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An important problem with many current visio-linguistic models is that they often depend

on spurious correlations. A typical example of a spurious correlation between two

variables is one that is due to a third variable causing both (a “confounder”). Recent

work has addressed this by adjusting for spurious correlations using a technique of

deconfounding with automatically found confounders. We will refer to this technique

as AutoDeconfounding. This article dives more deeply into AutoDeconfounding, and

surfaces a number of issues of the original technique. First, we evaluate whether

its implementation is actually equivalent to deconfounding. We provide an explicit

explanation of the relation between AutoDeconfounding and the underlying causal model

on which it implicitly operates, and show that additional assumptions are needed before

the implementation of AutoDeconfounding can be equated to correct deconfounding.

Inspired by this result, we perform ablation studies to verify to what extent the

improvement on downstream visio-linguistic tasks reported by the works that implement

AutoDeconfounding is due toAutoDeconfounding, and to what extent it is specifically due

to the deconfounding aspect of AutoDeconfounding. We evaluate AutoDeconfounding in

a way that isolates its effect, and no longer see the same improvement. We also show that

tweaking AutoDeconfounding to be less related to deconfounding does not negatively

affect performance on downstream visio-linguistic tasks. Furthermore, we create a

human-labeled ground truth causality dataset for objects in a scene to empirically verify

whether and how well confounders are found. We show that some models do indeed

find more confounders than a random baseline, but also that finding more confounders

is not correlated with performing better on downstream visio-linguistic tasks. Finally, we

summarize the current limitations of AutoDeconfounding to solve the issue of spurious

correlations and provide directions for the design of novel AutoDeconfounding methods

that are aimed at overcoming these limitations.

Keywords: causality, vision, language, deep learning, structural causal model (SCM)

1. INTRODUCTION

Recent years have seen great progress in vision and language research. Increasingly complexmodels
trained on very large datasets of paired images and text seem to capture a lot of the correlations that
are needed to solve tasks such as Visual Question Answering or Image Retrieval.

A concern however is that models make many of their predictions based on so-called spurious
correlations: correlations that are present in the training data, but do not generalize to accurately
make predictions when confronted with real world data.
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To address this concern, researchers increasingly study the
integration of causation into models. A model that is able to
solve problems in a causal way, will be faster to adapt to
other distributions and thus be more generalizable (Schölkopf,
2019). Because there are oftenmultiple possible underlying causal
models that each perfectly match the observed statistics, a key
challenge is that it is not always easy to discover causal structure
in purely observational data without being able to perform
interventions1 on the data.

Recently, a technique has been proposed that aims to
automatically discover and use knowledge of the underlying
causal structure in order to avoid learning spurious correlations.
More specifically, the goal is to avoid learning correlations that
are due to a common cause (or “confounder”)2, a process called
“deconfounding.” We will further refer to this technique as
AutoDeconfounding. AutoDeconfounding was first developed by
Wang et al. (2020) in their model named VC-R-CNN, and more
recently adapted to the multi-modal setting by Zhang et al.
(2020b) in their model DeVLBERT.

The goal of this article is to critically examine the technique of
AutoDeconfounding and theoretically and empirically investigate
whether AutoDeconfounding is an effective method to avoid
spurious correlations. A closer inspection of AutoDeconfounding
raises a number of questions that are addressed in this article.

First, deconfounding implies a certain assumption on the
type of causal variables and their possible values. We make the
underlying causal model of AutoDeconfounding explicit, and
use that model to show that additional assumptions are needed
before the implementation ofAutoDeconfounding can be equated
to correct deconfounding.

Inspired by this observation, we then set out to investigate to
what extent the reported improvement on downstream tasks is
due to AutoDeconfounding, and to what extent it is specifically
due to the deconfounding aspect of AutoDeconfounding.
Focusing on the most recent article (Zhang et al., 2020b), that
implements AutoDeconfounding in a visio-linguistic context,
we retrain and evaluate their model (“DeVLBERT-repro”) and
their baseline (“ViLBERT-repro”) in a way that isolates the
contribution of AutoDeconfounding. We compare the scores for
our reproductions with the reported scores, as well as with
the score of a pretrained checkpoint provided by Zhang et al.
(2020b) (“DeVLBERT-CkptCopy.”) We also train and evaluate
two newly created variations of DeVLBERT (“DeVLBERT-
NoPrior” and “DeVLBERT-DepPrior”) intended to isolate the
component within AutoDeconfounding that is hypothesized to
be responsible for its beneficial effect. Our experiments show no
noticable improvements of performance on downstream tasks
with DeVLBERT-repro compared to ViLBERT-repro. Moreover,
we show that DeVLBERT-NoPrior and DeVLBERT-DepPrior
perform on-par with DeVLBERT-repro as well. This sheds doubt

1Intuitively, intervening on the value of some variable (like the presence of an

object in a scene) means manipulating its value independently of the value of all

other variables. This is defined formally in section 3.3.
2For example, the correlation observed between umbrellas in the street, and

number of taxis being taken is not due to a direct causal link, but due to the

common cause of rainy weather.

both on the role of deconfounding withing AutoDeconfounding,
as on the effectiveness of AutoDeconfounding in general.

Finally, we investigate how accurately models that integrate
AutoDeconfounding actually discover confounders. Such an
experiment is relevant, because finding confounders from purely
observational data seems to be at odds with the Causal Hierarchy
Theorem (Bareinboim et al., 2020). For this purpose, we collect
a human-labeled ground truth dataset of causal relations. We
make two observations here. First, we find that DeVLBERT-
repro and DeVLBERT-NoPrior outperform a random baseline
in finding confounders, implying that some knowledge useful
for identifying causes is present in the data. Second, we see
no correlation between better confounder-finding and improved
performance on downstream tasks: while DeVLBERT-CkptCopy
and DeVLBERT-DepPrior score higher on downstream tasks,
they are no better than a random baseline at finding confounders.

The contributions of this work are the following:

• We theoretically clarify what deconfounding in the visio-
linguistic domain means, and show which additional
assumptions need to be made for previous work to be
equivalent to deconfounding.

• We verify the benefit of AutoDeconfounding on downstream
task performance in a way that better isolates its effect, and fail
to reproduce the reported gains.

• We collect a dataset of hand-labeled causality relations
between object presence in visual scenes coming from the
Conceptual Captions (Sharma et al., 2018) dataset. This dataset
can be useful for validating future approaches to resolve
spurious correlations through causality.

The rest of this article is structured as follows. In section
2, we discuss related work. In section 3, we explain what
the terms causation, Structural Causal Models (SCMs)3 and
deconfounding mean in the sense of the do-calculus of Pearl
and Mackenzie (2018) and we explain how deconfounding could
indeed theoretically improve performance on out-of-distribution
downstream visio-linguistic tasks. In section 4, we show in
detail how AutoDeconfounding is implemented in Zhang et al.
(2020b) and Wang et al. (2020), and we explain what the various
approximations they make mean in terms of assumptions on the
underlying SCM. In section 5, we explain our methodology for
investigating AutoDeconfounding more closely on three fronts: is
its implementation equivalent to deconfounding, what explains
its reported improvement on downstream visio-linguistic tasks,
and are confounders found in its implementation. We discuss
experimental results in section 6. Finally, we conclude in
section 7.

2. RELATED WORK

Visio-linguistic models. There has been a lot of work on creating
the best possible general-purpose visio-linguistic models. Most
of the recent models are based on the Transformer architecture
(Vaswani et al., 2017), examples include ViLBERT (Lu et al.,
2019), LXMERT (Tan and Bansal, 2019), Uniter (Chen et al.,

3Also Structural Equation Model.
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2020), and VL-BERT (Su et al., 2019). Often, the Transformer
architecture is complemented with a convolutional Region
Proposal Network (RPN) to convert images into sets of region
features: Ren et al. (2015) and Anderson et al. (2018), present
examples of RPNs that have been used for this purpose. This
articles that use AutoDeconfounding, which is the topic of this
article, both use ViLBERT (Lu et al., 2019) as a basis for multi-
modal tasks.

Issue of spurious correlations. The issue of models learning
spurious correlations is widely recognized. Schölkopf et al. (2021)
gives a good overview of the theoretical benefits of learning
causal representations as a way to address spurious correlations.
A number of works have tried to put ideas from causality in
practice to address this issue. Most of these assume a certain fixed
underlying SCM, and use this structure to adjust for confounders.
Examples include Qi et al. (2020), Zhang et al. (2020a), Niu
et al. (2021), or Yue et al. (2020). An important difference
of AutoDeconfounding with regard to these works, is that in
AutoDeconfounding the structure of the SCM is automatically
discovered, as well as that the variables of the SCM correspond
to individual object classes.

Discovering causal structure. There is theoretical work
explaining the “ladder of causality” (Pearl and Mackenzie, 2018),
where the different “rungs” of the ladder correspond to the
availability of observational, interventional and counterfactual
information, respectively. The Causal Hierarchy Theorem (CHT)
(Bareinboim et al., 2020) shows that it is often very hard to
discover the complete causal structure of an SCM (the second
“rung” from the ladder) from purely observational data (the first
“rung” of the ladder). However, it is not a problem for the CHT
to discover the causal structure of an SCM up to its Markov
Equivalence Class4. This has been done with constraint-based
methods such as Colombo et al. (2012), and score-based methods
such as Chickering (2002).

Despite the CHT, there have also been attempts to go beyond
the Markov Equivalence class. One tactic to do this is through
supervised training on ground truth causal annotations of
synthetic data, and porting those results to real data (Lopez-
Paz et al., 2017). Another way makes use of distribution-shifts
to discover causal structure: this does not violate the CHT
by being a proxy for having access to interventional (“second
rung”) data. More specifically Bengio et al. (2019) and more
recently Ke et al. (2020) train different models with different
factorizations, see which model is the best at adapting to out-of-
distribution data, and retroactively conclude which factorization
is the “causal” one.

