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Detection and identification of misinformation and fake news is a complex problem

that intersects several disciplines, ranging from sociology to computer science and

mathematics. In this work, we focus on social media analyzing characteristics that

are independent of the text language (language-independent) and social context

(location-independent) and common to most social media, not only Twitter as mostly

analyzed in the literature. Specifically, we analyze temporal and structural characteristics

of information flow in the social networks and we evaluate the importance and effect of

two different types of features in the detection process of fake rumors. Specifically, we

extract epidemiological features exploiting epidemiological models for spreading false

rumors; furthermore, we extract graph-based features from the graph structure of the

information cascade of the social graph. Using these features, we evaluate them for

fake rumor detection with 3 configurations: (i) using only epidemiological features, (ii)

using only graph-based features, and (iii) using the combination of epidemiological and

graph-based features. Evaluation is performed with a Gradient Boosting classifier on two

benchmark fake rumor detection datasets. Our results demonstrate that epidemiological

models fit rumor propagation well, while graph-based features lead to more effective

classification of rumors; the combination of epidemiological and graph-based features

leads to improved performance.

Keywords: misinformation, rumor propagation, rumor classification, epidemiological models, graph-based

detection

INTRODUCTION

Information diffusion describes the way in which information is disseminated through a network
(Rogers et al., 2014). Although the original meaning of the process encompasses interpersonal
communication channels (Katz and Lazarsfeld, 2017), given the increasing popularity of social
media in the last two decades, information diffusion, and especially rumor propagation nowadays,
tends to be linked with the dissemination of information over specific digital social networking
platforms, such as Twitter. The Diffusion of Innovations (DOI) theory (Rogers et al., 2014)
states that information diffusion is not solely determined by attributes of the statement or the
novelty introduced, but it is also integrally related to the communication channel properties,
i.e. the individuals involved or other network characteristics. Considering the accelerated pace
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of information diffusion in the digital age, it becomes readily
apparent that rumor propagation and fake news dissemination
is developing into a critically complex issue, with many and
convoluted parameters.

Three techniques have been mostly employed in tackling
this issue: structural analysis, temporal analysis, and content-
based techniques. Structural analysis refers to the analysis
of information cascades and the communication channel
properties, whereas temporal analysis takes into account the
transitional characteristics of information diffusion and aims
to arrive at conclusions by evaluating the diffusion activity
based on time. Content analysis is the most commonly used
technique; by capitalizing onNatural Language Processing (NLP)
advances in the last decade, it manages to offer contextual
characteristics to the information diffusion problem. An essential
aspect of these techniques is their ability to generalize for
claims, i.e. whether the extracted results are appropriate to
make a generalized claim. Content analysis provides some clear
comparative advantages over the other two techniques, but it
is location-specific and dependent on the ad hoc regional and
social context (Siwakoti et al., 2021); thus, it does not generalize
easily for several social media in various countries. On the
other hand, a structural or temporal analysis of information
diffusion offers universal results, which are location-independent
and language-independent.

Significant research effort has been spent studying and
modeling information diffusion on social media (Jin et al., 2013,
2014; Cannarella and Spechler, 2014; Goel et al., 2016). Fake news
propagation and classification have received significant attention
in the past few years and have been analyzed with a variety of
techniques that include propagation-based, content-based and
social context-based characteristics. However, existing work takes
into account content information, which makes the analyses
dependent on the language and the social context of users. This is
also due to the scarcity of relevant datasets, which leads to results
based on the few available datasets, mainly Twitter (Ma et al.,
2017). In contrast, our work focuses on analysis that does not
consider language and social context characteristics, enabling a
location and language independent fake rumor detection.

In this paper, we focus on the problem of rumor modeling
and extraction. Considering that most literature adopts the term
“fake news,” in our work, we adopt the term “rumor” because
we differentiate rumors from fake news as follows: we consider
that rumors are doubtful statements that cannot be easily verified,
while fake news is intentionally fabricated information presented
as true. The difference, although subtle, distinguishes the data
samples on which our methodology applies, from the generic
ones that appear in the literature as samples of misinformation
data, in general.

In our work, we perform temporal analysis through
epidemiological models over the information diffusion on
Twitter and we extract specific temporal features; the choice of
Twitter is due to the availability of suitable datasets. Additionally,
we analyze the graph structure of the information cascade of
the communication channel and we extract graph-based features.
Having extracted the features using these two techniques, we
proceed to evaluate them in three classification schemes: (i)

using only epidemiological features, (ii) using only graph-based
features, and (iii) using a combination of epidemiological and
graph-based features. More specifically, the contributions of our
work are the following:

1. We show that epidemiological models fit rumor propagation
data, especially model SEIZ, and we evaluate their
performance on fake rumor classification tasks on
Twitter datasets.

2. We construct a graph model of the information diffusion and
we extract graph-based features of the propagation.

3. We perform binary and multi-class classification using
the graph-based features and a combination of graph and
epidemiological features, achieving higher performance.

4. We present a location-independent and language
independent fake rumor detection method.

The paper is organized as follows. Section RelatedWork presents
prior work. In section A Location-Independent and Language-
Independent Approach, we present the epidemiological models
and the graph modeling method as well as the employed
classification schemes; for the epidemiological models we
describe how they are employed in fitting the rumor propagation
data and for the graph models how feature extraction is
accomplished. Section Experiments and Evaluation presents
our evaluation datasets and the results of rumor classification
performance using epidemiological features, graph-based
features and the combination of both. Section Conclusions
presents our conclusions and directions for future work.

