely
heavily on logical reasoning but usually exploit a subset of first
order logic to express structures. The structures are used during
training machine learning models and making inference under
uncertainty. Examples are Markov logic networks (Richardson
and Domingos, 2006), Probabilistic soft logic (Broecheler et al.,
2010) and BLOG (Bayesian Logic) (Milch et al., 2005). The
relational and logical representations bring in the capabilities
of more compact representations, parameter tying and efficient
lifted inference (De Salvo Braz et al., 2005) in SRL models as well
as in probabilistic logical models. With a different perspective
from these examples, Constrained Conditional Models use the
relational representations in learning in the form of logical
constraints (Roth and Yih, 2004; Chang et al., 2012).

Neuro-symbolic learning. Neuro-Symbolic languages
(d’Avila Garcez et al., 2009) aim at integrating deep neural
learning and symbolic reasoning. Knowledge is typically
represented in symbolic form, whereas learning and reasoning
are performed by a neural network that is usually a differentiable
program. There are many recent techniques and algorithms
proposed for combining neural and symbolic paradigms (Hu
et al., 2016; Wang and Poon, 2018; Xu et al., 2018; Dong
et al., 2019; Nandwani et al., 2019), however not many generic
libraries are available. The recent extensions of Problog that is
Deep Problog (Manhaeve et al., 2018) and a similar framework
based on interfacing Datalog and deeplearning libraries, that
is, Scallope (Huang et al., 2021) are examples of this direction
of research. Problog is based on prolog’s logical formalism and
Scallop follows a similar approach on the basis of Datalog. There
are new emerging libraries built on top of current deep learning
tools that provide the possibility of integration of logical and
symbolic constraints into neural models (Faghihi et al., 2021;
Ahmed et al., 2022).

Agent-oriented Programming Languages (AOP). These
languages operate on high-level semantic abstractions to
design and communicate with intelligent agents that interact
with an environment and make decisions (Georgeff and
Lansky, 1987; Shoham, 1993). In particular the models are
developed based on high-level primitives such as goals,
beliefs, desires, plans, actions and cognitive elements in
intelligent agents. The abstractions are beyond low-level
algorithms and mathematical tools and help the integration of
procedural and declarative knowledge in decision making by
AI systems. A more recent work (Belle and Levesque, 2015),
proposes a belief-based programming language for stochastic
domains that bridges the classical agent-based programming
with probabilistic programming to address uncertainty
and noise.

Learning-Based Programming. The main idea is to look at
learning models as first class objects that are able to extract
features and make uncertain decisions. It focuses on the ways
that these first class objects can be composed and constrained to
form global models to predict complex structures (Roth, 2005).
The LBJava language (Rizzolo and Roth, 2010; Rizzolo, 2011a)
and Saul library (Kordjamshidi et al., 2015) are based on this
perspective. DomiKnowS (Faghihi et al., 2021) is a very recent
declarative framework that pursues a similar idea.

Classical Machine Learning Toolboxes. These are usually
libraries designed in general purpose languages and call the
training and prediction based on classical classifiers and
regressors. These cover broad ranges of classification, clustering
and regression algorithms that are applied on a form of flat vector
representations. Examples are Python Scikit-learn libraries2 and
WEKA (Witten et al., 1999), among others.

Structured Learning Tools. These tools go beyond classical
machine learning toolboxes by allowing the programmer to
encode the structure of the multiple output variables and
perform inference during training. SVM-struct3, JLIS4 and
SEARN (Daumé et al., 2014) are examples.

Deep Learning Tools and Languages. These are usually
libraries within general purpose languages and help with
designing deep learning architectures. Examples are PyTorch5

and TensorFlow (Abadi et al., 2016) among others.
Differentiable Programming. This is a recent paradigm

that is used as the basis of deep learning tools. Imperative
programs can be written in terms of a sequence of computations
that include differentiable operations where differentiations are
calculated automatically (Baydin et al., 2017). In the deep
learning case, the program’s parameters are optimized by back
propagation of the errors based on the automatically derived
gradients of an error function given data to train the models and
produce correct outputs given the inputs.

Data Query and Manipulation Languages. Since learning
is data-driven, a language for accessing and querying data in
both input and output sides is an essential part of a learning-
based program in many applications. The ideas in deductive
databases (Bárány et al., 2017) are relevant as they provide
platforms for integration of data and first-order knowledge for
inference. The probabilistic databases are also highly related
because of their capacity to handle uncertainty in answering
database queries and making probabilistic inference (Suciu et al.,
2011; den Broeck and Suciu, 2017).

We refer back to Figure 1 when we discuss the existing work
in the next section. We connect the notion of writing learning-
based programs to that of learning learning-based programs,
which, in turn, is related to program synthesis, program
induction and learning end-to-end differentiable programs. Our
goal is to organize the various lines of work related to developing
languages for designing machine learning applications and
highlight some fundamental research questions that can open

2http://scikit-learn.org/stable/
3www.cs.cornell.edu/people/tj/svm_light/svm_struct.html
4http://cogcomp.org/page/software_view/JLIS
5https://pytorch.org/
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new avenues for research onmachine learning, programming and
developing AI systems.