In contrast to these methods, AutoDeconfounding does not
make use of distribution shifts nor of ground truth labeled causal
data, but only of “first rung” observational data.

Investigating AutoDeconfounding. The works that
implement AutoDeconfounding (Wang et al., 2020 and Zhang
et al., 2020b) both explain the benefit of AutoDeconfounding
as coming from its deconfounding effect. This article will do
novel additional experiments that surface a number of issues
with AutoDeconfounding. We focus on the implementation by

4The set of SCMs that encode the same set of conditional probabilities.

TABLE 1 | Example observations of the presence of certain objects in a scene.

Rain cloud (R) Umbrella (U)

1 1

0 0

0 0

1 0

.

.

.
.
.
.

Zhang et al. (2020b) as it is the SOTA for AutoDeconfounding.
First, we make the underlying SCM more explicit, showing the
assumptions under which it corresponds to deconfounding.
Second, we compare with the non-causal baseline in a
way that better isolates the effect of AutoDeconfounding.
Finally, we evaluate whether confounders (and thus “second
rung” information about the underlying SCM) are indeed
found by collecting and evaluating on a ground-truth
confounder dataset.

3. BACKGROUND: CAUSALITY

AutoDeconfounding is based on the do-calculus (Pearl, 2012),
which is a calculus that operates on variables in so-called
Structural Causal Models or SCMs. This section will explain the
key aspects of SCMs and the do-calculus that are necessary to
understand the discussion in the rest of this article.

3.1. Structural Causal Models
To understand SCMs, consider the following example. Say that
we have observations of the presence (1) or absence (0) of rain
clouds (R) and umbrellas (U) in a scene, see Table 1:

We might observe the following joint probabilities: From

P(R= r, U = u) R = 0 R= 1
U = 0 0.72 0.06
U = 1 0.08 0.14

the point of view of causal modeling, any particular distribution
of data observed by amodel is generated by physical, deterministic
causal mechanisms (Parascandolo et al., 2018).

For our example, say that the underlying mechanisms that
generate the data are as follows. Whether or not it rains depends
on factors outside of the observed data (such as the humidity
of the air, the temperature, etc.). Whether or not an umbrella
is present depends on whether it rains as well as on factors
outside of the observed data (such as the psychology of the people
carrying the umbrellas, etc.) Let us collect these external factors in
the variables ER for the rain cloud and EU for the umbrella. Then,
the value of R is determined by the function R = fR(ER), and the
value of U is determined by the function U = fU(R,EU). Because
themodel cannot observe ER and EU however, the best it can do is
view them as random variables, and try to learn their distribution.
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FIGURE 1 | Example SCM.

In this way, the probability distributions of the Ei, along with
the causal mechanisms fi, generate a probability distribution of
the observed variables: P(R,U). The set of observed variables
and their relation is typically represented in an SCM. An SCM
is a Directed Acyclic Graph (DAG) whose vertices consist of
observed random variables X,Y ,Z, . . . and in which a directed
edge between nodes implies that the origin node is in the domain
of the causal mechanism of the target node. Formally, if

X = f (PAX ,EX) (1)

then PAX is the set of variables with outgoing arrows into X.
Figure 1 shows the SCM for the example we discussed.

Typically, the possible values and the unobserved variables are
not explicitly shown, but we do so here for clarity.

3.2. Why Do We Want Models That Are
More “Causal”?
To make the use of causality concrete for a visio-linguistic
application, consider a model that needs to caption images. To
do so successfully, it will need to recognize the different objects
in the image. In order to recognize objects, the model will first of
all make use of the per-object pixel-level information. However,
to identify blurry, hard-to-recognize objects, it can complement
that information with the context of the object. In other words, it
can make use of knowledge about which objects are more or less
likely to occur together. Consider the case where the image to be
captioned is that of a rainy street. It is then useful for the model
to be able to predict whether what it sees is a rain cloud given that
it sees umbrellas (or vice versa).

A model that needs to learn parameters to perform this task
can solve this in different ways. For instance, it could learn
a parameter for each possible value of the joint probability
P(U,R). This might be tractable for two variables, but for
more variables, this approach requires too many parameters.
Alternatively, it can learn a factorization of the joint probability
and only learn parameters for each value of the factors. The
two possible factorizations in this case are on the one hand
P(U,R) = P(U|R)P(R), which is aligned with the underlying
causal mechanism and on the other hand P(U,R) = P(R|U)P(U),
which is not.

Each of these factorizations uses the same number of
parameters, and each will be able to correctly answer queries
like “what is the probability of not seeing umbrellas given that
it rains.”

However, consider that there is a distribution change, for
example, because we want our model to work for a location with
more rain. In this case the factor P(R) has changed because of
a change in the distribution of ER. To adapt, the factorization
that was aligned with the underlying causal mechanism needs
to change the parameter for only one factor, while the other
factorization needs to change all its parameters.

Generalizing from this toy example, a distribution change
typically only affects a few external factors Ei. Because of this,
a model with a factorization that is aligned with the underlying
causal mechanisms (a “causal” factorization Schölkopf, 2019)
will typically need to update fewer parameters than a model
with another (“entangled”) factorization, and thus perform
well on out-of-distribution data with fewer modifications
(Bengio et al., 2019).

3.3. Do-Operator
Sometimes, we want to predict what setting the value of some
variable X will have as an effect on the probability distribution
of another variable Y , rather than what observing X will have as
an effect.

Keeping Equation (1) in mind, “setting” a variable X to a value
is the same as replacing the mechanism X = f (PAX ,EX) that
produces X with a constant X = x. Such an intervention to
the underlying mechanisms then changes the resulting overall
probability distribution. The distribution resulting from setting
a variable X = x is indicated with the notation of the “do”-
operator: the distribution of another variable Y in the SCM after
we set (X = x) is noted as

P(Y|do(X = x)). (2)

Note the difference with the distribution of Y given that we
observe X (rather than setting it):

P(Y|X = x). (3)

An important case where the do-operator highlights the
difference between observation and intervention is in the case
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FIGURE 2 | Example SCM.

of confounders. When two variables X and Y share a common
parent Z in the SCM, this parent is called a confounder. The
statistical dependence between X and Y is then (at least partly)
attributable to this parent.

In the presence of a confounder, P(Y|X = x) will be different
from P(Y|do(X = x)).

For example, consider the SCM in Figure 2. We might
reasonably expect P(L = 1|U = 1) > P(L = 1|U = 0):
the probability that a puddle is present increases given that we
observe an umbrella. On the other hand, we should not expect
that the probability of a puddle being present changes when we
put an umbrella in a scene: P(L = 1|do(U = 1)) = P(L =

1|do(U = 0)) = P(L = 1).

3.4. Deconfounding
The presence of a confounder can stand in the way of learning
a causally aligned factorization. Consider again the SCM from
Figure 2. The correct causal factorization is P(R, L,U) =

P(U|R)P(L|R)P(R), but the correlation between puddle and
umbrella might cause the model to use P(L|U) or P(U|L) as a
factor. To discourage using these factors, we want to teach the
model P(L|do(U)) (resp. P(U|do(L))) instead, as this spurious
correlation disappears in the interventional view. In many
domains however, such as the visio-linguistic domain, we cannot
do actual real-life “interventions” on the data: we cannot “put” a
rain cloud in a captioned image of a street and expect umbrellas
to appear.

However, if we know the underlying SCM,we can still estimate
P(Y|do(X)). To do so, we have to make sure that each confounder
Zi is adjusted for. Intuitively, we want each confounder to be
“homogeneous” (Pearl, 2009) with regard to X: we should take
samples from the SCM in such a way that each Zi has the same
distribution for every value of X. In this way, we “neutralize” any
effect Zi might have.

For the example of Figure 2, if we want to discover whether
there is a causal link between P and U, we want to compare the
difference in howmany times we see puddles for the case in which
there is an umbrella present, with the case in which there is not,
without being confounded by the effect of one case having rain
more often than the other case. We do this by making sure there
are as many rainy days for the case without an umbrella as for the
cases with an umbrella.

More generally, there can be more than one confounder (e.g.,
if there are also sprinklers that cause people to take out their

umbrellas and puddles to form), and each variable can have
more than 2 possible values (e.g., if the variable is “color of
the umbrella” rather than “presence of an umbrella.”) In this
more general case, the “back-door criterion” tells us which set of
variables SZ = {Z1, . . . ,Zn} can be selected to be adjusted for to
discover the causal link between two target variables X and Y : SZ
is any set of variables such that:

• No node in SZ is a descendant of X;
• The nodes in SZ block every path between X and Y that

contains an arrow into X.

Note that this means it is also possible to adjust for too many
variables, creating a spurious correlation where there was none
before adjusting, so simply adjusting for every variable will
not work.