RELATED WORK

Epidemiological models have been used extensively to model
information diffusion in complex networks. Such models classify
the human population into different compartments and define
different transitions between them to simulate the spread of
information. The SI (Susceptible-Infected) model was originally
proposed in 2001 (Pastor-Satorras and Vespignani, 2021)
indicating that epidemiological models can help to describe the
propagation of information on scale-free networks. Later another
variant, the SIS (Susceptible-Infected-Susceptible) model was
introduced (Newman, 2003) and used multiple times (Gross
et al., 2006; Jin et al., 2013, 2014); the model allows infected
users to return to the Susceptible compartment. Other more
complex models have been proposed and used, such as the
SEIR (Susceptible-Exposed-Infected-Removed) model (Wang
et al., 2014), the S-SEIR model (Xu et al., 2013), where
the spread of information is dependent on its value to the
user, and the SCIR model (Xuejun, 2015) where a Contacted
compartment is added, modeling how followers of a certain
user react after he posts an online message. Another approach
(Cannarella and Spechler, 2014) considers a modification of
the SIR model where the adoption of an idea is considered an
infection and its abandonment is considered a recovery. A more
widely used model is the SEIZ (Susceptible-Exposed-Infected-
Skeptics) model (Bettencourt et al., 2006); this model can fit
long term ideas adoption. Recently, the SEIZ was employed
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to model the spread of fake and real news on Twitter (Jin
et al., 2013, 2014). The authors proposed a simple method
to classify news as either true or fake using the results of
the SEIZ fitting; while the model performs well, the authors
have used only a small amount of viral news stories to test
their hypothesis.

Another promising and popular research direction related to
the propagation of rumors and fake news is the exploitation
of the diffusion graphs. Typically, graphs are constructed,
representing information diffusion paths, and then features are
extracted, which are used either to interpret the propagation, or
to perform classification based on a scheme. In the following
sections, we discuss how graphs and graph characteristics are
employed to address the information diffusion problem. There
have been several approaches aiming to provide a qualitative
context in the way that information is disseminated. By studying
the diffusion patterns in a social network along with the
significance of individual nodes (users), one may recognize
specific individuals as critically important to the information
diffusion (Valente, 1996). Such users, who may be characterized
as “opinion leaders,” tend to be the connection between mass
media and people in the community (Katz and Lazarsfeld,
2017). Furthermore, they are more important than average
individuals in the diffusion of information (Watts and Dodds,
2007) and have been linked with the size and the structural
virality of the diffusion (Goel et al., 2016; Meng et al., 2018).
Along the same lines of research, efforts have also been directed
to understand the clustering patterns of news propagation
(González-Bailón and Wang, 2013). Analysis of such clusters
has yielded a deeper comprehension of the importance of
“brokers,” or users that connect otherwise separated clusters.
Such qualitative interpretations of the information diffusion
graph structure (nodes and edges) are crucial to understand how
diffusion efficiency is related to the network users (Valente and
Fujimoto, 2010). Other research efforts, usually directed toward
detection or classification schemes, focus more on extracting
structural graph features relevant to diffusion. While there are
attempts that concentrate on graph characteristics, such as the
size of the cascade (graph), the root outgoing degrees, the
followers count, or the geo-coordinates (Taxidou and Fischer,
2014), most directions employ a combination of temporal, graph,
and/or content analysis (Abulaish et al., 2019; Lu and Li, 2020;
Wu et al., 2020; Lotfi et al., 2021). Although most research on
information diffusion and rumor propagation contains text and
content analysis, such features are location-specific and do not
generalize universally (Siwakoti et al., 2021). Based on this, in our
work, we employ a framework that consists of a temporal aspect
in the form of an epidemiological model, and a graph-based
structure in the form of the information cascade of each rumor.

Baseline rumor detection approaches are categorized based on
their different feature engineering methods. The categories are
(i) user characteristics, (ii) social context and content, and (iii)
propagation structure characteristics. Handcrafted features based
on user characteristics include such features as the number of
followers, number of posts, and relevant information referring to
the user of the social media platform (Kwon et al., 2013; Liu et al.,
2015). Feature engineering employing social context, content,

and linguistic attributes has been proven to yield important
results. Such features include word sequences, phrase inquiries,
and the relation of specific language with sentiment (Castillo
et al., 2011; Yang et al., 2012; Kwon et al., 2013, 2017; Ma et al.,
2015, 2016, 2018; Zhao et al., 2015; Liu and Wu, 2018; Yuan
et al., 2020; Choi et al., 2021). Features based on the structural
characteristics of the propagation have also been an integral part
several rumor detection approaches (Ma et al., 2017, 2018; Liu
and Wu, 2018). These graph-based features include information
referring to the diffusion of a rumor in a social media network.

Several existing methods have explicitly proposed feature
engineering, in order to improve the achieved accuracy
(Castillo et al., 2011; Yang et al., 2012; Kwon et al., 2013,
2017; Liu and Wu, 2018; Ma et al., 2018). Below, we
elaborate further on rumor detection approaches that include
feature engineering and we discuss the baseline approaches of
the field.