2. HOW DO EXISTING PARADIGMS
ADDRESS APPLICATION
REQUIREMENTS?

Given the aforementioned requirements and the key questions to
be addressed, in this section, we explore their relationship with
existing frameworks. This allows us to discuss the shortcomings
of the existing frameworks. We use the EMR example to clarify
the concepts when needed.

2.1. Interaction With Heterogeneous Data
For real-world applications, organizing and using data is
an essential starting point for learning-based programs. For
example, in the EMR task, we interact with raw text data (strings).
We need to extract useful abstractions from the text and put
raw text into a structure such as a relational database, a parsing
tree or any other structured representation for easy access and
use in other tasks. We may also want to associate properties of
text chunks with them; these could be their semantic types or
even a continuous representation (embeddings). In this section,
we point to some of the existing frameworks that facilitate
such interactions with both structured and unstructured data in
various forms.

Unstructured Data. Many real-world systems need to
operate on heterogeneous and unstructured data such as text
and images. To structure the raw and sensory data, we
need information-extraction modules that could be complex
intelligent components themselves. In the EMR task, an
initial required step, before any semantics to be inferred via
learning components, is chunking. Chunking is splitting the
sentence6 into a number of phrases such as [Washington][Works
For][Associated Press][.]. This is a challenging learning task on
its own but also provides a primary structure that classifiers can
operate on. Such complex prepossessing steps can also be learned
jointly with the main target tasks.

Some older research tried to combine information
extraction modules with relational DB systems and use
standard query languages for retrieving information such as
SystemT (Krishnamurthy et al., 2009). Different systems were
designed for processing textual data and provide a regular
expression interface language to query linguistic features
directly from text (Broda et al., 2013). To facilitate working on
unstructured data, systematic efforts have been made to design
unified data structures for processing textual data and tools that
can operate on those data structures. A well-known example
of such a universal data structure is Unstructured Information
Management Architecture (UIMA) (Ferrucci and Lally, 2004)
that can be augmented with natural language processing
(NLP) tools that provide lexical, syntactic and semantic
features (Sammons et al., 2016). UIMA focuses on providing a
specific internal representation of raw data (it covers text and

6Sentence splitting itself is a non-trivial task that may require learning, but in our

example, we assume that sentences are given.

also extended to multiple modalities). However, this established
infrastructure does not support declaring a data model with an
arbitrary structure. In other words, it is designed for text with a
fixed linguistic data model for documents, sentences and other
linguistic units; it does not allow defining arbitrary concepts and
defining their relationships based on the problem. The above
mentioned information extraction system, SystemT, is equipped
with very well designed and efficient query languages based on
their fixed internal data model (Krishnamurthy et al., 2009).

While there has been several such efforts to process
unstructured data, there is a disconnection between such systems
and machine learning tools. On one hand, such systems do
not address learning and inference, that is, their functionality
is independent from the design of learning models. However,
they could be used as sensors7 for information extraction in
designing learning models. On the other hand, existing machine
learning tools do not address the issues involved in working with
unstructured data. Current ML tools such as WEKA (Witten
et al., 1999) and newer Python and deep learning packages (Abadi
et al., 2016) provide easy access to learning algorithms but
typically only support feature vectors/tensors in a specific format,
making it difficult to work with raw or structured data. This is the
obvious gap in the existing systems for applyingmachine learning
on raw data.

Relational and Graph Data. Many applications require
dealing with complex and structured data. Organizing,
manipulating and efficient querying from data has been
addressed by relational database management systems based
on relational representations and standard query languages.
These systems traditionally do not accommodate learning-based
models nor support the design of end-to-end learning models
using raw data to extract information and put them into a
queryable structure as needed for example in EMR task. For
EMR, however, we want to learn to extract the entities and
relationship and put them into a database for efficient and
easy use.

Providing ML capabilities on top of relational databases has
been persuaded, for example, in the DeepDive system (Zhang
et al., 2017) and the follow up work Snorkle (Ratner et al.,
2017), where first order logical SQL expressions form a Markov
logic network. However, such a connection can be done to
any relational probabilistic model (De Raedt et al., 2016).
These logical expressions are grounded for parameter estimation
and for inference and predictions over relational data. In the
relational logic-based learning framework of kLog (Frasconi
et al., 2014), one can use black box classifiers based on
relational features which are represented using a logical style
and implementations of Datalog. Relational data and relational
features can be queried and used directly in machine learning
models. The possibility of programming for the objective
functions by SQL in DBMS environment and forming learning
objectives was followed in the LogicBlox (Aref et al., 2015)
and RELOOP (Kersting et al., 2017) systems. Another example
of the relational learning paradigm is the Saul (Kordjamshidi
et al., 2015) language, which is equipped with in-memory

7See Kordjamshidi et al. (2015) and Rizzolo and Roth (2010) for sensor definition.
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graph queries that can be directly used in learning models as
features or for constructing learning examples. Moreover, the
queries can form global structural patterns between inputs and
outputs (Kordjamshidi et al., 2016, 2017).

One shortcoming of these frameworks that integrate
structured and relational data into learning is that they cover
only a specific learning approach and do not provide the
flexibility of working with various learning and inference
algorithms. Moreover, they offer no flexibility in feature design
when working with raw data; in other words, the initial
graph/structure should be encoded in a specific way and given to
the model.