Formally, if each Zi ∈ SZ has ni possible values v
1
zi
, . . . , v

ni
zi , i =

1 . . . c:

P(Y|do(X)) =

v
n1
z1
,...,v

nc
zc∑

vz1=v1z1 ,...,vzc=v1zc

P(Y ,Z1 = vz1 , . . . ,Zc = vzc |do(X))

(4)

=

v
n1
z1
,...,v

nc
zc∑

vz1=v1z1 ,...,vzc=v1zc

P(Y|do(X),Z1 = vz1 , . . . ,Zc = vzc )

· P(Z1 = vz1 , . . . ,Zc = vzc |do(X)) (5)

=

v
n1
z1
,...,v

nc
zc∑

vz1=v1z1 ,...,vzc=v1zc

P(Y|X,Z1 = vz1 , . . . ,Zc = vzc )

· P(Z1 = vz1 , . . . ,Zc = vzc ) (6)

For example, for the case where there are only two confounders
Z1 and Z2, each with only two possible values: absent (0) and
present (1), Equation (6) becomes

P(Y|do(X)) =P(Y|X,Z1 = 0,Z2 = 0) · P(Z1 = 0,Z2 = 0)+

P(Y|X,Z1 = 0,Z2 = 1) · P(Z1 = 0,Z2 = 1)+

P(Y|X,Z1 = 1,Z2 = 0) · P(Z1 = 1,Z2 = 0)+

P(Y|X,Z1 = 1,Z2 = 1) · P(Z1 = 1,Z2 = 1) (7)

This example is relevant as it applies to AutoDeconfounding,
where variables are different objects, and their possible values
are either “present” (1) or “absent” (0). The SCM assumed by
AutoDeconfounding does not put restrictions on the connectivity
between objects, as long as the resulting graph is a DAG.
Moreover, it assumes no hidden confounders.

We will discuss the link of AutoDeconfounding with
deconfounding in more detail in section 5.1, after first clarifying
the details of AutoDeconfounding itself in section 4.

4. DETAILS OF AUTODECONFOUNDING

There are two variations of AutoDeconfounding: the one as
implemented in VC-R-CNN (Wang et al., 2020), referred to as
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AD-V, and the one as implemented in DeVLBERT (Zhang et al.,
2020b), referred to as AD-D.

Both Wang et al. (2020) and Zhang et al. (2020b) aim
to improve on visio-linguistic tasks (e.g., Visual Question
Answering or Image Captioning). Their models fall within a
category of approaches that use transfer learning: They pretrain
on a task different from the target task (a “proxy” task) for which
more data is available (for example, context prediction or masked
language modeling), and then fine-tune the resulting model on
the actual downstream tasks of interest. Their innovation comes
from an adaptation to the proxy task that is intended to prevent
the model from learning spurious correlations.

VC-R-CNN and DeVLBERT differ slightly in both the
context in which they use AutoDeconfounding and the exact
implementation of AutoDeconfounding. This section will explain
both models in detail.

4.1. VC-R-CNN
4.1.1. Backbone and Modalities
The backbone of VC-R-CNN (Wang et al., 2020) is an image-
region feature extractor [BUTD (Anderson et al., 2018)] which
produces feature vectors for all regions-of-interest (ROIs) in
an image. The image-region feature extractor is adapted by
retraining it on a proxy task designed to prevent spurious
correlations to be learned from vision data. Hence, VC-R-
CNN focuses its contribution only on the image modality
when pretraining.

4.1.2. Proxy Task
During the pretraining, the loss function of VC-R-CNN consists
of two terms:

Ltotal,V = Lbase,V + LAD-V. (8)

The base objective Lbase,V is ROI classification, i.e., predicting the
class of each of theN ROIs in the image.More precisely, if xi is the
index of the class of the ith ROI and p is the vector of predicted
probabilities computed based on feature vector fx extracted for
the ith ROI, then the base objective is:

Lbase,V =

N∑

i=1

−log(p[xi]). (9)

The additional objective LAD-V regards context prediction, i.e.,
predicting the class of one ROI based on the features of a different
ROI in the image. It does this for each pair of ROIs in the image
and sums the resulting losses:

LAD−V =

N∑

i=1

−log(pxy[yi]), (10)

where pxy is a probability distribution over the possible ROI
classes for the ith ROI computed based on feature vector fx of
the context ROI to use for that prediction, yi is the index of the
class of the ith ROI, and N is the number of ROIs in an image.

4.1.3. AD-V
In order to predict the context in a “causal” way, VC-R-CNN
introduces two elements that are gathered from the entire dataset:
a confounder dictionary Z and prior probabilities PZ .

The confounder dictionary Z is a set of C vectors, one per
image class, where each Z[c] consists of the average ROI feature
of all ROIs in all images belonging to class c. Given fy and fx,
where fy is the feature vector of the ROI whose class is to be
predicted and fx is the feature vector of the context ROI to use
for that prediction, VC-R-CNN computes a vector of attention
scores α to select among Z those variables that are confounders
for the classes corresponding to fx and fy. More precisely, the
attention is computed as the inner product between fy and Z

after projection to a shared embedding space, and converted to
a probability distribution using softmax:

α[c] = softmax(〈WzZ[c],Wxfy〉) (11)

where α[c] denotes the element at the cth index in vector α, 〈·, ·〉
denotes the inner product, and Wz ,Wx ∈ R

D×D with D the
dimension of feature representations. In section 5.3, we use this
α to investigate whether confounders are actually found.

Next, the model retrieves a pooled vector fz by taking a sum of
each of the C vectors in Z weighted by both the attention score
α[c] and the prior probability from PZ :

fz =

C∑

c=1

Z[c]α[c]PZ [c]. (12)

Here, vector PZ is a probability distribution over the classes
according to how many images they occur in5. The weighting of
Z by its prior is intended to realize the deconfounding. In section
5.1, we explain the exact link with deconfounding.

Finally, a simple feed-forward network FFN takes the
concatenation of fx and fz and transforms it to the prediction over
the possible classes pxy :

pxy = softmax(FFN([fx; fz])), (13)

where [·; ·] denotes the concatenation operation. The pipeline for
VC-R-CNN is shown in Figure 3.

In order to clarify the analysis that we make in section 5.1, it
is useful to rewrite pxy . First, in Equation (13) we can write the
feed-forward network FFN as the function gV :

FFN([fx; fz]) = gV (fx, fz). (14)

Second, in Equation (12) assume that each α[c] were to perfectly
select confounders (i.e., if there are c true confounders, give each
of those c true confounders a weight of 1

c
6, and all other variables

a weight of 0). Use Sz to denote the set of c indices of vectors inPZ

5Note that the way PZ is normalized implies that if every class would appear in

every image, each class would have a value of 1
C in PZ rather than a value of 1.

6Note that because a softmax is used to calculate the attention score, it is not

possible to give more than one confounder a weight of 1.
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FIGURE 3 | Pipeline for VC-R-CNN.

for which the corresponding class is a confounder for the classes
corresponding to fx and fy. Then, we can summarize pxy as:

pxy = softmax(gV (fx,
∑

i∈Sz

Z[i]
1

c
PZ [i]])) (15)

= softmax(gV (fx,

∑
i∈Sz

Z[i]PZ [i]

c
])). (16)

Note that in the case where c > 1, the softmax from Equation
(11) will tend to promote the selection of one confounder, even if
there are multiple attention scores that are quite high in the input
of the softmax.

To deal with the case of multiple confounders, a sigmoid
function, subsequently scaled so that the entries still sum to one,
would have been a better choice. However, as Zhang et al. (2020b)
andWang et al. (2020) use a softmax for AutoDeconfounding, we
will consider the softmax in our further analysis.

4.1.4. Pretraining Data
VC-R-CNN uses image datasets with ground truth bounding
boxes [MS-COCO (Lin et al., 2014)] and Open Images
Kuznetsova et al., 2020). The regions within these bounding
boxes are the ROIs.

4.1.5. Downstream Tasks
VC-R-CNN aims to improve performance on Image Captioning
(IC), Visual Commonsense Reasoning (VCR) (Zellers et al., 2019)
and Visual Question Answering (VQA) (Antol et al., 2015). More
precisely, the image features extracted with VC-R-CNN are used
as part of the pipeline of the various downstream models7.

4.2. DeVLBERT
4.2.1. Backbone and Modalities
DeVLBERT (Zhang et al., 2020b) uses the exact same backbone
and modalities as ViLBERT (Lu et al., 2019). Like ViLBERT,
it uses a Faster R-CNN region extractor (Ren et al., 2015)
[with ResNet-101 (He et al., 2016) backbone] to convert images
into sets of region features, and initializes the weights for the

7Up-Down (Anderson et al., 2018) for captioning andVQA, AoANet (Huang et al.,

2019) for captioning, MCAN (Yu et al., 2019) for VQA, R2C (Zellers et al., 2019)

and ViLBERT (Lu et al., 2019) for VCR.

linguistic stream with a BERT language model pretrained on
the BookCorpus and English Wikipedia. It also adds the same
cross-modal parameters.

Just like ViLBERT, DeVLBERT then performs visio-linguistic
pretraining. The only difference is that it adds a number of
“causal” parameters and losses during this pretraining, intended
to make the model less prone to spurious correlations. These are
detailed in the rest of this section. When the model is finetuned
for downstream tasks, these extra parameters are no longer used:
their only purpose was to change the “non-causal” parameters.

4.2.2. Proxy Task
During the pretraining, the loss function for DeVLBERT is:

Ltotal,D = Lbase,D + LAD-D. (17)

DeVLBERT’s base objective equals the one described in ViLBERT
(Lu et al., 2019) which consists of a masked token modeling loss
for each modality (LMTMV and LMTMT ), and a caption-image-
alignment prediction loss (LVLA):

Lbase,D = LVLA + LMTMT + LMTMV . (18)

DeVLBERT’s additional objective is similar to that of VC-R-
CNN, but then extended to the multi-modal setting. More
precisely, DeVLBERT predicts the class index yi of the ith token
(where “tokens” are words for the text modality, and ROIs for the
vision modality) based on the contextualized feature fy for that
same token. This means LAD-D consists of 4 loss terms:

LAD−D = Lt2tAD−D + Lt2vAD−D + Lv2tAD−D + Lv2vAD−D, (19)

where t stands for the text modality and v for the vision modality.
Similar as in VC-R-CNN, a cross-entropy loss is used for the
L·2·AD−D loss terms. For example, Lt2vAD−D is computed as:

Lt2vAD−D =

N∑

i=1

−log(pty[y
t
i ]), (20)

where yti is the class index of the ith textual token, and the
prediction over the possible classes pty for the ith textual token
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FIGURE 4 | Pipeline for DeVLBERT.