A decision tree classification (DTC) approach using word
frequency, message, user, topic, and propagation characteristics
to extract features has shown that such combinations allow
for promising results (Castillo et al., 2011). Another content-
oriented approach includes inquiring for specific phrases in the
message (Zhao et al., 2015). The combination of content and
user characteristics employing an RBF kernel Support Vector
Machine (SVM-RBF) for classification (Yang et al., 2012) has
demonstrated that the combination of such features is valid and
achieves good results, while Support Vector Machine algorithms
have also been used to classify features combining the temporal
evolution of the content, along with the relevant social context
and the underlying linguistically expressed sentiment with great
success (Ma et al., 2015). A content-based approach using
language pattern features from user comments and employing a
Recurrent Neural Network (RNN) has also delivered important
results (Ma et al., 2016), while others have attempted to combine
the structure and content, in the form of semantic analysis,
to perform the classification tasks (Ma et al., 2018). Along
the same lines, content semantics and structural characteristics
are the basis for feature engineering for similar attempts (Liu
and Wu, 2018). More propagation-based heavy approaches have
examined the temporal evolution of the propagation tree and
classification takes place using an SVM classifier (Ma et al.,
2017). A more holistic approach combines user characteristics,
linguistic, and network features in a Random Forest classification
scheme (Kwon et al., 2017).

A LOCATION-INDEPENDENT AND
LANGUAGE-INDEPENDENT APPROACH

In this section, we present the specific epidemiological models
employed to model rumor propagation in online social media.
We define and describe the function of the fitting parameters
of these models, and we present the governing formulae for
each model. Furthermore, we elaborate on feature engineering,
regarding the graph modeling component of our approach, and
we present the method that combines the two modeling practices
in a rumor classification scheme.
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Epidemiological Models
We use epidemiological models to model the diffusion of rumors
and detect whether they are false or not, focusing on the SI
and SEIZ models. The SI model is employed for its adaptability
to scale-free networks (Pastor-Satorras and Vespignani, 2021),
which allows its extension to rumor propagation problems, while
the SEIZ model has already been proven to model fake news
diffusion effectively (Jin et al., 2013, 2014). Below, we present the
model definitions and how they can specifically be used to model
rumor diffusion on social networks.

SI Model
The SI model classifies the total population of users (N)
in two groups, namely the Susceptible (S) and Infected (I)
compartments. A user is considered Infected if she/he has
retweeted the original rumor tweet and Susceptible if she/he has
not retweeted. Thus, a user stays indefinitely in the Infected state
and cannot move back to the Susceptible state. This means that,
in the beginning of the spread, the majority of users are in the
Susceptible state and, after a sufficient time period, all users will
end up in the Infected state. The rate of contact (state change)
between the susceptible and infected populations per given unit
of time dt is β.

The SI model is described formally by the following ordinary
differential equations system:

dS

dt
= −βSI (1)

dI

dt
= βSI (2)

where N(t) = S(t) + I(t)

SEIZ Model
The SEIZ model, as adopted by Jin et al. (2013), is composed
of four different compartments, Susceptible (S), Exposed (E),
Infected (I) and Skeptics (Z) and is shown in Figure 1. The
Susceptible state represents users who have not seen the original
tweet, while the Exposed state represents the users who have seen
the original rumor tweet but take some time before retweeting
the original tweet. Infected are considered the users who have
retweeted the rumor and Skeptics denote the users who have seen
the tweet but have chosen not to retweet it. A Susceptible user
can transfer to the Skeptics state with a rate b and probability l
or to the Exposed state with probability (1–l). At the same time, a
Susceptible user can immediately believe the rumor and move to
the Infected state with probability p or to the Exposed state with
probability (1–p). Finally, an Exposed user can transfer to the
Infected state in 2 different ways: (i) by coming in further contact
with an Infected user, with contact rate ρ, or (ii) by adopting the
rumor independently with rate ε.

The SEIZ model is defined by a set of different parameters (Jin
et al., 2013), as depicted in Figure 1. The contact rates between
the different user states quantify how often a user gets in contact
with a user of another state (β, b, e for the S-I, S-Z, E-I transitions,
respectively). These rates multiplied with the probability of a user

changing state when in contact with another user (l, 1-l, p and 1-
p for the S-Z, S-E, S-I and S-E transitions, respectively) give the
effective rate of users changing states [bl, βρ, b(1-l), β(1-p) for the
S-Z, S-I, S-E via Z, S-E via I transitions, respectively]; this effective
rate is the rate at which users change states. Finally, an incubation
rate (ε for the E-I transition) defines how often a user changes
state without getting in contact with any other user.

The SEIZ model is represented by the following ordinary
differential equations system (Jin et al., 2013):

dS

dt
= −βS

I

N
− bS

Z

N
(3)

dE

dt
=

(

1− p
)

β S
I

N
+

(

1− l
)

bS
Z

N
− ρE

I

N
− ǫE (4)

dI

dt
= pβS

I

N
+ ρE

I

N
+ ǫE (5)

dZ

dt
= lbS

Z

N
(6)

Fitting—Parameter Identification
For each rumor we quantify the different model parameters, in
order to use them as features to classify the rumors. To achieve
this, we calculate the optimal values for each given model as well
as the optimal initial populations of the compartments and the
total population (N) for each rumor. For both the SI and the SEIZ
models we perform a least squares fitting on the Twitter data.
As described earlier, we consider everyone who has retweeted or
replied to an original tweet as Infected (I).