Feature Extraction. One central goal of interaction with data
in learning-based programs is to facilitate defining and extracting
features from various data sources for learning models. Typically,
feature engineering includes (a) the ability to obtain low-level
sensory properties of learning examples (e.g., the length of a
phrase or the lemma of its words); (b) the capability of selecting,
projecting or joining properties for complex and structured data;
(c) feature induction; (d) feature selection; and (e) mapping
features from one representation to another. This implies that
feature extraction is a component that should address the
aforementioned issues of interaction with raw data, placing it into
structure, and querying the resulting structure. Feature extraction
approaches can be deterministic, such as logical query languages
on relational data, or they can be information extraction tools
as described before.8 For example, we can place all phrases,
extracted from a given text based on a learned constituent parser,
in a relational database and then make a deterministic query for
all pairs of phrases that have a specific distance between them in
the sentence.

In the NLP domain, older tools such as Fextor (Broda
et al., 2013) provided an internal representation for textual
data and provided a library to make queries, like asking
the POS-tag of a specific word or other linguistic features
relying on its fixed internal representation. Even prior to
Fextor, Fex (Cumby and Roth, 2003) viewed feature extraction
from a first order knowledge representation perspective. Their
formalization was based on description logic where each
feature extraction query was answered by logical reasoning.
The commonly used machine learning/deep learning libraries
provide capabilities for manipulating features as far as those
are represented as vectors or matrices (thus no handling of
arbitrary structures nor unstructured data) using techniques like
dimensionality reduction and other vector manipulations. The
recent tools specialized for learning from raw data such as natural
language processing tools, of course, provide various models that
can extract structures from language9 but different structured
representations can not be easily connected to each other in a
unified global structure that can be easily queried. While there
has been research on each of the items (a–e) mentioned above,

8"Deterministic" is not the exact technical term here, but related to the notion of

deterministic queries that retrieve a fixed stored value rather than returning a value

that is computed by a function and can change later; a non-deterministic query in

our case can be a query calling a trained machine learning model.
9https://www.nltk.org/, https://allenai.org/allennlp

a unifying framework remains elusive, as does a programming
environment that facilitates ML with complex and relational
structures hidden in the raw data.

2.2. Exploiting Domain Knowledge
We use the term “knowledge” to describe the type of information
that goes beyond single data items, is external to the existing
data, and expresses relationships between objects and classes of
objects in the real world. This is the kind of information that, for
example, first order logic formalisms are able to express. Different
types of domain knowledge can be distinguished based on the
type of concepts, the functionality or the representation. In this
article, we classify the type of knowledge based on the latter
factor (the way it is expressed from the programming languages’
perspective): declarative and procedural knowledge.10

Declarative Knowledge. Traditional expert systems
emphasized the use of world knowledge expressed in logical
form, due to its declarative nature. Although domain knowledge
can convey more information than a set of data items, it is not
always straightforward to account for it in classical learning
approaches. In the EMR example, while the specific linguistic
features of each word/phrase are part of our information about
each instance, we can have some higher level knowledge over
sets of phrases. For example, we know that “if an arbitrary phrase
has type person it can not be a location” and that “if an arbitrary
phrase is a person and another arbitrary phrase is a location, the
relation between them can not be married.” Statistical relational
learning models, constrained conditional models (Roth and Yih,
2004; Chang et al., 2012), and probabilistic logical languages (De
Raedt et al., 2016) address this issue. Some of the current
probabilistic logical frameworks are based on the classical
logical reasoning using symbolic processing for recognizing
the equivalence of first order logical expressions by unification
algorithms and applying logical inference algorithms such as
resolution. In these frameworks, for the learning part, the data
items are represented coherently as grounded facts in predicate
logical form. The parameters of learning models can still be
trained based on the data. A typical example is Problog (De
Raedt et al., 2007).

Logical representations of the domain knowledge have
been used in several frameworks under the umbrella term
of SRL models. These include Constrained Conditional
Models (Roth and Yih, 2004; Chang et al., 2012), Bayesian
Logic Programs (Milch et al., 2005; Kersting and Raedt,
2008), Markov Logic Networks (Richardson and Domingos,
2006), and Probabilistic Soft Logic models (Broecheler et al.,
2010). The logical representations in these frameworks are
usually grounded and generate data instances which form the
underlying probabilistic graphical models of various kinds.
In Roth and Yih (2004), propositional logical formulas are
converted into linear inequalities that constrain the output of
structured learning problems. SRL models do not necessarily

10While we use the term imperative programming in contrast to declarative

programming, we refer to the related type of knowledge as procedural knowledge

as it is usually used in other AI communities, particularly, in cognitive

architectures.
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consider logical reasoning. Nevertheless, the relational and
logical representations provide a compact and expressive mean
for higher order information that can potentially be exploited for
efficient inference. Representing domain knowledge along with
the data has been amajor component of deductive databases such
as Datalog (Gottlob et al., 1989), while expressing uncertainties
in the data has been considered in probabilistic databases (Suciu
et al., 2011). An example of a deductive database that represents
uncertainties, is ProPPR (Wang et al., 2014), which has been
augmented to learn the probabilities of the facts in the database
using neural techniques in TensorLog (Cohen et al., 2017).
Learning the structure of SRL models has also been considered11

and shown to be successful in many applications (Natarajan
et al., 2014).