FIGURE 5 | Zoom-in of AD-D.

is computed using the confounder dictionary for the vision
modality. The computation of the other L·2·AD−D loss terms is
completely analogous.

4.2.3. AD-D
The pipeline for DeVLBERT is shown in Figure 4.

Note that Figure 4 only describes variation “D” of the
variations proposed in DeVLBERT, as this is the variation for
which most results were reported in Zhang et al. (2020b).

Since DeVLBERT does AutoDeconfounding in the multi-
modal setting, one of the main differences compared to VC-R-
CNN is that modality-specific confounder dictionariesZ t andZv

and modality-specific prior probabilities PZ
t and PZ

v are used
to do the context prediction in a “causal” way. In the following,
we describe the pipeline for the text-to-vision case only, but the
other cases are completely analogous.

In the text-to-vision case, for the context prediction of a
textual token with feature vector f ty the confounder dictionary
for the visual modality Z

v is used. First, attention scores α

are calculated to select among the visual tokens in Z
v those

that are confounders for the textual token represented by f ty .
Next, a pooled f vz is calculated by weighting the C vectors in
confounder dictionary Z based on the attention score α[c] and
prior frequency PZ

v:

α[c] = softmax(〈WzZ
v[c],Wrf

t
y 〉) (21)

f vz =

C∑

c=1

Z
v[c]α[c]PZ

v[c] (22)

where α[c] denotes the element at the cth index in vector α,
〈·, ·〉 denotes the inner product, and Wz ,Wr ∈ R

D×D with
D the dimension of feature representations. In section 5.1,
we explain the exact link of weighting Z

v by its prior PZ
v

with deconfounding. Furthermore, in section 5.3, α is used to
investigate whether confounders are actually found.

Another main difference with VC-R-CNN is the input for the
prediction, which is not a concatenation, but only the pooled
vector f vz :

pty = softmax(FFN(f vz )). (23)

Figure 5 shows a zoom-in of the AutoDeconfounding operation
in DeVLBERT (Equations 21–23). Note that for DeVLBERT,
the ROI feature vector fy that is used to do the prediction (by
selecting fz as an intermediate step), and the class yi that we want
to predict, actually correspond to the same token. In other words,
DeVLBERT is finding variables that are confounders for the same
variable. Zhang et al. (2020b) justify this by saying fy actually
corresponds to a “mix” of tokens, since it has been contextualized
through the self-attention mechanism in the ViLBERT backbone.

Frontiers in Artificial Intelligence | www.frontiersin.org 8 March 2022 | Volume 5 | Article 736791

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Cornille et al. Critical Analysis of Deconfounded Pretraining

FIGURE 6 | Three-way confounding relations collapsing to a two-way causal

relation.

However, this contextualization does not take away that fy mainly
corresponds to the token in the image with class yi. In the three-
way relation of a confounder, if the two variables X1 and X2 that
are confounded by variable Z are one and the same (X1 = X2 =

X), we can simply call Z a cause of X. Figure 6 illustrates this. We
can thus also speak of “causes” instead of “confounders” when
discussing DeVLBERT.

Again, we can rewrite pty into a form suitable for the analysis
in section 5.1. First, we write the feed-forward network FFN as
the function gD:

FFN(f vz ) = gD(f
v
z ). (24)

Second, we simplify by assuming that each α[c] perfectly selects
confounders (or in this case: causes) and that Sz is the set of c
indices of vectors in PZ

v for which the corresponding class is a
cause for the class corresponding to f ty . Then, we can summarize

pty as:

pty = softmax(gD(
∑

i∈Sz

Z
v[i]

1

c
PZ

v[i]])) (25)

= softmax(gD(

∑
i∈Sz

Z
v[i]PZ

v[i]

c
])). (26)

4.2.4. Pretraining Data
DeVLBERT uses a dataset of images paired with captions
[Conceptual Captions (Sharma et al., 2018)]. We refer to an
image-caption pair as a “record.” DeVLBERT does not use
the images directly though, but uses a frozen region feature
extraction network [BUTD (Anderson et al., 2018)] to represent
the images as sets of ROI features. Note that for images,
DeVLBERT does not use ground truth bounding boxes (as those
do not exist for Conceptual Captions), but takes the predictions
of the frozen and pretrained BUTD region proposal network as
approximate ground truth.

4.2.5. Downstream Tasks
For DeVLBERT, the downstream tasks are VQA, Image Retrieval
(IR) and Zero-Shot Image Retrieval (ZSIR). Specifically, they
train and evaluate VQA on the VQA 2.0 dataset (Antol et al.,
2015) consisting of 1.1 million questions about COCO images
(Chen et al., 2015), each with 10 correct answers, and (ZS)IR on
the Flickr30k dataset (Young et al., 2014) consisting of 31 000
images from Flickr with five captions each. They exactly follow

the splits and training setup of ViLBERT for this, as do we
in the experiments described in the next section. Note that
when applied to downstream tasks, DeVLBERT has the same
architecture as ViLBERT: the only difference is that its weights are
different due to the different pretraining objective (Equation 17).

4.2.6. Out-Of-Distribution Setting
The DeVLBERT authors argue that there is a distribution shift
between the pretraining data (Conceptual Captions) and the
data of downstream tasks (VQA 2.0 and Flickr30k), namely
because the captions in Conceptual Captions are automatically
extracted based on alt-text attributes, whereas the VQA and
Flickr30k captions are human-annotated. This is in line with
other works on multi-modal pretraining that also consider
Conceptual Captions to have no expected overlap with the
data of common downstream tasks (Bugliarello et al., 2021). As
explained in section 3.2, a model that makes prediction using
only correlations that are also causal, should be expected to better
adapt to a distribution shift.

Note that DeVLBERT uses the same region proposal network
and text tokenizer for pretraining and downstream tasks. This
means that the distribution is not different in which object or
token classes appear, but rather in the statistics of the appearance
of the same set of object or token classes.

To investigate the reported improvements of DeVLBERT, we
copy their out-of-distribution setting. However, for future work,
it can be interesting to consider a setting where the distribution
shift is more explicit. For example, a distribution shift where
certain classes are known to have different correlations.

5. METHODOLOGY

The previous sections provided background knowledge of
causality and ofAutoDeconfounding. This section will build upon
that knowledge to examine AutoDeconfounding more closely.

Our methodology for investigating AutoDeconfounding
consists of three parts: one theoretical analysis, and two
empirical investigations for which we retrain a number of
variations of the SOTA model that uses AutoDeconfounding.
First, we theoretically examine whether the implementation of
AutoDeconfounding actually corresponds to deconfounding.
Second, we evaluate performance on downstream tasks to
isolate which component of AutoDeconfounding is responsible
for the reported improvements on those tasks. Finally, we
examine to what extent confounders are actually found. We
develop a ground truth dataset of causal relations to investigate
this quantitatively, and qualitatively show a subset of the
most-selected confounders.

5.1. Theoretical Examination of
Deconfounding in AutoDeconfounding
The implementation of AutoDeconfounding was detailed in
section 4. In this section, we explain how that implementation
relates to the formula for a deconfounded prediction (Equation
6). We show the derivation as made in VC-R-CNN and
DeVLBERT, and expand it to clarify the link with the underlying
causal model.
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The derivation starts with the formula for deconfounding:

P(Y|do(X)) =
∑

z

P(Y|X, z)P(z) (27)

As explained in Equation 6, this is really a simplified notation for

P(Y = vy|do(X = vx))

=

1,...,1∑

vz1 = 0,...,vzc = 0

P(Y=vy|X=vx,Z1=vz1 , . . . ,Zc=vzc )

P(Z1 = vz1 , . . . ,Zc = vzc ) (28)

where vx and vy each can be either 0, meaning “absent from the
scene” or 1, meaning “present in the scene,” and {Z1 . . .ZC} is the
set of classes that form a confounder for X and Y . For simplicity
of notation, we rewrite

1,...,1∑

vz1=0,...,vzc=0

〈. . .〉P(Z1 = vz1 , . . . ,Zc = vzc )

as

Ecz (〈. . .〉).

The derivation in VC-R-CNN and DeVLBERT then shows
that P(Y=vy|X=vx,Z1=vz1 , . . . ,Zc=vzc ) is calculated with
softmax(g(fx, fz)). Equation (28) then becomes:

P(Y = vy|do(X = vx)) = Ecz (softmax(g(fx, fz))) (29)

Note that this implies that the state of X is encoded in fx, and the
joint state of Z1, . . . ,Zc is encoded in fz .

The derivation then makes an approximation to move Ecz

into the softmax following the idea of the Normalized Weighted
Geometric Mean, or NWGM. The idea of NWGM is similar
to that of how dropout approximates an ensemble of models.
It approximates the aggregate result of resampling (in multiple
passes) cases where X = vx so that Z occurs at the rate P(Z = vz)
by 1) only doing one pass for X = vx, but 2) using the NWGM
of the possible values vz of Z, weighted by their prior distribution
P(Z = vz).

Further, given that the function g(·, ·) is linear, the expectation
can be moved next to the argument fz :

P(Y = vy|do(X = vx))
NWGM

≈ softmax(Ecz (g(fx, fz))) (30)

= softmax(g(fx,Ecz (fz)) (31)

Writing Ecz in full again:

P(Y = vy|do(X = vx)) = softmax(g(fx,

1,...,1∑

vz1=0,...,vzc=0

fzP(Z1 = vz1 , . . . ,Zc = vzc )), (32)

we can now compare this with the actual implementation as
explained in section 4 in Equations (16) and (26).

