
ORIGINAL RESEARCH
published: 08 March 2022

doi: 10.3389/frai.2022.728761

Frontiers in Artificial Intelligence | www.frontiersin.org 1 March 2022 | Volume 5 | Article 728761

Edited by:

Ognjen Arandjelovic,

University of St. Andrews,

United Kingdom

Reviewed by:

Peng Zhang,

Tianjin University, China

Mostafa Haghi Kashani,

Islamic Azad University, ShahreQods,

Iran

*Correspondence:

Furong Huang

furongh@umd.edu

Specialty section:

This article was submitted to

Machine Learning and Artificial

Intelligence,

a section of the journal

Frontiers in Artificial Intelligence

Received: 22 June 2021

Accepted: 24 January 2022

Published: 08 March 2022

Citation:

Su J, Li J, Liu X, Ranadive T, Coley C,

Tuan T-C and Huang F (2022)

Compact Neural Architecture Designs

by Tensor Representations.

Front. Artif. Intell. 5:728761.

doi: 10.3389/frai.2022.728761

Compact Neural Architecture
Designs by Tensor Representations

Jiahao Su 1, Jingling Li 2, Xiaoyu Liu 2, Teresa Ranadive 3, Christopher Coley 4,

Tai-Ching Tuan 3 and Furong Huang 2*

1Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, United States, 2Department

of Computer Science, University of Maryland, College Park, MD, United States, 3 Laboratory for Physical Sciences, University

of Maryland, College Park, MD, United States, 4Department of Aeronautics, United States Air Force Academy, Colorado

Springs, CO, United States

We propose a framework of tensorial neural networks (TNNs) extending existing linear

layers on low-order tensors to multilinear operations on higher-order tensors. TNNs have

three advantages over existing networks: First, TNNs naturally apply to higher-order

data without flattening, which preserves their multi-dimensional structures. Second,

compressing a pre-trained network into a TNN results in a model with similar expressive

power but fewer parameters. Finally, TNNs interpret advanced compact designs of

network architectures, such as bottleneck modules and interleaved group convolutions.

To learn TNNs, we derive their backpropagation rules using a novel suite of generalized

tensor algebra. With backpropagation, we can either learn TNNs from scratch or

pre-trained models using knowledge distillation. Experiments on VGG, ResNet, and

Wide-ResNet demonstrate that TNNs outperform the state-of-the-art low-rank methods

on a wide range of backbone networks and datasets.

Keywords: tensor decomposition, tensor networks, neural networks, deep learning, model compression

1. INTRODUCTION

Modern neural networks (Krizhevsky et al., 2012; Simonyan and Zisserman, 2014; He et al.,
2016b; Zagoruyko and Komodakis, 2016; Huang et al., 2017; Szegedy et al., 2017) achieve
unprecedented performance on many difficult learning problems at the cost of requiring excessive
model parameters for deeper and wider architectures. The vast number of model parameters is
a practical obstacle to deploying neural networks on constrained devices, such as smartphones
and IoT devices. Thus a fundamental problem in deep learning is to design neural networks
with compact architectures that maintain expressive power comparable to large models. Two
complementary approaches are common for this purpose: one compresses pre-trained models
while preserving their performance as much as possible (Cheng et al., 2017); the other aims to
develop compact neural architectures such as inception modules (Szegedy et al., 2017), interleaved
group convolutions (Zhang et al., 2017), and bottleneck blocks (Lin et al., 2013; He et al.,
2016b). Since linear layers (i.e., fully-connected and convolutional layers) comprise almost all
parameters and computation, he common goal of both approaches is to reduce the expense by
the linear operations.

Motivated by the tensor decomposition of linear layers (Lebedev et al., 2014; Kim et al., 2015;
Novikov et al., 2015), we propose a framework of tensorial layers that outlines the design space
of low-rank factorization the framework simultaneously allows compression of pre-trained models
and exploration of better network architectures. Our proposed tensorial layers extend the linear

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2022.728761
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2022.728761&domain=pdf&date_stamp=2022-03-08
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles
https://creativecommons.org/licenses/by/4.0/
mailto:furongh@umd.edu
https://doi.org/10.3389/frai.2022.728761
https://www.frontiersin.org/articles/10.3389/frai.2022.728761/full

Su et al. Tensorial Neural Networks

operations of matrix multiplications (in fully-connected layers)
and multi-channel convolutions (in convolutional layers) to
multilinear operations with multiple kernels. To characterize
these layers, we introduce a novel suite of generalized tensor
algebra that extends linear operations on low-order tensors to
multilinear ones on higher-order tensors (cf. section 3).

We name a neural network composed of tensorial layers
as a tensorial neural network (TNN), which by definition
generalizes the traditional neural network (NN)—if we
restrict the multi-linear operations in tensorial layers to
matrix multiplications or multi-channel convolutions, the
TNN reduces to a traditional NN. Unlike traditional NNs
that may flatten the data into low-order tensors (e.g., from
videos to frames), TNNs allow for data with arbitrary
order. Quite the opposite, TNNs deliberately reshape the
data into higher-order tensors and use higher-order weight
kernels in each layer. In this higher-order space, TNNs can
achieve strong expressive power with a smaller number
of parameters.

To understand the benefit of higher-order space, we illustrate
with a toy example in Figure 1. Consider a vector with periodic
structure [1, 2, 3, 1, 2, 3, 1, 2, 3] or with modulated structure
[1, 1, 1, 2, 2, 2, 3, 3, 3], representing the vector naively requires 9
parameters, which by itself cannot be further compressed by
factorization. However, if we reshape the vector into a higher-
order object, for instance, a matrix [1, 1, 1; 2, 2, 2; 3, 3, 3]. Since
all columns of this matrix are the same, we can decompose
the rank-1 matrix into an outer product of two vectors without
losing information. Therefore, only 6 parameters are needed to
represent the original length-9 vector. Intuitively, it is easier
to represent higher-order tensors in a factorized form than
low-order ones.