Logical programming is the basis of most AOP languages
too—a main example is the GOLOG family (Lesp et al., 1994;
Lespérance et al., 1996). The knowledge about the beliefs,
capabilities and decisions of intelligent systems is declaratively
programmed using such languages, and used by agent for
reasoning and intelligent decision making (Shoham, 1993).

Procedural Knowledge. One form of procedural knowledge
is the knowledge about a specific task that an intelligent agent
is supposed to perform. While knowledge about the data-items,
concepts and their relationships is naturally expressed via logical
formalisms and in a declarative form, for some domains these
representations are less convenient. For example, while the rules
of a game (including the legal actions and the goal) could be
described in logic, the recipe for cooking a dish or calling a person
by phone are inherently procedural and include a sequence of
actions. Depending on the application, we should be able to
describe both types of domain knowledge in the learning models.
Current programming languages take one of the two mentioned
approaches, not both. For example, to program a procedure
in Prolog, the code needs to be written in the form of logical
rules in a way that the interpreted semantics by Prolog lead to
running the intended procedure. This can make writing very
simple procedures somewhat unintuitive and difficult to code
properly unless the programmer is very experienced with Prolog
and its formal semantics.

Using procedural knowledge in programming intelligent
agents has a long history in BDI (Belief-Desire-Intention)
framework (Georgeff and Lansky, 1987; Georgeff and Ingrand,
1989), which is one of the main cognitive models/architectures
adopted in AOP area. A distinguishing feature of BDI and other
AOPs based on BDI model (Rao and Georgeff, 1991, 1998; Rao,
1996) is to consider plans as the abstraction used to program
agent’s behavior while plans are essentially a way to specify and
embed procedural knowledge about how to achieve some goal.

Using procedural knowledge representations for machine
learning can have various interpretations. Sometimes,
“imperative programming” refers to the way we express the
training and prediction procedures. However, teaching a
machine to perform a task with a sequence of steps may require
one to express the procedure of the task as part of the background
knowledge. The imperative task definition is different from an

11https://starling.utdallas.edu/software/boostsrl/wiki/

imperative program that hard codes the objective function of
the training.

To clarify the usage of the terms in this article, even defining
a task procedure subject to the learning is referred to as
“declaring the procedural domain knowledge.” The procedure of
a task, expressed in an imperative form, could be taken as the
declaration of a specific learningmodel and be connected to some
formal semantics with a different underlying computation from
the deterministic sequential execution of a set of instructions.
We also call this “declarative programming” because parts of
the domain knowledge are expressed procedurally, but the
execution is not deterministic and depends on the trained
models. While this might be merely an issue of terminology,
we believe this perspective is important to broaden the scope
of declarative knowledge representation in the context of
learning-based programming. Given this view, we can also call
differentiable programs (Bosnjak et al., 2017) learning-based
programs; however, there are severe limitations of what can be
expressed in these programs. We will clarify this further when
we discuss model composition in Section 2.6. An example of an
imperative learning based program for the EMR task could be a
basic if-then-else structure to form a pipeline of decision making.
For example, if phrase x is a person then check phrase y; if phrase
y is a location then check the relationship between x and y; and so
on. This specifies a procedure for decision making although the
decisions are based on learning functions. Nevertheless, it guides
the formulation of a global objective function for learning.

2.3. High-Level Abstractions
Traditional declarative programming often considers programs
as the theories of formal logic, but in general, declarative
programs could be any high-level specifications of what
needs to be done where the how is left to the language’s
implementation. All current tools and languages aim at obtaining
the right level of abstraction and being declarative in that
sense. We distinguish between two types of abstractions,
a) data and domain abstractions and b) computational and
algorithmic abstractions.

Current ML (see text footnote2) and deep learning tools12,13,
(see text footnote5) have made a considerable progress toward
being more declarative and independent from algorithms, at
least for standard ML problems. Using classical ML libraries,
the programmer needs to provide feature vectors and to
specify only a number of parameters. The programs are
written independently from the training algorithms. Retaining
the high-level declarations becomes more challenging when
the data becomes complex and structured as we go beyond
predicting a single variable in the output. We need to
use additional domain knowledge beyond data items and
feature vectors.

Depending on the type of technique, various abstractions have
been made based on both data and computations: (i) data and
domain abstractions in terms of logical representation of the
domain knowledge, (ii) data abstractions based on dependency

12https://www.tensorflow.org
13openai.com
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structure of the variables, (iii) computational abstractions
based on mathematical functions that form the objective
of learning and inference, (iv) a combination of data and
computational abstractions representing models as a procedural
partial program. We describe these various perspectives and
related implementations. In the following, we briefly overview
the existing related work, distinguishing them by their type
of abstraction.

Logical Representation of the Domain Knowledge. We
have touched on this briefly in Section 2.2 where we described
considering domain knowledge in learning. The paradigms
in probabilistic logical programming and statistical relational
learning use the idea of representing data and domain
abstractions in terms of logical and relational representations.