VC-R-CNN: pxy = softmax(gV (fx,

∑
i∈Sz

Z[i]PZ [i]

c
])) (33)

DeVLBERT: pay = softmax(gD(

∑
i∈Sz

Z
b[i]PZ

b[i]

c
])) (34)

First, specifically for DeVLBERT (Equation 34), there is a
mismatch in the first argument of g: fx is no longer involved for
gD, meaning that the prediction is made based on only the state
of the confounder variables.

Second, for both VC-R-CNN and DeVLBERT, there is an
apparent mismatch in the second argument of g. Equation (32)
shows that the sum should be taken over all possible combination
of values for every possible confounder. However, in the actual
implementation, Equations (33) and (34) show that the there is
only one term per confounder, corresponding to the case where
its value is “present.”

For example, if Y is puddle, X is umbrella, Z1 is rain cloud and
Z2 is sprinkler, then there are two confounders for P(Y|X): Z1 and
Z2. Instead of calculating P(Y|do(X)) by taking the average value
of P(Y|X,Z1,Z2) weighted by the prior probabilities P(Z1 =

present,Z2 = present), P(Z1 = present,Z2 = absent),
P(Z1 = absent,Z2 = present), P(Z1 = absent,Z2 = absent),
AutoDeconfounding takes the average value weighted by the prior
probabilities P(Z1 = present), P(Z2 = present).

Despite this apparent mismatch, with two additional
assumptions that were not specified in Zhang et al. (2020b) or
Wang et al. (2020), it is possible for this second argument of g
from Equation 32 to simplify into matching the second argument
of g in Equations (33) and (34):

For the first assumption, note that in the implementation, the
joint state Z1, . . . ,Zc is encoded as follows: For each Zi, if its state
is “present,” it is represented by the average ROI feature vector
fz i of the corresponding class. These average vectors are the ones
collected in the confounder dictionary Z . If its state is “absent,” it
is represented by a zero-vector with the same shape as fz i. Then,

the joint state is represented as the average vector fz =

∑c
i=1 fz i
c .

The assumption is then that fz can successfully distinguish all
possible joint states.

The second assumption is that all the confounders are
independent of one another. This entails that P(Z1 =

vz1 , . . . ,Zc = vzc ) =
∏c

i=1 P(Zi = vzi ).
Under these two assumptions, it can be shown that terms of

the sum in Equation (32) reduce (barring scaling factors) to the
terms in the implementation Equations (33) and (34). The proof
for this is in Appendix section 1.1.

In conclusion, we show that certain additional assumptions
are needed to overcome the mismatch between theoretical
deconfounding on the one hand, and the implementation
of AutoDeconfounding on the other hand. More specifically,
it is necessary to assume that the various confounders are
independent of one another, and that the encoding of the joint
confounder state as implemented in AutoDeconfounding can
uniquely determine each state.
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In the next sections, we evaluate aspects of
AutoDeconfounding empirically. We perform our empirical
experiments only for DeVLBERT, as it is the state-of-the-art of
this articles that use AutoDeconfounding.

5.2. Ablation Studies on Downstream
Performance
As explained in section 4.2, Zhang et al. (2020b) evaluate
the quality of the DeVLBERT model by its performance on
downstream visio-linguistic tasks. They report a significant
improvement on these tasks when extending their baseline model
with AutoDeconfounding.

Our analysis from section 5.1 shows that additional
assumptions are necessary to equate the implementation of
AutoDeconfounding with deconfounding. Inspired by this, we
perform ablation studies to verify to what extent deconfounding
is actually responsible for the reported improvement in scores.
We do this by adapting AutoDeconfounding in such a way that
it retains access to the confounder dictionary, but is no longer
related to deconfounding. We also verify the extent of the
contribution of AutoDeconfounding as a whole, by comparing
with a baseline that does not use AutoDeconfounding on a more
like-for-like basis.

Because we want to investigate the relation between the
implementation of AutoDeconfounding and the performance
increase on downstream tasks as reported by DeVLBERT, we
evaluate on exactly the same downstream tasks as DeVLBERT.

Isolating the Contribution of the Confounder

Dictionary
For our first experiment on downstream task performance,
we test the hypothesis that the key ingredient is the use
of the “confounder” dictionary Z . We hypothesize that Z

forces contextualized representations to be sufficiently close
to a per-class average representation, thus providing some
kind of regularization. In this hypothesis, PZ is an irrelevant
component of AutoDeconfounding. To isolate the effect of Z ,
we have implemented and trained-from-scratch two variations of
AutoDeconfounding for which we alter PZ .

First, we create a model named DeVLBERT-NoPrior in which
PZ is left out completely. This changes Equation (22) to:

f bz =

C∑

c=1

α[c] · 1 · Zb[c]. (35)

Second, we create amodel namedDeVLBERT-DepPrior in which
PZ is replaced by a dependent prior. As opposed to vanilla
DeVLBERT, DeVLBERT-DepPrior does not weight each entry in
Z by the prior frequency of the class corresponding to that entry.
Rather, it takes into consideration both the class Cz of the entry
in the confounder dictionary Z , and the class Cy of the token
that is being predicted. It weights each entry by the frequency
of tokens of class Cz within records of the Conceptual Captions
dataset where a token of class Cy is also present.

Because DeVLBERT has a loss term for each combination of
modalities, DeVLBERT-DepPrior has a dependent prior for each

modality combination. For example, the dependent priorPZD
t2v

used to calculate the loss term Lt2vAD−D is:

PZD
t2v[j, k] =

Jt,v[j, k]

Mt[j]
(36)

Jt,v[j, k] =

T∑

i=1

It(i, j) · Iv(i, k) (37)

Mt[j] =

T∑

i=1

It(i, j) (38)

Where T is the total number of records, j and k denote the
class indexes for modality t and v, respectively, and It(j, k) is an
indicator function that is 1 if modality t of the jth record contains
a token with class index k and 0 otherwise.

Equation (22) then becomes:

f vz =

C∑

c=1

α[c] · PZD
t2v[i, c] · Zv[c]. (39)

where i is the index of Cy and c the index of Cz .
If these variations achieve a similar score to DeVLBERT,

that supports the hypothesis that Z is the key component of
AutoDeconfounding.

Comparing Like-For-Like
For our second experiment on downstream task performance, we
observe that the comparison between DeVLBERT and ViLBERT
in Zhang et al. (2020b) is not made on a completely like-
for-like basis, and so does not properly isolate the effect of
AutoDeconfounding.

More specifically, DeVLBERT was trained for 24 epochs,
where for the last 12 epochs the region mask probability
is changed from 0.15 to 0.3 (Zhang et al., 2020b), whereas
ViLBERT is only trained for 10 epochs (with region mask
probability 0.15)(Lu et al., 2019). Zhang et al. (2020b) report
that longer pretraining can be especially beneficial for zero-shot
IR performance8. Moreover, for fine-tuning, ViLBERT uses the
last checkpoint for evaluation, whereas DeVLBERT uses the best
checkpoint (based on the validation score) for evaluation.

We retrain and ViLBERT and DeVLBERT ourselves on a
like-for-like basis. The details of our experimental setup are in
section 6.1.

5.3. Investigating Confounder Finding
The last question we investigate is whether confounders are
actually found. According to the Causal Hierarchy Theorem
(Bareinboim et al., 2020), with access to only observational data,
you cannot make a model that correctly answers interventional
(causal) queries for “almost-all9” underlying SCMs. Or as stated
by Cartwright (1994): “no causes-in, no causes-out.” Moreover,
Zhang et al. (2020b) andWang et al. (2020) did not quantitatively

8See DeVLBERT replication instructions at https://github.com/shengyuzhang/

DeVLBert.
9“Almost-all” is meant in a measure-theoretic sense, explained in Bareinboim et al.

(2020).

Frontiers in Artificial Intelligence | www.frontiersin.org 11 March 2022 | Volume 5 | Article 736791

https://github.com/shengyuzhang/DeVLBert
https://github.com/shengyuzhang/DeVLBert
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Cornille et al. Critical Analysis of Deconfounded Pretraining

verify whether confounders are found, but take this as a given.
Taking the above into account, it is not obvious that confounders
are actually found by AutoDeconfounding.

We evaluate the confounder-finding capacities of DeVLBERT
both quantitatively and qualitatively. Because we focus on
DeVLBERT, we will speak of “causes” instead of “confounders.”

A lot of the tokens from the text modality are not meaningful
as causal variables (words such as “over,” “the,” etc.) Hence, we
focus specifically on the image modality, where all of the tokens
correspond to real objects.

5.3.1. Quantitative Analysis

5.3.1.1. How to Collect Ground Truth Confounders?
To check quantitatively whether actual causes are found, we need
ground truth labels on the causality between objects in a scene.

To do this, we create a novel dataset with ground truth
labels. Ideally, the way to gather causal labels would be to do
interventions in the real world. However, this is difficult to realize
(e.g., it is hard to “put” a rain cloud into a scene). Because many
causal relations between objects are obvious to human common
sense, we rely on human judgement to annotate causal relations
instead. The assumption here is that the “mental intervention”
that humans do when they answer a question like “Would
changing the presence of ‘umbrella’ influence the presence of
‘rain cloud’ in the scene?” is a good approximation of the real-
world intervention.