To fit the epidemiological models on the datasets we first
pre-process the raw data to construct sequences that give
the cumulative volume of retweets per given time unit (time
interval). In our approach we use 1min time intervals. We also
observe that most of the retweets happen early on in the diffusion
tree and thus we restrict the fittings of the models only to the
first 240 h (or 10 days) of diffusion. More specifically, we perform
several fittings using a limit of 48, 72, 120 and 240 h. Finally we fit
the models using a time limit of just 4 h to evaluate if the models
are able to fit the early diffusion of rumors. Figure 2 presents
an example of the abovementioned fitting for both the SI and
SEIZ models.

For each fitting we measure the root mean square error
(RMSE) between the fitted and the observed cumulative retweets
time sequences. We then average the RMSE for each dataset to
evaluate and compare the total fitting processes for every dataset
and time limit.

Graph Models
Graph modeling constitutes our second approach; we describe
the extraction of graph-based features. Considering that we
use Twitter datasets for the evaluation of our methods, the
description takes into account the features of the specific datasets,
although the method can be applied to graphs that are extracted
from datasets originating from alternative social platforms as
well. In the case of the Twitter datasets, it is important to note that
the datasets are labeled. Each rumor cascade is labeled as True,
False, Unverified, or Non-Rumor.
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FIGURE 1 | The SEIZ model.

FIGURE 2 | SI and SEIZ fitting examples for the first 72 h of diffusion of a particular rumor.
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Graph Modeling
Considering the dataset characteristics, the directed graph
structure is composed of nodes that represent the Twitter
users involved in the cascade, and edges that represent the
retweeting action performed by the destination user on the
message appearing on the source user’s timeline. The edges’
weights are equal to the absolute time of diffusion. The root user
is considered to send the message at time t = 0.

For the graph modeling of every cascade in the datasets, we
note that the graph edge weights, which represent the time of
the retweet, are absolute in value. In case of a negative weight
appearing in the data (due to dataset inconsistencies), we re-
calibrate the whole cascade by adding an offset value to all
diffusion times, following Eq. 7. Furthermore, we consider that
diffusion takes place only when a user has retweeted the message.
Thus, each destination user appears only once, since a user can
retweet a message at most once. We also note that, since we
only consider the retweeting action as the edge connection of
the graph, a source user cannot be a destination user (retweeting
is only one-way). Following these considerations, the resulting
rumor propagation graph is acyclic.

offset =
∣

∣(diffusion_time)min

∣

∣ ,where (diffusion_time)min < 0(7)

In Figure 3, we present the graphical representation of a false
story cascade from Twitter16, which demonstrates the above
characteristics. In this example, the root is clearly the user node
with the most outgoing edges.

Feature Extraction
Given the constructed graph, we extract the relevant features. For
each cascade, the graph-based feature set contains the following:

• Average degree: The average number of outgoing edges for
every user.

• Root degree: The total outgoing edges of the root user.
• Structural virality: A graph theoretic metric for measuring

the structural diversity of information diffusion. Describes
the manner of diffusion; single broadcast or through several
cascading individual nodes.

• Closeness centrality: A measure of the nodes’ capability to
spread information efficiently through the graph. It measures
the inverse distance of a node to all other nodes.

• Number of users: The number of unique Twitter users
involved in a cascade.

• Max hops: The maximum number of hops (node to node via
edge) possible in a cascade.

• Nodes of levels 0 and 1: The number of users at one and two
degrees of separation from the root user respectively.

• Baseline average diffusion time for levels 0 and 1: The average
diffusion time for users at one and two degrees of separation
away from the root user respectively (average calculated by
sum of edge weights divided by population involved on level).

• Average diffusion time (averaged over all cascade users)
for levels 0 and 1: The average diffusion time for users
at one and two degrees of separation away from the root

user respectively (average calculated by sum of edge weights
divided by population involved in whole cascade).

The last two features are both closely related to the levels of
the diffusion. We note that for these features, the calculations
are performed with no upper time threshold. However, we also
calculate both of them using an upper time threshold, so as to
simulate early detection and be relevant to the epidemiological
model results. The calculations involve upper limits of 4, 24, 48,
and 72 h.

We use the collected features for the calculation of the average
diffusion times per level of diffusion for each type of cascade
(True, False, Unverified, Non-Rumor). We calculate the average
diffusion time per level as follows:

avg =

∑

diffusion_time_of _users ∈ leveli

number_of _users ∈ leveli
· (8)

number_of _leveli_instances

total_number_of _cascades_of _same_label

where the number of level instances refers to the number
of cascades that have max hops greater or equal than the
specific level.

Graph and Epidemiological Models
Combination
After identifying the appropriate epidemiological models and
extracting the relevant features, we perform tests to find
a potential correlation between the epidemiological and the
graph-based features. It has not been feasible to identify such
correlation. Thus, we merge the two feature sets, in order
to arrive at higher classification accuracy. The motivation
to merge the two feature sets originates from the fact that
the epidemiological features represent temporal characteristics
of the rumor diffusion, whereas the graph-based features
represent structural characteristics of the diffusion cascade of
each rumor. So, combining them, enables a holistic approach
to the analysis of the rumor diffusion process in space
and time.