Dependency Structure of the Variables. Probabilistic
programming languages facilitate the specifications of
(in)dependencies. The user declares random variables and
their dependency structure and other related parameters such as
distributions and density functions. The structure is specified,
used declaratively, and is independent of underlying algorithms
for inference and parameter estimation. The domain knowledge
includes the prior assumptions about the distributions of
random variables. Reconsider our EMR task. We specify the
phrases as random variables after we have already obtained
an appropriate representation for them. Next, we specify the
dependency between each word and its label, or the labels of
each word and its adjacent word. Given the data, we can then
train the parameters and query probabilities of each label or do
MAP inference to find the best sequence labels for the entities in
a sentence. Examples of such languages14 are InferNet (Minka
et al., 2014), Figaro (Pfeffer, 2016), AutoBayes (Fischer and
Schumann, 2003), BUGS (Gilks et al., 1994), and Stan (Carpenter
et al., 2017). Some of these languages are Turing-complete and
support general purpose programs using probabilistic execution
traces [Venture (Mansinghka et al., 2014), Angelican (Wood
et al., 2014), Church (Goodman et al., 2008), and Pyro15]. The
probabilistic logical languages provide an additional layer of
abstraction on top of what probabilistic programming languages
provide. They enable the user to program in terms of data
and knowledge and express the dependencies at a logical and
conceptual level rather than the (in)dependency structure of
the random variables, which is directly used by probabilistic
models. The logical representations are given semantics and
interpretations that are mapped to lower level probabilistic
dependency structures.

Programming the Mathematical Objective Functions.

Typical examples of this type of abstraction are deep learning
tools. The programmer does not specify the structure of the
data or the dependencies between variables, but the architecture
of the model based on mathematical operators, activation
functions, loss functions, etc. (Abadi et al., 2016). Given the
architecture of the operations, which is a computational graph
in contrast to a dependency graph, the program would know
how to compute the gradients and what procedure to run for

14probabilistic-programming.org
15pyro.ai

training and prediction. The program specifies the objective
function of the training without any concerns about taking the
gradients or writing the optimization code. The declarations
are connected to automated differentiation tools (Baydin
et al., 2017). If we design the EMR model in this paradigm,
we will need to have a vector representation of each phrase
beforehand and decide how to represent the structured sentences
as tensors. Deep learning tools will be able to operate on these
representations and facilitate specifying the architecture of
the learning models. We can specify the objective function
in terms of multiplications, summations, activation functions
and other diffrentiable operations. Making mathematical
abstractions has been used in many other paradigms, even
in probabilistic programming tools such as WOLFE (Riedel
et al., 2014). Such abstractions have been used in the context
of designing structured output prediction models such as
SSVM (see text footnote3) or with search-based inference
frameworks such as Searn (Daumé et al., 2014) where the loss
and predict procedures can be written in a few lines of code.
In SSVM, implementing a task-specific inference algorithm
is left to the programmer, while in Searn, a generic search-
based algorithm for inference is proposed. The end-to-end
program has a sequential and imperative structure rather than a
declarative form.

2.4. Representing Uncertainty
Most real data is uncertain due to noise, missing information
and/or inherent ambiguities. This has triggered a transition
from traditional AI’s logical perspective to models that support
randomness and probabilities. Statistical and probabilistic
learning techniques inherently address the issue of uncertainty,
and this is reflected in the probabilistic programming and
SRL languages (Milch et al., 2005; Richardson and Domingos,
2006; De Raedt et al., 2016). Dealing with uncertainty using
probabilistic models has been added to database technology
in probabilistic databases (Suciu et al., 2011) as well as
some deductive databases (Wang et al., 2014; Cohen et al.,
2017). It remains a challenging research question to have
efficient querying capabilities while dealing with uncertainty
in data.

In real-world scenarios, the uncertainty in data leads to
uncertainty in executing tasks. Conventional programming
languages by no means address the issue of uncertainty —
a main reason why they cannot directly solve real-world
problems or facilitate intelligent decision making. Uncertainty
in a generic problem solving programming paradigm has been
addressed in a very limited way. An example of considering
uncertainty when programming for problem solving with
Turing-complete capabilities can be seen in the implementations
of probabilistic logical programming languages (Sato and
Kameya, 1997; De Raedt et al., 2007; Eisner, 2008) as well
as probabilistic programming considering randomness in the
execution traces (Goodman et al., 2008; Mansinghka et al.,
2014). In these frameworks, researchers have used a Turing-
complete language in the background, which enables performing
any arbitrary task, and have enriched it with uncertainty
representation to find the best possible output when lacking
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evidence for finding the exact output of the program. The
uncertainties are interpreted and mapped to a specific formal
semantics in the existing languages. In fact, almost all current
frameworks use a mapping to a specific type of probabilistic
graphical models, therefore, different inference techniques based
on various formalisms are often not supported.

The idea of differentiable programming can be seen as a
way to deal with uncertainty in procedural programs. The
issue of incompleteness is addressed by using a different type
of underlying algorithm, typically that of recurrent neural
networks and neural Turing machines (Graves et al., 2014).
Based on this type of technique, in Bosnjak et al. (2017), for
example, the sketch of an imperative program is given while the
uncertain components of the program are trained given a set of
input/output examples.