5.3.1.2. Details of the Data Collection
Selecting Data to Label DeVLBERT works with 1,600 visual
object classes, so the number of class-pairs for which a causal-
link question can be asked is 1, 6002 = 2.56 million pairs. Because
we believe most of these pairs will have no direct link at all, and
labeling all 2.56 million pairs is too expensive, we select a subset
of 1,000 class pairs to label. To select this subset, we use the
following heuristic:

We assume that candidate pairs that are not correlated in
the dataset, will not exhibit a causal link either10. Hence, to
select a subset of pairs, we ranked pairs by how strongly they
were correlated in the dataset. More specifically, if P(X =1)
is the probability that an image contains an object of class X,
and P(X=1,Y=1) is the probability that an image contains
both an object of class X and an object of class Y , we select
classes for which the difference between P(X =1,Y =1) and
P(X=1)P(Y=1) is large.

We select 500 class pairs for which the absolute
difference |P(X =1,Y =1) − P(X=1)P(Y=1)| is the
highest, and 500 pairs for which the relative difference
log(P(X=1,Y=1)/P(X=1)P(Y=1))11 is the highest12.

10Although correlation is not a necessary condition for causation, for this heuristic

we assume this is still a useful way to weed out many uninteresting pairwise

relations.
11We do not use the absolute value of log(P(X=1,Y=1)/P(X=1)P(Y=1))

because this fills the top of the ranking with pairs of classes that occur only once

but not together: for these pairs, log(P(X=1,Y=1)/P(X=1)P(Y=1)) is minus

infinity. These pairs are almost all unrelated and thus not causally meaningful.
12The absolute difference surfaces more common classes, while the relative

difference also surfaces rare classes.

TABLE 2 | Subset of response pairs from crowdworkers.

Object 1 (X) Object 2 (Y) Most selected response

Trick skater Y causes X

Laptops office Y causes X

Person shirt X causes Y

Table man a confounder Z causes X and Y

Face tree a confounder Z causes X and Y

Sleeve shirt Y causes X

Arm man Y causes X

Players plant a confounder Z causes X and Y

Nose sky a confounder Z causes X and Y

Assuring Label Quality. To label the data, we used Amazon
Mechanical Turk (MTurk)13. We ask workers to label pairs (X,Y)
of correlated objects with one of three options: X causes Y , Y
causes X, or neither (in other words some confounder Z causes
X and Y). In the latter case, we also provide a free-form box
where workers could enter what they thought this confounder
would be. An example of the form we used can be found in the
Supplementary Material. We also let workers fill in a confidence
score of 1–3 of how confident they are in their answer.

The kind of causality that we target is non-trivial to non-
experts: we say that one object “is the cause of” another if
intervening on its presence influences the probability of the other
object being present. To ensure that workers understand the
task well, we provide detailed instructions in the form, along
with an explanation video. We also require that workers get a
minimum score on a test with a small number of pairs with an
obvious causal direction. The test questions can be found in the
Supplementary Material.

We let each pair be labeled by 5 different workers and keep
only those pairs for which agreement was at least 4 out of 514.
This left us with 595 pairs (or about 60 percent of pairs with at
least 4/5 agreement). Table 2 shows 10 of these pairs.

Table 3 shows some examples of confounders that workers
entered in the free-form box. One pattern to observe is that when
the two objects are parts of a whole, the whole is sometimes
suggested (e.g., windshield wipers and doors are caused by a car,
or outfield and mound by baseball field). Suggested confounders
can also vary quite widely (e.g., table, office, or coffee shop as
confounder for coffee cup andmonitors).

The full dataset with responses, confidences and free-text
confounder responses is publicly available on Google Drive15.

5.3.1.3. Confounder Ranking Metric
Recall from Equation 22 that the mechanism by which causes are
found consists of using attention scores α to pool vectors from Z

whose classes correspond to causes.

13We detail the crowdworkers’ reward per label and estimated time spent per label

in the Ethical Considerations section at the end of this article.
14We did not end up weighting agreement by confidence level as the difference in

resulting pairs was small anyway.
15https://drive.google.com/file/d/17CTPMoZ4uJH6cSQaxD6Vmyv_bVLJwVJp/

view?usp=sharing
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TABLE 3 | Subset of free-from confounders suggested by crowdworkers.

Object 1 (X) Object 2 (Y) Free-form suggested confounders

Hand shoe human, person, child

Ski poles ski boot mountains, skier, snow

Windshield wipers doors car, cars

Outfield mound baseball field, baseball

Barricade cones street, road, construction

Coffee cup monitors table, office, coffee shop

Cucumber cauliflower salad

Wall pillow bedroom, room

Geese ducks lake, animals

Note that these were not used in the confounder ranking metric.

We take the trained model from DeVLBERT, and for every
ROI y in every image, we produce α. We then examine the
objects classes oi in our dataset for which we have the ground truth
relation to y (i.e., either oi is a cause of y, y is a cause of oi, or
they are “mere correlates.”) We call the set of oi for a particular
y Oy. A successful α should rank the oi that are a cause of y
higher than the oi that are either consequences ormere correlates.
We use mean average precision (mAP) as metric to measure
the ranking performance. We compare the resulting mAP score
with a baseline that ranks the elements of Oy in a completely
random way.

We report on the results in section 6.2.1.

5.3.2. Qualitative Analysis
The quantitative analysis only considers classes for which
we have collected ground truth causality information. It can
be informative, however, to look at the complete ranking of
candidate causes for a certain class.

We calculate the per-class average value of α[c] over all R
ROIs in the dataset whose ROI class corresponds to c for each
class c:

αavg[c] =

∑R
i=1 I(i, c) · α[c]

N
(40)

α[c] = 〈(WzZ
I[c]), (Wxf

i
x)〉 (41)

where f ix is the contextualized ROI-feature corresponding to the
ith ROI, ZI is the confounder dictionary for the image modality,
and I(i, c) is an indicator function that is 1 if the ith ROI has class
c and 0 otherwise.

We also show a few qualitative examples during a downstream
task, specifically VQA. We check the last-layer cross-modal
attention from a query word in the question to the bounding box
of an object which we know is a cause of the query word. This
can indicate whether certain models pay more attention to actual
causes during downstream tasks.

6. RESULTS

6.1. Ablation Studies on Downstream
Performance
Setup

As explained in section 4.2, Zhang et al. (2020b) evaluate the
quality of the DeVLBERT model by its performance on three
downstream visio-linguistic tasks: Image Retrieval and Visual
Question Answering, for which the model is further fine-tuned,
and Zero-Shot Image Retrieval, for which the pretrained model is
immediately used. Performance on (Zero-Shot) Image Retrieval
is measured by recall at k or R@k, and performance on Visual
Question Answering is measured by accuracy. We evaluate in the
same way.

When reproducing DeVLBERT, we have tried to follow the
original setup as closely as possible. We train all models with the
same batch size and learning rate as DeVLBERT16.

There are, however, still a few differences in set-up. First, for
Visual Question Answering, we only report performance on the
“test-dev” split, and not on the “test-std” split: only 5 submissions
to “test-std” are allowed, and we evaluate more than 5 models.
Second, because the Conceptual Captions dataset consists of
hyperlinks to web content, over time some of the links go stale.
Hence we work with 2.9 million records, compared to the 3.1
million that DeVLBERT originally trained on.

Finishing 24 epochs of pretraining on the Conceptual
Captions dataset takes 3–5 days17.

A pretrained checkpoint wasmade publicly available by Zhang
et al. (2020b). We redo only the fine-tuning step ourselves for this
checkpoint, and also include its performance in our results. We
refer to this run as DeVLBERT-CkptCopy.

To make sure that the improvement is indeed due to
AutoDeconfounding, we retrain ViLBERT and DeVLBERT
ourselves, this time in exactly the same way: both for 24 epochs,
where for the last 12 epochs the region mask probability is
changed from 0.15 to 0.3, and both using the best checkpoint in
the fine-tuning tasks for evaluation.

Results

Table 4 shows an overview of the downstream tasks
performances of the different models we evaluated18.

We make a couple of observations:
The top two rows show the improvement of DeVLBERT

over ViLBERT as reported in Zhang et al. (2020b). The next
two rows show the same comparison, but for our like-for-like
reproduction where we retrainedDeVLBERT andViLBERT from
scratch. Contrary to Zhang et al. (2020b) we do not observe
an improvement across the downstream tasks. Part of the gap
is closed by the better score of ViLBERT. Especially on IR and
ZSIR, we see that training for more epochs improves the R@1

16For pretraining, the batch size is 512, for finetuning VQA, it is 256, and for

finetuning IR it is 64.
17Using 8 32GB NVIDIA V100 GPUs with a batch size of 64 per GPU, training

takes 3 days. Using 4 16GB NVIDIA P100 GPUS with batch size 64 and gradient

accumulation of 2 (making an effective batch size 512), training takes about 5 days.
18The code to reproduce all results can be found on github: https://github.com/

Natithan/p1_causality.
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TABLE 4 | Scores on downstream tasks: top-1 recall, top-5 recall and top-10 recall for Image Retrieval (IR R@1, IR R@5, IR R@10) and zero-shot image retrieval (ZSIR

R@1, ZSIR R@5, ZSIR R@10), and accuracy on the test-dev split for Visual Question Answering (VQA).