Classification
We test our models for rumor detection and classification.
First, we use the fitted epidemiological model parameters, to
classify the rumors using the labels provided in the dataset. We
consider two distinct classification tasks. One where we perform
a multi-class classification predicting one of the four labels: True
rumor, False rumor, Unverified rumor and Non-rumor. We then
perform a binary classification, where we only consider the True
and False rumors. To train our classifiers we use a Gradient
Boosting Trees algorithm using the fitted model parameters as
features and performing a very light hyper parameter tuning.
Regarding both the graph-based features and the combined
feature set containing graph and epidemiological features, we
again employ Gradient Boosting Trees, because both graph and
epidemiological features are easily tabulated and the algorithm
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FIGURE 3 | Graph of false story cascade from the Twitter16 dataset.

works well for numerical and categorical values, as in our case.
The Gradient Boosting Trees algorithm allows for the sequential
connection of individual decision trees and requires very little
data pre-processing; thus, it fits very well the particular data of
the rumor diffusion problem.

We split the dataset 75/25 as a training and test
set; this is typical in the prior work that uses these
datasets. To evaluate the performance of the classifiers,
we measure their accuracy, precision and recall on both
classification tasks.

Next, we test whether the SEIZ model can detect false rumors
by using a single ratio RSI of the fitted parameters as suggested by
Jin et al. (2013). Their work suggests that larger ratios correspond
to real news propagation, while smaller values to fake news
spreading. The RSI value is a combination of the SEIZ fitted
parameters for each rumor and we derive it in Eq. 9, where p,
β, l, b, ρ and ε are the SEIZ fitted parameters:

RSI =

(

1 − p
)

β +
(

1 − l
)

b

ρ + ǫ
(9)

In Figure 4, we present the RSI values of different rumors; we
denote the True rumors with blue color and the Fake ones
with red.

One can easily observe that it is difficult to find a specific
threshold value of RSI that would adequately classify the rumors.
Based on the results we consider a more complex detection
technique where we use a K-nearest neighbors algorithm,
classifying a rumor based on its “closest neighbors.” We test two
different values for the number of neighbors we consider for each
rumor, five and 20 neighbors.

EXPERIMENTS AND EVALUATION

In this section we present our experiments, including the
necessary pre-processing, and our evaluation results. We
present the results of rumor modeling and classification using
epidemiological features, graph-based features as well as using
their combination. Finally, we compare our method with other
similar existing approaches to misinformation diffusion.
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FIGURE 4 | RSI values of different rumors. Red = False rumors, Blue = True rumors.

Dataset and Data Pre-Processing
We work with two well-known publicly available datasets,
Twitter15 and Twitter16 (Ma et al., 2017). The datasets
describe the diffusion trees of various rumors on Twitter. More
specifically, they provide temporal information about every
retweet of an original tweet containing a specific rumor posted
by a single root user at t = 0.

An important limitation we should consider is that every
rumor included in the datasets has a single root, meaning that
we only have information about how the rumor propagated
after a single user shared it on Twitter. In reality we would
expect that rumors would have multiple users sharing them
independently thus creating multiple independent parallel
propagation trees.

We use the above mentioned Twitter15 and Twitter16, since,
although other Twitter datasets may be publicly available, most
of them do not publish the actual propagation information
and instead provide tweets and users unique identifiers (IDs)
that can be used to reconstruct the actual propagation
tree using the Twitter API. This makes it very difficult to
reproduce the original propagation sequences as significant

numbers of users delete their own tweets and some even
their accounts.

The datasets consist of 1,490 and 818 rumor propagation
trees, respectively. The rumors themselves are labeled as True
rumors, False rumors, Unverified rumors or Non-rumor events
(Ma et al., 2017). True, False and Unverified labels refer to tweets
containing unsubstantiated claims that could not be verified at
the time of posting. Tweets that eventually get verified are labeled
as True, tweets proved to contain fake claims are labeled as
False, while tweets that contain information that can be neither
confirmed nor disproved are labeled as Unverified. Finally, tweets
that contain legitimate, fact-based information are considered
Non-rumors.Table 1 summarizes key statistics of the dataset (Ma
et al., 2017).

We also perform some minimal data cleaning because we
identified some minor inconsistencies in the dataset. Specifically,
we noticed that some propagation trees contained negative
timestamps and did not uniformly designate the root user who
first tweeted the rumor. To correct these inconsistencies, we
padded all timestamps in the affected propagation trees to make
them positive and rearranged the trees so that root users appear
in all rumors consistently.

Frontiers in Artificial Intelligence | www.frontiersin.org 8 April 2022 | Volume 5 | Article 734347



Serpanos et al. Detection of Fake Rumors

TABLE 1 | Statistics of Twitter15 and Twitter16 datasets (Ma et al., 2017).

Statistic Twitter15 Twitter16

Number of users 276,663 173,487

Number of tweets 1,490 818

Average time length/tree 1,337 h 848 h

Average posts/tree 223 251

Max posts/tree 1,768 2,765

Minimum posts / tree 55 81

TABLE 2 | Twitter15 and Twitter16 fitting error (RMSE).