There is a need to address the uncertainty and incompleteness
in the data and knowledge as well as in executing tasks while
using various computational models and underlying algorithms.

2.5. Wide Range of Algorithms
The current practice of designing machine learning models for
any new problems includes experimentation with a wide range
of algorithms. There is no sufficient theoretical evidence to
decide which learning and inference algorithms will be more
effective for a specific type of application. This issue leaves
the programmer with an exhaustive experimentation and trail
and error. While automatic exploration is an ideal goal and
the first steps have been promising, (see e.g., Thornton et al.,
2013; Pfeffer et al., 2016), connecting representations to a
variety of algorithms without much engineering is unexplored.
Particularly, when the inputs and outputs are complex and
inference over possible structures is needed, current tools do
not cover various types of algorithms. The current programming

frameworks mostly support a specific class of algorithms for
training and inference. For example, probabilistic programming

languages and SRL frameworks are based on inference and
learning in probabilistic graphical models (PGM), either directed
or undirected, or generic factor graphs. Probabilisitc soft logic

considers a PGM too but withmore scalable algorithms andmore

efficient solutions by forming a convex optimization problem
in a continuous space for inference. LBJava, RELOOP and
Saul map the inference problems under the domain’s logical

constraints to form integer linear programs and use efficient
off-the-shelf techniques in that area to solve the inference.

In LBJava and Saul, learning independent models offers the
opportunity to exploit any arbitrary ML algorithm in the training
phase and to perform global inference during the prediction

phase. The joint training and structured learning is limited and

does not cover a variety of techniques. Deep learning tools are
also limited to representing differentiable objectives that are

optimized based on gradient descent and back-propagation of the
errors for training.

2.6. Model Composition
As we move toward engineering and using AI systems
for increasingly complex real-world tasks, the ability to
reuse, combine and chain models, and to perform flexible

inference on complex models or pipelines of decision
making, becomes an essential issue for learning-based
programming. When designing complex models, one key
question is how to compose individual models and build more
complex ones based on those in the current formalisms.
Reconsider our EMR task. We can design a model for
classifying entities and another model for classifying the
relationships. The final, global EMR model will use them as its
building blocks.

The composition language can be a unified language and
consistent with basic ML building block declarations. For
example, we can form a global objective using the structured
output prediction models and perform collective classification
to solve this problem. If we have heterogeneous underlying
models based on different techniques, then forming a global
objective will not be straightforward as there will be multiple
possibilities for combining models. This issue raises the question
of whether the current tools naturally support composition or
we need an additional language on top of the language for
forming learning objectives. Looking back at the aforementioned
frameworks, the first set of tools for classical ML do not
support declarative composition. They rely on the ML and
programming expertise of the users to program the model
composition imperatively.

Composition in Probabilistic Programming. Probabilistic
programming covers the aspect of composition inherently. All
known and unknown variables can be declared consistently
in one framework, that is, as a part of one joint probability
distribution, which is factorized based on the dependency
structure of the variables. The factorization of the joint
probability expresses the (de)composition semantics for
learning and inference. Thus, the way that we compose
complex models is limited to expressing more global
dependencies, and the same dependency structure is used
for both training and prediction. However, this is not always
sufficiently expressive for building complex models and
pipelines of decision making. For example, we can not
compose arbitrary parts based on verifying the validity of
certain conditions.

Composition in CCMs. When designing constrained
conditional models (CCMs) in languages such as Saul or
LBJava, we need to program the two components of local
learning declarations and global constraints specifications.
The composition can be done consistently as far as it can be
formulated by imposing global constraints and building global
models. The current implementations based on CCMs (Rizzolo
and Roth, 2010; Kordjamshidi et al., 2015) can model pipelines
and model composition by considering the learning models as
first class objects where their outputs can be used to form new
learning models and new layers of abstractions. Although, in
the frameworks that are designed as libraries of general-purpose
languages, the compositions can be made by the programmer,
a composition language with well-defined semantics is missing
and will provide a better way to design complex models with
explicit structures, end-to-end. In other words, with CCM-
based frameworks a well-defined composition language is
still missing.
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Composition in Deep Neural Models. The deep learning
tools rely on general purpose programming environments and
the ML and programming skills of users to compose models
imperatively. They provide a way to design single models,
though CapsNets (Sabour et al., 2017) made a first step
toward learning compositions in deep networks. Designing
Neural Module Networks is another related direction to
build neural modules per domain concepts and compose
them explicitly and dynamically for language and vision
understanding (Andreas et al., 2016). These models, though
modular and composable, still rely on end-to-end neural training
based on continuous representations.

Programs Seen as Compositions of Models. While the
composition of the trained models is helpful in designing
and programming complex models, one new issue arises.
Can we parameterize the programs that include learning-
based components and in turn learn the composition itself?
This is a less established line of research. It is not clear
how the structure of the program can be represented or
what the parameters of the program will be. Differentiable
programs could be seen as an important step in this direction.
There are very recent developments in the area of image
processing and physical simulation that are following this
direction of imperative and differentiable programming for
designing end-to-end learning models (Li et al., 2018; Hu
et al., 2020). The program includes the pipeline of parametrized
operations that can be trained with data. This research
relates to program synthesis in the sense that we learn a
program from inputs and outputs. From a different angle, it
can be seen as learning the parameters of the composition
of learning-based components where we can provide the
structure or the schema of the program and learn parts of it.
The latter perspective should be distinguished from program
synthesis because the target programs that we learn do not
necessarily perform tasks with deterministic nature such as
sorting. The programs can only estimate an output given a
partial structure and make inference. The intelligent (learning-
based) programs are unlikely to be fully determined with a
fixed structure.