IR R@1 IR R@5 IR R@10 ZSIR R@1 ZSIR R@5 ZSIR R@10 VQA test-dev

Run name

DeVLBERT reported
61.60 87.10 92.60 36.00 67.10 78.30 71.50

ViLBERT reported
58.20 84.90 91.50 31.90 61.10 72.80 70.90

DeVLBERT repro (5 run avg ± stdev)
61.06 ± 1.04 87.27 ± 0.48 92.78 ± 0.4 35.19 ± 0.97 64.56 ± 0.82 75.16 ± 0.65 71.05 ± 0.06

ViLBERT repro (5 run avg ± stdev)
62.13 ± 0.61 87.48 ± 0.43 92.92 ± 0.31 34.2 ± 1.17 63.53 ± 1.2 74.59 ± 1.25 70.45 ± 0.42

DeVLBERT-CkptCopy
61.56 87.56 93.02 37.42 66.74 77.88 70.88

DeVLBERT-DepPrior
63.70 87.86 93.20 32.40 62.70 73.80 70.29

DeVLBERT-NoPrior
61.12 87.32 92.72 34.08 62.56 73.06 70.76

The table shows originally reported scores (DeVLBERT reported and ViLBERT reported), scores for retrained models (DeVLBERT repro, DeVLBERT-CkptCopy, ViLBERT repro, average

over 5 runs), and scores for adapted models (DeVLBERT-DepPrior, DeVLBERT-NoPrior). The color scaling (darker for higher score) is per column.

for ViLBERT by almost 2 to 3 percentage points. This indicates
that the reported improvement in Zhang et al. (2020b) might
be largely due to differences in training, rather than due to
AutoDeconfounding.

However, another part of the difference between the reported
scores and our reproduces scores is that we get a lower score
than reported for DeVLBERT in our reproductions. As we use
the code provided by Zhang et al. (2020b) to retrain models, we
hypothesize that this difference is due to the slightly smaller size
of the pretraining dataset that was available to us.

We see that DeVLBERT-CkptCopy scores are different from
the reported scores. This is because the model checkpoint that
the authors of DeVLBERTmade available is not the one for which
they reported results19.

Although we could not quite reproduce the results in the same
way, our results indicate that the reported improvement in Zhang
et al. (2020b) might be mainly due to a different training regime.

Finally, the results for DeVLBERT-DepPrior and DeVLBERT-
NoPrior do not show a consistent degradation of performance on
all downstream tasks when compared to DeVLBERT repro. This
indicates that the PZ component of AutoDeconfounding indeed
is not a key component.

All in all, these results cast serious doubt on the validity of
AutoDeconfounding as a method to improve performance on
out-of-domain downstream tasks.

6.2. Investigating Confounder Finding
6.2.1. Quantitative Analysis

Setup
For the experiments that investigate confounder finding, we
only evaluate runs that are variations of DeVLBERT, but

19This was confirmed after correspondence with the authors of DeVLBERT.

TABLE 5 | Comparison of confounder-finding performance of DeVLBERT with a

random baseline.

mAP score mAP excess over random baseline

Run name

DeVLBERT repro (5

run avg ± stdev)

0.81 ± 0.03 0.1 ± 0.03

DeVLBERT-

CkptCopy

0.68 -0.02

DeVLBERT-DepPrior 0.65 -0.05

DeVLBERT-NoPrior 0.80 0.10

Recall from section 5.3.1.3 that the mAP score is calculated based on how the attention

weights rank candidate causes for which we have a ground-truth label in the self-collected

dataset described in section 5.3.1.2.

not runs that are variations of ViLBERT. ViLBERT does not
contain the mechanism that selects confounders, shown in
Equation (21), and so cannot be judged on whether it finds
confounders. More specifically, we evaluate DeVLBERT repro,
DeVLBERT-CkptCopy, DeVLBERT-DepPrior, and DeVLBERT-
NoPrior.

Results
Table 5 shows the mAP results.

Table 5 shows that the reproduced runs behave differently
than DeVLBERT-CkptCopy. Whereas DeVLBERT-CkptCopy is
worse than random at correctly ranking the causes in the ground
truth dataset, the reproduced runs score better than random. We
trained multiple reproductions to see whether this was due to
high variance for the mAP score over different initializations,
but this behavior holds up over 5 runs. Recall from section 6.1
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that the reproducedmodel scores slightly lower thanDeVLBERT-
CkptCopy on downstream tasks. This indicates that finding or
not finding confounders does not correlate with performance on
the downstream tasks.

Further, for DeVLBERT-DepPrior and DeVLBERT-NoPrior,
we get mixed results. DeVLBERT-NoPrior shows a similar
result to the reproduced runs, while DeVLBERT-DepPrior
again shows a worse-than-random result. Given the Causal
Hierarchy Theorem mentioned in section 2, we might expect
that it would not be possible to correctly identify causes given
only observational data, and so we would expect all runs to
score around the random baseline. We propose the following
explanation for this apparent paradox. While the CHT states that
the correct SCM cannot be recovered from only observational
data, it can be recovered up to its Markov Equivalence Class.
We hypothesize that for the ranking task we developed, this
might be sufficient to score above-random. We hypothesize that
a more specialized ranking task that explicitly seeks to test cause-
finding beyond what can be deduced up to the level of a Markov
Equivalence Class will be harder. Performance on such a harder
confounder-finding task might then be a better predictor of out-
of-distribution performance. We leave the development of such a
task for future work.

In conclusion, we get mixed results in trying to evaluate
ground truth confounder-finding, however the results do
indicate that confounder-finding ability does not correlate with
performance on downstream tasks.

6.2.2. Qualitative Analysis

Setup
For the qualitative investigation of confounder-finding, we do
not average the result of DeVLBERT repro, but show the result
for only one of the runs. Because different runs might produce
a different ranking, it is hard to display the average results in a
compact way. Because it is a qualitative investigation, the result
for a single run is sufficiently informative. We display the run
with the best mAP score.

Results
The full 1600 × 1600 tables with the attention distributions can
be found in the Supplementary Material. The scores shown are
the values of α[c] in Equation (21), averaged over all records
containing the effect variable. Table 6 shows a subset, that is, the
top ranked classes for the 10 most common objects.

Table 7 shows the same values, but for a particular example of
each effect variable rather than for the average20.

For DeVLBERT-CkptCopy, the by-far most-attended-to
element of the confounder dictionary Z is “butter knife,” and the
rest of top-attended elements are similar between objects. For the
other runs, there is no one most-attended-to element, but we also
see a small set of classes appearing as top-cause candidates for
different effect variables.

To explain the high-confidence “butter knife”-selecting
behavior, we hypothesize that DeVLBERT-CkptCopy found a

20The original images for “woman” and “wall” have a high height/width ration,

and are shown trimmed for display purposes.

beneficial local optimum that makes use of Z in a specific way.
The low-confidence predictions for the other runs then indicate
that they did not find such an optimum.

It does not seem to be the case however that either case
corresponds to finding actual confounders. For DeVLBERT-
CkptCopy, it seems unlikely that “butter knife” is indeed
the most likely confounder for every class. The top causes
selected by the other models also do not seem intuitively
causal: “key” causing “man” for DeVLBERT repro, “cub” causing
“building” for DeVLBERT-NoPrior, or “apple” causing “woman”
for DeVLBERT-DepPrior do not seem related to true causality.

The fact that the same classes appear as top causes for
unrelated effect variables indicates an indifference of the model
to the value of the effect variable: Which cause variable receives
a large attention score, depends more on the value of the
particular (fixed) embedding for that cause variable, than on
how well it matches with the effect variable for which a cause
is supposedly found. Note that the cause variable representation
comes from the (fixed) confounder dictionary, whereas the
effect variable representation is the contextualized output of the
Transformer model. We hypothesize that this asymmetry is due
to the projection matrices that precede the inner product in the
calculation of attention scores. The model might have found it
beneficial to make the weights in these projection matrices such
that the attention output is more related to the cause variable than
to the effect variable.

Note that the attention parameters in AutoDeconfounding are
never explicitly trained to make confounder-finding predictions.
Rather, it is assumed by AutoDeconfounding that the attention
scores can be interpreted as cause-selecting-scores. The selection
of top causes observed inTable 6 indicates that this interpretation
is not valid.

Table 8 shows a few example images of a downstream task
(VQA), where the query word is an effect, and the bounding
box shown is that of a cause. If a model learned to depend less
on spurious correlations and more on causes during pretraining,
it is expected that this is reflected in higher attention values
from effects to causes. We do not observe that the models
using variations of AutoDeconfounding pay significantly more
attention to the cause object than the baseline ViLBERT model.

7. CONCLUSION

Models relying on spurious correlations are an important
issue, and leveraging causal knowledge to address the issue
is a promising approach. Causal models benefit transfer
learning, allowing for faster adaptation to other distributions
and thus being more generalizable (Schölkopf, 2019). This
has been a popular approach to tackle spurious correlations
specifically in the visio-linguistic domain, where a number
of works have used it to further improve on the already
impressive representation-learning capacities of Transformer-
like models.

Leveraging causality with automatically discovered causal
structure is especially interesting, as it could scale much better
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TABLE 6 | The average top predicted “causes” in the confounder dictionary Z and the corresponding average attention score α[c] for the 10 most common objects (in

bold in the leftmost column).