Twitter15 Twitter16

SI SEIZ SI SEIZ

240 h 19.55 21.592 21.38 25.578

120 h 24.69 24.41 26.08 29.661

72 h 29.29 26.83 30.98 28.075

48 h 32.88 24.126 34.86 29.232

4 h 35.24 6.855 34.66 6.205

Epidemiological Model Results
Table 2 presents the average Root Mean Square Error (RMSE)
for the different time limits for Twitter15 and Twitter16 datasets
(lower values denote better fitting).We observe that the SI model,
despite its simplicity, fits the data very well, while it marginally
outperforms the more complex SEIZ model on the 240 h time
limit experiment. Despite that, the SEIZ model performs better
on all other experimental setups, especially on the early detection
tasks where the diffusion is more rapid.

Table 3 presents the multiclass classification results for both
models, where rumors are classified as True, False, Unverified
or Non-Rumor in both Twitter15 and Twitter16 datasets.
Table 4 presents the binary classification results, where rumors
are classified as either True or False. The baseline accuracy
for the multiclass classification is approximately 0.25 as 4
different classes are present and approximately 0.5 for the binary
classification task as the dataset is almost perfectly balanced.
The results indicate that both models perform almost the
same at classifying the rumors. At the same time, the different
time limits have low impact on performance. Interestingly, all
models perform better on the Twitter16 dataset, indicating that
Twitter16 is an easier dataset for our classifiers.

Table 5 presents binary classification results (True or False),
using a nearest neighbor algorithm and considering the 5 and
20 nearest neighbors. For this classification, we use the fitted
SEIZ parameters, combining them in a single RSI value for every
rumor. Despite the simplicity of the technique, we get very similar
results as we get from using the more complex Gradient Boosting
algorithm. Thus, we confirm that the RSI values can be used (to
a certain extent) to detect fake rumors as suggested by Jin et al.
(2013). However, no single threshold value that splits the data
efficiently was identified in our experiments.

Although epidemiological models yield reasonable results,
all models fail to adequately classify the rumors, especially
in the Twitter15 dataset. The limitations are mainly two:

(i) epidemiological models fail to account for the structural
components of the diffusion tree and (ii) machine learning
models are trained on fitted parameters -instead of the real data-
and the models ultimately produce underperforming detection
results despite the robust fitting.

Graph Model Results
Graph-based modeling is exploited to capture the structural
components of the diffusion mechanism, in order to
overcome the limitations of the epidemiological models in
rumor classification.

Figures 5, 6 show the average diffusion time per level
(Eq. 9) for the Twitter15 and Twitter16 datasets, respectively.
The calculation of the average diffusion time incorporates
information about the population of users of each cascade in
the form of maximum hops from the root user. We identify one
similarity among the two datasets: the cascades of False label
propagate at a much slower rate than the cascades of any other
label (True, Non-Rumor, Unverified) in the two initial levels
of diffusion. We exploit this observation to establish an early
detection mechanism.

Using the graph-based features, we perform binary and 4-
class classification. For these two classification schemes, we
employ a Gradient Boosting algorithm (as described in section
classification) and we present the results for the binary and 4-
class classifications in Tables 6, 7, respectively. The feature set
regarding the graph-based features is denoted as “Graph + <X
Hours ADT,” where X denotes the upper time threshold for the
Average Diffusion Time calculation for the particular feature
set. By producing results based on an upper time threshold for
the Average Diffusion Time, we can evaluate whether graph-
based features may be used efficiently for early misinformation
detection. Regarding the Twitter15 dataset, we observe that
for both binary and 4-class classifications, the best accuracy
is achieved in the under-24-h time threshold (60.22% and
40.48%, respectively). However, for the Twitter16 dataset, the
best accuracy is achieved using the full extent time for the binary
classification (82.52%) and the under-48-h time threshold for the
4-class classification (60%). The Twitter15 dataset is much larger
and contains more users and tweets than Twitter16, which seems
to be an easier dataset for our classifiers. Given the observed
discrepancy in the results between the two datasets, we cannot
safely conclude on whether using solely graph-based features is
sufficient for an early detection mechanism.

Combining Graph and Epidemiological
Models
Since no correlation was found between the epidemiological
and the graph-based features (as described in section Graph
and Epidemiological Models Combination), we merge the two
feature sets and we present the classification results for this
combined feature set. The merging the two feature sets enables
us to capture both temporal (epidemiological) and structural
(graph) components of the rumor diffusion process. We employ
a Gradient Boosting algorithm and we present the results for the
binary and 4-class classification in Tables 6, 7, respectively. In
both tables, we provide the results for the graph-based feature
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TABLE 3 | Twitter15 and Twitter16 SI and SEIZ 4 class classification results.

Twitter15 Twitter16

Accuracy F1 score Precision Recall Accuracy F1 score Precision Recall

SI

240 h 38.98 37.80 37.56 38.98 46.83 45.68 45.90 46.83

120 h 42.47 42.05 41.86 42.47 49.76 49.47 49.91 49.76

72 h 41.13 40.12 39.78 41.13 48.29 47.38 47.83 48.29

48 h 37.90 36.63 36.41 37.90 42.44 42.33 42.35 42.44

4 h 33.24 32.33 32.03 33.24 38.73 38.90 39.49 38.73

SEIZ

240 h 39.52 38.31 38.15 39.52 46.34 45.49 46.25 46.34

120 h 37.10 36.67 36.50 37.10 47.80 47.98 49.49 47.80

72 h 36.56 35.64 35.51 36.56 45.37 45.61 46.16 45.37

48 h 37.90 36.98 36.85 37.90 40.49 40.26 40.47 40.49

4 h 36.76 35.62 35.46 36.76 36.76 36.61 36.84 36.76

The best performing experimental setups are provided in bold.