3. DECLARATIVE LEARNING-BASED
PROGRAMMING: AN INTEGRATION
PARADIGM

The conclusion of this survey will not be to promote any of the
existing frameworks but to advocate for an integration paradigm.
As pointed before, we use the term (Declarative) Learning Based
Programming only to refer to such an ideal paradigm. While
existing frameworks do address some of the capabilities (1)-(6)
described in Section 1.1, there is still a need to integrate these
aspects in unified frameworks to design AI systems.

We argue here for a paradigm in which learning from data
is the central concept and extends the capabilities of designing
intelligent systems around this concept. Such a paradigm, should
address the above-mentioned challenges accordingly and allow
programming to construct complex configurations using basic

learning building blocks. Remaining as a survey article, we
avoid proposing a detailed architecture for supporting such
an ideal system, however, Figure 2 shows a rough sketch
of a platform that can address the application requirements
from an AI-systems development perspective. The platform
integrates the capabilities for working with heterogeneous data
and knowledge from various resources. This implies that there
will be a need for a data modeling and representation language
(DLR), a knowledge representation language (KRL), and a model
composition language (MCL). These three languages should have
access to a set of learning and inference algorithms and allow
domain experts to design models interactively. The output of
the intelligent models is either new data or new knowledge
that is added back into an evolving intelligent system. In the
previous sections, we reviewed the current frameworks and
the type of abstractions that they provide. To conclude, here
we argue for the need to new abstractions with the following
characteristics to further facilitate programming and interaction
with AI-systems.

Abstractions That Are Independent From Computations.

Learning-based programming (Roth, 2005), requires data and
programmatic abstractions, hiding the algorithmic details and
even hiding high-level algorithmic abstractions. Learning is a
mapping from one data abstraction layer to another given
the data instances, starting from raw data. The user needs to
specify the intended abstractions for an application in hand,
and the system should figure out how to perform the actual
mappings. While this abstraction follows the similar ideas in
logical formalisms, here we are not limited to logical predicates.
The primitives can be concept-learners that are represented by
arbitrary functions. The mapping computations are not limited
to logical reasoning mechanisms, and heterogeneous learners
can take the data and learn the mappings. LBJava (Rizzolo,
2011b) was the first attempt to implement this idea, based
on the CCM (Chang et al., 2012) computational model.
Learners are first class objects, and the domain knowledge
also represented in terms of data abstractions and can be
used by learners to make global and consistent mappings.
RELOOP (Kersting et al., 2017) took a similar approach from
a mathematical programming perspective, combining relational
and mathematical programming aspects embedded within an
imperative language (in this case, Python). Saul (Kordjamshidi
et al., 2015) has been proposed with a similar computational
model and the possibility of joint training of global models.
Saul is in the form of a library without the data-driven
compilation step, and it comes with explicit support for the
representation of the data as a graph for relational feature
engineering. The data graph representation helps to specify
domain concepts and their relationships. Some concepts are
connected to sensors abstracting away from raw data and
some are concept learners. The DomiKnowS neuro-symbolic
framework proposed recently (Faghihi et al., 2021) and follows
Saul ideas in which the modeling starts with domain specification
in terms of concepts and relationships independent from the
underlying computations.

Abstractions That Facilitate Algorithmic Coverage. Most
of the frameworks mentioned in the previous sections have
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FIGURE 2 | The main components and sub-languages of a learning-based programming system.

limited coverage of supported class of algorithms. While
some of these are more flexible than others in supporting
heterogeneous computational building blocks, training complex
configurations with structured learning is addressed with one
class of techniques in each framework—for example, either
of probabilistic inference, integer linear programming, or
dynamic programming and search. Note that classical machine
learning tools that perform classification/regression/clustering
based on vector representations of data do not suffer from
the algorithmic coverage. The coverage issue arises when we
need to support inference based on a specific representation
language. This will limit the semantics of each formalism and
the type of algorithms that can be used. To deal with this
issue, the learning model abstractions should be based on
the data abstractions, domain knowledge representation and
generic problem specification. This level of representation will
be independent from learning and inference algorithms and can
be connected to various computational models. In contrast, the
representations based on computational abstractions (such as
deep learning tools) are more bounded to the type of underlying
techniques for computations and impose more limitations on
the algorithmic coverage. In the current tools, all optimizations
are based on gradients and the computational building blocks
are neural networks modules. If we need to perform gradient-
based training along with probabilistic inference, no generic
framework and representation language supports both class
of techniques/algorithm.