Effect variable Top cause variables

DeVLBERT repro (best run)

Man key: 0.029 brick: 0.028 kitchen: 0.019 houses: 0.019

Building grape: 0.054 strawberry: 0.033 skull: 0.032 brick: 0.03

Woman key: 0.03 brick: 0.029 kitchen: 0.022 houses: 0.019

Tree skull: 0.043 key: 0.035 grape: 0.031 brick: 0.027

Window brick: 0.031 houses: 0.022 strawberry: 0.022 grape: 0.018

Shirt cupcake: 0.026 skull: 0.024 houses: 0.021 kitchen: 0.019

Sky cupcake: 0.029 grape: 0.026 skull: 0.023 brick: 0.021

Wall key: 0.038 grape: 0.034 brick: 0.028 strawberry: 0.023

Hair key: 0.036 kitchen: 0.026 restaurant: 0.023 sunset: 0.02

Head key: 0.03 strawberry: 0.022 kitchen: 0.021 restaurant: 0.02

DeVLBERT-CkptCopy

Man butter knife: 0.943 home: 0.001 little girl: 0.0 strawberry: 0.0

Building butter knife: 0.961 home: 0.001 little girl: 0.0 doll: 0.0

Woman butter knife: 0.937 home: 0.001 little girl: 0.001 flooring: 0.0

Tree butter knife: 0.948 home: 0.001 strawberry: 0.0 orange: 0.0

Window butter knife: 0.957 home: 0.001 strawberry: 0.0 flooring: 0.0

Shirt butter knife: 0.935 home: 0.001 little girl: 0.0 skull: 0.0

Sky butter knife: 0.965 home: 0.001 grape: 0.0 flooring: 0.0

Wall butter knife: 0.969 home: 0.001 flooring: 0.0 doll: 0.0

Hair butter knife: 0.909 home: 0.001 little girl: 0.001 grape: 0.001

Head butter knife: 0.917 little girl: 0.001 home: 0.001 strawberry: 0.001

DeVLBERT-NoPrior

Man floret: 0.013 pizzas: 0.013 remotes: 0.012 products: 0.011

Building cub: 0.015 veggie: 0.014 floret: 0.013 boulders: 0.012

Woman floret: 0.014 pizzas: 0.012 control: 0.012 pizza slice: 0.011

Tree floret: 0.017 cub: 0.016 boulders: 0.014 products: 0.012

Window cub: 0.017 boulders: 0.016 remotes: 0.012 floret: 0.012

Shirt control: 0.013 pizzas: 0.012 floret: 0.012 air vent: 0.011

Sky lunch: 0.014 cub: 0.013 products: 0.012 pizzas: 0.012

Wall cub: 0.015 pizzas: 0.012 key: 0.011 trick: 0.011

Hair floret: 0.015 remotes: 0.014 motorcyclist: 0.013 bath tub: 0.013

Head remotes: 0.014 floret: 0.013 bath tub: 0.013 motorcyclist: 0.012

DeVLBERT-DepPrior

Man sun: 0.018 palm tree: 0.012 star: 0.012 balloon: 0.012

Building balloon: 0.023 thumb: 0.018 triangle: 0.015 elephant: 0.013

Woman apple: 0.018 palm tree: 0.013 vehicle: 0.013 newspaper: 0.012

Tree balloon: 0.031 brick: 0.018 paint: 0.014 stone: 0.011

Window dot: 0.018 hole: 0.016 button: 0.015 bolt: 0.012

Shirt sheep: 0.027 border: 0.021 hay: 0.018 skull: 0.016

Sky elephant: 0.015 cake: 0.013 balloon: 0.012 thumb: 0.012

Wall rain: 0.011 sheep: 0.01 moon: 0.009 string: 0.009

Hair pavement: 0.019 rain: 0.016 blanket: 0.015 vehicle: 0.015

Head pavement: 0.02 vehicle: 0.018 balloon: 0.016 apple: 0.014

than human-labeled causal structure. This critical analysis has
uncovered some of the issues with this approach.

First, care needs to be taken in being specific with regard
to the underlying causal model that is assumed. As shown in
section 5.1, only when making the link between causal variables
and data-representations explicit is it possible to specify the

assumptions under which an implementation of deconfounding
is valid. An interesting avenue for future work could be to
adapt the implementation to work with a less strict set of
assumptions. Furthermore, more thought should be given to
the design of models that produce interpretable representations
that provide insight in the causal structure and relations of
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TABLE 7 | The top predicted “causes” in the confounder dictionary Z and the corresponding attention score α[c], not averaged over all images as in Table 6, but for the

objects detected in the specific images shown above.

Effect variable Top cause variables

DeVLBERT repro (best run)

Man key: 0.03 brick: 0.027 orange: 0.025 kitchen: 0.022

Building key: 0.012 strawberry: 0.011 skull: 0.01 brick: 0.009

Woman key: 0.032 kitchen: 0.03 brick: 0.029 apple: 0.023

Tree key: 0.05 skull: 0.048 grape: 0.028 strawberry: 0.027

Window brick: 0.031 houses: 0.023 tile: 0.022 skull: 0.021

Shirt cupcake: 0.034 houses: 0.026 skull: 0.025 pumpkin: 0.025

Sky cupcake: 0.047 grape: 0.046 kites: 0.036 mouse pad: 0.027

Wall cupcake: 0.039 key: 0.037 grape: 0.028 brick: 0.028

Hair key: 0.043 kitchen: 0.028 sunset: 0.028 cupcake: 0.026

Head key: 0.025 cupcake: 0.024 page: 0.022 brick: 0.021

DeVLBERT-CkptCopy

Man butter knife: 1.0 flooring: 0.0 home: 0.0 skull: 0.0

Building butter knife: 1.0 home: 0.0 wild: 0.0 houses: 0.0

Woman butter knife: 0.999 little girl: 0.0 skull: 0.0 flooring: 0.0

Tree butter knife: 0.999 home: 0.0 orange: 0.0 girls: 0.0

Window butter knife: 0.999 home: 0.0 adult: 0.0 flooring: 0.0

Shirt butter knife: 1.0 home: 0.0 grape: 0.0 skull: 0.0

Sky butter knife: 0.962 flooring: 0.001 home: 0.001 adult: 0.0

Wall butter knife: 1.0 end table: 0.0 little girl: 0.0 flooring: 0.0

Hair butter knife: 0.994 grape: 0.0 blueberry: 0.0 strawberry: 0.0

Head butter knife: 1.0 wild: 0.0 home: 0.0 grape: 0.0

DeVLBERT-NoPrior

Man lunch: 0.021 ox: 0.02 meal: 0.017 racer: 0.017

Building trick: 0.024 home: 0.023 pizza slice: 0.019 cub: 0.018

Woman sign post: 0.004 pizza slice: 0.004 pizzas: 0.004 breast: 0.004

Tree sandwiches: 0.009 wild: 0.007 home: 0.006 book shelf: 0.006

Window windshield wipers: 0.031 foliage: 0.024 plain: 0.024 lunch: 0.022

Shirt mountain range: 0.024 windshield wipers: 0.022 trick: 0.021 electrical outlet: 0.019

Sky lunch: 0.028 trick: 0.024 seasoning: 0.023 pizza slice: 0.019

Wall trick: 0.025 jets: 0.022 lunch: 0.019 plain: 0.015

Hair pizzas: 0.025 soil: 0.024 windshield wipers: 0.023 lunch: 0.023

Head windshield wipers: 0.031 flooring: 0.021 mountain range: 0.02 pizzas: 0.018

DeVLBERT-DepPrior

Man palm tree: 0.028 graffiti: 0.026 branches: 0.026 photo: 0.023

Building moon: 0.085 bolt: 0.05 hole: 0.045 dot: 0.039

Woman skull: 0.076 string: 0.031 sheep: 0.022 graffiti: 0.021

(Continued)
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TABLE 7 | Continued

Effect variable Top cause variables

Tree string: 0.046 board: 0.036 newspaper: 0.034 bolt: 0.03

Window balloon: 0.061 button: 0.046 dot: 0.035 newspaper: 0.034

Shirt skull: 0.038 star: 0.024 light: 0.022 border: 0.022

Sky bench: 0.011 baby: 0.008 plane: 0.007 flower: 0.007

Wall string: 0.034 balloon: 0.032 sheep: 0.022 hay: 0.017

Hair umbrella: 0.054 skull: 0.049 screen: 0.042 horse: 0.031

Head skull: 0.028 mouse: 0.028 word: 0.024 candle: 0.023

TABLE 8 | Some examples of the attention from query word to cause bounding box, for different models.

VQA Question Is there a car on the road? What is odd about the dog’s eyes What color is the person’s helmet?

Object in bounding box Street Head Person

DeVLBERT

ViLBERT

DeVLBERT-NoPrior

DeVLBERT-DepPrior

The word colored red in the VQA question is the query for the attention. Out of all possible bounding boxes to display, a bounding box with a “cause” for the query is manually selected,

and displayed. Note that it is not necessary for the query word to be present in the image. For the presence of “car,” presence of “street” is a cause, for the presence of ‘eyes,” presence

of “head” is a cause, and for the presence of “helmet,” presence of “person” is a cause. The number on the image indicates the attention score given by the model to that bounding

box.
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objects captured by these models. It would also be insightful
to validate whether the assumptions hold for the application of
interest.

Second, it is important to isolate the effect of causal
representation learning: as section 5.2 shows, when doing a
like-for-like comparison, in which the baseline is reproduced
under the same circumstances, it is important to avoid
confusing the effect of training circumstances with those
of the added loss. Moreover, it is crucial to ablate every
component to verify to what extent it is responsible for the
improvement of the whole. Specifically for out-of-distribution
applications, it would be interesting to discover which spurious
correlations change between the distributions of interest,
and whether those have been correctly captured by the
model.

Finally, a key element in leveraging causality with
automatically discovered causal structure is assessing to
what extent the discovered structure is accurate. Our
investigation using human-proxy-for-ground-truth shows
mixed results in this regard, with the models that perform
better on downstream visio-linguistic tasks scoring worse
than random in a cause-ranking task. First testing models
on domains for which the causal structure is known, for
instance, as done by Lopez-Paz et al. (2017) can help to
build confidence in the fact that causal operations such
as deconfounding are realized using the correct causal
model.

For future work, creating more extensive causally annotated
datasets can enable progress in causal discovery. Additionally,
it can be interesting to explore causal models that are more
fine-grained than object co-occurrence, as spurious correlations
are present at the level of objects as well as the level of
object attributes. For example, taking attributes as causal
variables, or making use of temporal data such as videos. More
fine-grained variables can also be expected to be useful for
novel distributions with unseen objects: if the unseen objects
consist of known “parts,” their causal properties could still
be predicted.
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