TABLE 4 | Twitter15 and Twitter16 SI and SEIZ binary classification results.

Twitter15 Twitter16

Accuracy F1 Precision Recall Accuracy F1 score Precision Recall

SI

240 h 54.59 54.57 54.49 54.59 63.11 63.07 63.21 63.11

120 h 50.27 50.25 50.28 50.27 64.08 64.07 64.08 64.08

72 h 52.43 52.43 52.43 52.43 66.02 66.00 66.09 66.02

48 h 54.59 54.57 54.59 54.59 66.02 66.02 66.03 66.02

4 h 50.00 49.98 50.14 50.00 67.96 67.69 68.47 67.96

SEIZ

240 h 51.89 51.86 51.91 51.89 60.19 60.15 60.21 60.19

120 h 49.19 49.11 49.21 49.19 63.11 63.09 63.11 63.11

72 h 52.43 52.42 52.45 52.43 65.05 65.01 65.17 65.05

48 h 54.59 54.45 54.62 54.89 68.93 68.91 68.95 68.93

4 h 54.89 54.88 55.03 54.89 66.02 65.98 66.05 66.02

The best performing experimental setups are provided in bold.

TABLE 5 | RSI classification results for Twitter15 and Twitter16 datasets.

5 Nearest Neighbors 20 Nearest Neighbors

Accuracy F1 score Precision Recall Accuracy F1 score Precision Recall

RSI for Twitter15

240 hours 51.35 51.01 51.44 51.35 54.05 53.91 54.14 54.05

120 hours 48.62 48.62 48.62 48.62 49.19 49.11 49.21 49.19

72 hours 49.24 49.24 49.24 49.24 52.97 52.92 53.01 52.97

48 hours 48.61 48.61 48.61 48.61 49.73 49.62 49.75 49.73

4 hours 50.57 50.57 50.57 50.57 50.00 48.36 50.73 50.00

RSI for Twitter16

240 hours 64.08 64.08 64.09 64.08 58.25 57.16 59.40 58.25

120 hours 52.43 52.43 52.50 52.43 55.34 54.31 56.05 55.34

72 hours 54.37 54.32 54.36 54.37 54.37 54.06 54.59 54.37

48 hours 61.17 61.05 61.36 61.17 63.11 62.64 63.94 63.11

4 hours 51.46 51.43 51.44 51.46 50.49 48.64 50.36 50.49

The best performing experimental setups are provided in bold.
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FIGURE 5 | Weighted average diffusion time per diffusion level—Twitter15.

set as well as for the merged graph and SEIZ feature set, in
order to enable a clear comparison. Following the same notation
as before, we present the merged feature set, which is denoted
as “Graph + <X Hours ADT + SEIZ,” where SEIZ refers to
the epidemiological feature set and X denotes the upper time
threshold for the Average Diffusion Time.

Clearly, in both binary and 4-class classification, the
results are better in absolute values when we employ the
merged feature set, in contrast to the epidemiological or
the graph based ones independently. Furthermore, the best
accuracy is achieved at a lower time threshold when employing
the merged features. Given these two results, we conclude
that the combination of the epidemiological (temporal)
and the graph (spatial) features enable higher accuracy
for early detection as well as higher detection accuracy in
absolute value.

Comparison With Existing Methods
Table 8 presents the comparison of our solution
with alternative state-of-the-art approaches to the

misinformation diffusion problem for to the 4-class
classification results.

It is important to note that, our approach is the only approach
that is location-independent and language-independent, since it
is based on spreading (epidemiological) and network (graph)
characteristics and does not take into account any characteristics
of the content. In contrast, all existing methods consider content
characteristics to some extent. Thus, the effectiveness of our
approach cannot be directly compared with the results in
the literature; the comparison with existing results is biased
due to the consideration of content characteristics by all the
methods we compare to. All the baseline approaches from
the literature which are included in Table 8 combine content,

user characteristics, and/or propagation-based features; this

enables alternative solutions for higher accuracy results than

our approach.
The experimental results of the baseline models that appear

in Table 8 are drawn from the literature (Yuan, 2019; Ke et al.,
2020). As Table 8 shows, our approach achieves results that
rank it in the top 7 approaches for Twitter15 and the top 5 for
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FIGURE 6 | Weighted average diffusion time per diffusion level—Twitter16.

TABLE 6 | Twitter15 and 16 Graph-based and combined feature sets—binary classification results with labels = {true, false}.

Graph-based feature set binary classification

Twitter15 Twitter16

Feature Set Accuracy F1 Precision Recall Accuracy F1 Precision Recall

Graph + <4 h ADT 58.60 59.69 58.16 61.29 75.73 76.19 72.73 80.00

Graph + <24 h ADT 60.22 59.34 60.67 58.06 77.67 77.67 75.47 80.00

Graph + <48 h ADT 57.53 56.83 57.78 55.91 75.73 77.06 71.19 84.00

Graph + <72 h ADT 60.22 61.46 59.60 63.44 77.50 78.50 73.68 84.00

Graph + Total ADT 57.53 58.64 57.14 60.22 82.52 82.69 79.63 86.00

Graph + SEIZ feature set binary classification

Graph + <4 h ADT + SEIZ 62.24 56.98 59.76 54.44 73.79 74.29 70.91 78.00

Graph + <48 h ADT + SEIZ 63.13 61.38 58.00 65.17 75.73 76.64 71.93 82.00

Graph + <72 h ADT + SEIZ 58.08 56.08 53.00 59.55 77.67 78.10 74.55 82.00

The best performing experimental setups are provided in bold.