Abstractions That Help in Closing the Loop of Data

to Knowledge. Intelligent systems need to evolve over time.
As they receive more data and knowledge, they find better
abstractions of the data, as illustrated by NELL (Mitchell et al.,
2015), Never-Ending Language Learning. Representations of
the learning models based on the data and knowledge will
naturally support feeding the current models (which will be
trained concepts) to obtain new abstraction layers. Since each
concept is related to a learning model (i.e., a concept learner),
combining concepts to form new concepts will be equivalent
to composition of learning models to create new learning
models. This is a natural way to support model composition.
In other words, there will be a direct connection between
how we compose models and how we compose real-world
concepts. Such abstractions will help to close the loop of
moving from data to knowledge and exploiting knowledge
to generate new concepts. How to implement such an idea,
will be a research question for an ideal learning based
programming framework.

Abstractions ThatHelpWith Learning the Programs.While
the goal of ML is to write programs that can learn to do a
task or make a decision, a more ambitious goal would be to
learn the structure of the programs from the data. From the
classical ML perspective, this relates to structure learning. An
example is learning the dependency structure of the probabilistic
models such as Bayesian networks, see Koller and Friedman
(2009). Another dimension of the problem is learning features
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or feature induction, which has been investigated in the classical
machine learning community for years (Molina et al., 2002).
Learning global constraints by analyzing the data is another line
of work leading toward learning the structure of the learning
models (Bessiere et al., 2017), which is related to traditional
rule learning models that can guide the issues of learning
the programs.

In the programming languages community, this problem
is closely related to program synthesis from the inputs and
outputs. From the classical AI perspective, this is also related
to inductive logic programming and program induction (see
e.g., Muggleton and De Raedt, 1994). These ideas go beyond
learning propositionalized rules and are about learning logical
programs. They can be seen as a set of rules augmented by global
formal semantics for symbolic processing of logical expressions
(also of high order) to evaluate their syntactic and semantic
equivalence to be able to unify them (i.e., unification), and
perform logical reasoning to entail more knowledge. In fact,
inductive logic programming can be considered to be at the
same level as other learning algorithms where the structure of
the model (i.e., the program) is already given. This structure is
usually in the form of a language bias, which is very different
from the way the model’s structure is defined in (non-relational)
statistical learning paradigms. The ultimate case of program
induction, learning the programs in the framework of logic, is
when the domain predicates are not fully specified but need to be
invented during learning (Stahl, 1995). A logical programming
language or a classical general purpose programming language,
even if it is Turing equivalent, will not be able to solve an AI-
complete16 problem. Even if the structure of a learning model is
found, the parameter learning is an additional challenge in this
context to address incompleteness and uncertainty for solving
problems intelligently. This is the major difference between the
work done in the scope of program synthesis compared to
learning programs that are intended for AI research.17

Our choice of program content and representation, discussed
in Section 2.3, is a key factor that influences the way we approach
learning the programs themselves and the types of techniques
that will be developed in this direction. Depending on the
representation of the programs, learning programs can involve
learning deep architectures, learning dependence structures or
learning classic machine learning features.

Other Issues From AI and Learning-Based Systems

Perspective. The present aticle focuses on the issues related
to appropriate and easy-to-use abstractions and coverage of
various formalisms for learning-based programming. It does
not investigate many other requirements and issues for the
platforms that eventually employ these declarative languages
for designing AI systems (Stoica et al., 2017). At least, we
need to solve similar problems that we face for example in
database management systems when designing AI systems. It

16https://en.wikipedia.org/wiki/AI-complete
17While classical program synthesis is a complex task itself and might be solved

with machine learning and AI techniques, this is not the subject matter of the

discussion here. We point to this topic because synthesizing the learning based

programs can be related to learning the structure of the machine learning models.

is imperative to have learning-based management systems that
can deal with security and privacy of data as well as learning
models, scalability of learning and inference, distributed and
parallel implementations, concurrency and more. There are
new issues such as fairness and explainability to be addressed
in AI and learning-based management systems. Generating
the supervision signals is another important challenge; there
is a need to constantly collect weak and incidental signals
independently of specific tasks and relate them on the fly
to solve a task without supervision (Roth, 2017). Moreover,
though we argue for a declarative programming paradigm as an
interface to interact and design the AI systems, a higher level
and more ambitious interface will be natural interaction (Gluck
et al., 2018). Natural interactions such as speech, language
and visual demonstrations can be used as a media to transfer
data and knowledge to models and develop life-long learning
intelligent systems.

4. CONCLUSION

Triggered by the emerging research area of Systems AI—
the computational and mathematical modeling of complex AI
systems—we provided an overview on declarative learning-based
programming languages as a central component of such a mission
and as an interface to interact with AI systems for designing,
training and using them for real-world decision-making and
task performance. We discussed the related works that can help
to design such a language covering (a) the type of abstraction
that they make over the data and computations, (b) the type of
techniques that they cover for learning and reasoning/inference
(c) the way they address the interaction with data and the issue of
incompleteness and uncertainty (d) the way that those facilitate
designing complex models by composition of simpler models.
More importantly, we reviewed the missing components of the
existing models, and the necessity of collaborations to develop
an integrated framework for Systems AI. Finally, we emphasized
that working on the declarative programming languages that
describe the programs in terms of data, knowledge and declaring
task procedures will pave the way for training AI systems
by natural interactions (Gluck et al., 2018). The declarative
programs can be seen as intermediate representations that
intelligent systems can receive directly from the programmers,
or ideally learn/infer them from natural interactions in the
real world.
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