Twitter16, in regard to accuracy, relatively to the 10 alternatives
included in Table 8.

Importantly, another common characteristic of existing
approaches is the employment of user characteristics extracted
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TABLE 7 | Twitter15 and 16 Graph-based and combined feature sets −4-class classification results.

Graph-based feature set 4-class classification

Twitter15 Twitter16

Feature Set Accuracy F1 Precision Recall Accuracy F1 Precision Recall

Graph + <4 h ADT 37.27 37.66 38.54 37.27 51.71 51.80 52.60 51.71

Graph + <24 h ADT 40.48 40.19 40.19 40.48 56.10 56.01 57.34 56.10

Graph + <48 h ADT 39.68 39.20 38.95 39.68 60.00 59.42 59.95 60.00

Graph + <72 h ADT 37.53 37.09 36.99 37.53 59.02 58.75 59.10 59.02

Graph + Total ADT 38.34 38.41 39.02 38.34 52.20 51.86 51.75 52.20

Graph + SEIZ feature set 4-class classification

Graph + <4 h ADT + SEIZ 46.54 44.74 44.72 46.54 56.91 55.88 56.00 56.91

Graph + <48 h ADT + SEIZ 39.34 37.47 36.51 39.34 62.35 61.42 61.88 62.35

Graph + <72 h ADT + SEIZ 42.15 40.50 39.93 42.15 52.23 52.48 53.51 52.23

The best performing experimental setups are provided in bold.

TABLE 8 | Baseline models classification results for Twitter15 and Twitter16

datasets.

Accuracy

Twitter15 Twitter16

DTC (Castillo et al., 2011) 45.4 46.5

SVM-RBF (Yang et al.,

2012)

31.8 32.1

SVM-TS (Ma et al., 2015) 54.4 57.4

DTR (Zhao et al., 2015) 40.9 41.4

GRU (Ma et al., 2016) 64.6 63.3

RFC (Kwon et al., 2017) 56.5 58.5

PTK (Ma et al., 2017) 75.0 73.2

RvNN (Ma et al., 2018) 72.3 73.7

PPC (Liu and Wu, 2018) 84.2 86.3

Our approach 46.5 62.4

from the Twitter API, which allows for a plethora of
features. However, such an approach renders the solution
platform-specific. The use of the Twitter API introduces issues,
such as the deletion of accounts and the loss of the associated
features over time. This can be defined as dataset aging,
where the data collected at a given point in time become
gradually irrelevant and/or non-reproducible. In the case of
Twitter15 and Twitter16, several users and tweets are no
longer available on Twitter itself, due to account suspensions
and/or thread deletions. This, in turn, leads to considerable
difficulty in the reproduction of results and to transferability
studies. Clearly, reliance on the particular characteristics of
Twitter users or specific tweets is severely impeded by dataset
aging. Our approach is oblivious to and unaffected by dataset
aging, because it examines only the behavioral aspects of
diffusion in space and time and does not consider any other
external parameters.

CONCLUSIONS

We propose a readily deployable solution for rumor detection
on social media. The proposed framework is based on the
diffusion cascade of an input rumor and does not require
any additional user characteristics. This enables the use of the
framework for any online social media platform, in contrast to
existing literature that focuses only on Twitter. Furthermore,
the framework does not require complex pre-trained language
models or other high complexity content-based solutions and,
thus, is applicable to real life systems, with no architectural
adjustments or additional overhead.

Our method extracts temporal and structural features,
enabling classification based on those features. The temporal-
based features are extracted by fitting an epidemiological
model on the original information diffusion data, and the
structural features are gathered from a graph modeling of
the same propagation data. We used the publicly available
rumor propagation datasets Twitter15 and Twitter16 to evaluate
the method. Experiments for binary (True, False) and 4-class
(True, Non-Rumor, False, and Unverified) classification lead
to the result that graph-based features perform better than
epidemiological ones, while the most accurate classification is
achieved through the combination of both feature sets.

Our method is location-independent and language-
independent, leading to an approach that can be applied without
consideration of the rumor content, in contrast to existing
approaches that take into account rumor content. Our method
is scalable and easily adaptable to existing real life systems with
no modifications or additional overhead. However, it requires
further investigation, due to dataset limitations. For example, our
evaluations are for rumor cascades that begin from individual
users, whereas in real life, multiple users may post the same
rumor independently. Our method can accommodate multiple
user sources, but no real dataset contains such information.
Importantly, our method may provide improved results in that
case, since machine learning techniques provide higher precision
for large datasets.
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The limitations of existing datasets are leading our
future work, which focuses on collection of additional
rumor propagation datasets from different online social
networks and collection of data about rumors spreading
from multiple root users, creating parallel diffusion trees.
These datasets will enable us to evaluate the effectiveness
of epidemiological models further and to evaluate graph-
based features in rumor modeling and detection as well as
overcoming some of the limitations of the Twitter15 and
Twitter16 datasets.
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