To use TNNs in practice, we need to address both prediction
and learning problems in tensorial layers. (1) Prediction with a
TNN is similar to a traditional NN: its input passes through all
layers in a feedforward manner. In a TNN, each layer involves
a generalized tensor operation between the higher-order input
and multiple weight kernels, followed by an activation function
such as ReLU. (2) To provide a practical solution to the learning
problem, we derive efficient backpropagation rules (Rumelhart
et al., 1986) for a broad family of tensorial layers using the
newly introduced tensor algebra. We can then efficiently learn
TNNs using first-order optimization methods such as stochastic
gradient descent (SGD).

Although we could build and train TNNs from scratch, we
can also use them to compress pre-trained NNs, as tensorial
layers naturally identify both low-rank and invariant structures
in the original kernels of the linear layers (Figure 1). Given a pre-
trained NN gq ∈ Gq with q parameters, we may compress it to
a TNN hp ∈ Hp with p parameters as depicted in Figure 6. This
process involves two steps: (1) data tensorization: reshaping the
input into a higher-order tensor; and (2) knowledge distillation:
mapping a NN to a TNN, using layer-wise data reconstruction.

We demonstrate the expressive power of TNNs by conducting
experiments on several benchmark image classification datasets.
Our algorithm compresses ResNet-32 on the CIFAR-10 dataset
by 10× with degradation of only 1.92% (achieving an accuracy

of 91.28%). Experiments on LeNet-5, VGG, ResNet, and Wide-
ResNet consistently verify that our tensorial neural networks
outperform the state-of-the-art low-rank architectures under the
same compression rate (with 5% test accuracy improvement on
CIFAR-10 using sequential knowledge distillation and ImageNet
when trained from scratch).

Contributions. In summary, we make the following
contributions in this article:

1. We propose a framework of tensorial layers, which extends
special linear operations in traditional neural networks to
general multilinear operations. This results in tensorial neural
networks (TNNs) that allow for compact architecture designs
in higher-order space.

2. We introduce a system of generalized tensor algebra, with
which we derive efficient prediction and learning in tensorial
neural networks (TNNs). In particular, we are the first
to derive and analyze backpropagation for generalized
tensor operations.

3. We develop an effective algorithm to compress pre-trained
models into tensorial neural networks (TNNs), exploiting
low-rank and invariant structures in the parameter space.

4. We provide interpretations of famous network architectures
with our proposed tensorial layers, explaining why these
famous architectures are empirically successful. Our
framework provides a principled way to design structured
weight matrices/tensors (see examples in Figures 7, 8).

The rest of this article is structured as follows. Section 2 gives an
overview of the related works. Section 3 introduces generalized
tensor operations and their representations in tensor diagrams.
Based on these operations, section 4 proposes a family of
tensorial layers, extending fully connected/convolutional layers
in traditional neural networks. Section 6 interprets numerous
compact network designs from the perspective of tensorial layers.
Then section 5 provides practical algorithms to learn tensorial
layers in tensorial neural networks, and section 7 demonstrate
the performance of our algorithms in learning compact TNNs.
Finally, section 8 concludes our contributions in this paper.

2. RELATED WORK

Tensor networks are widely used in quantum physics (Orús,
2014), numerical analysis (Grasedyck et al., 2013), and machine
learning (Cichocki et al., 2016, 2017). Cohen and Shashua
(2016) and Khrulkov et al. (2018) use tensor networks to
establish the expressive power of convolutional and recurrent
neural networks. Recently, Hayashi et al. (2019) combine tensor
networks with genetic algorithms to search for efficient layer
designs. Unlike our work, the search space in Hayashi et al.
(2019) only includes low-order tensors. Moreover, their method
does not consider applying knowledge distillation to pre-trained
models to produce more compact architectures.

Model compression of neural networks. Existing approaches
for neural network compression can be roughly grouped into
the following categories: low-rank factorization, design of compact

Frontiers in Artificial Intelligence | www.frontiersin.org 2 March 2022 | Volume 5 | Article 728761

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Su et al. Tensorial Neural Networks

FIGURE 1 | A toy example of invariant structures. The periodic and modulated structures are exposed by exploiting the low rank structure in the reshaped matrix.

filters, knowledge distillation, as well as pruning, quantization,
and encoding.

1. Low-rank factorization. Various factorizations have been
proposed to reduce the number of parameters in linear
layers. Pioneering works propose to flattening/unfolding the
parameters in convolutional layers into matrices (known
as matricization), followed by dictionary learning or matrix
decomposition (Denton et al., 2014; Jaderberg et al.,
2014; Zhang et al., 2015). Subsequently, Lebedev et al.
(2014) and Kim et al. (2015) show that it is possible to
compress these parameter structures directly using tensor
decompositions (e.g., CP or Tucker decomposition Kolda
and Bader, 2009). The groundbreaking works (Novikov
et al., 2015; Garipov et al., 2016) demonstrate that the low-
order parameter structures can be efficiently compressed
via tensor-train decomposition (Oseledets, 2011) by first
reshaping the structures into a higher-order tensor. This
idea is later extended in two directions: tensor-train
decomposition is used to compress LSTM/GRU layers in
recurrent neural networks (Yang et al., 2017), higher-order
recurrent neural networks (Yu et al., 2017; Su et al., 2020),
and 3D convolutional layers (Wang et al., 2020); other
decompositions are also explored for better compression, such
as tensor-ring decomposition (Zhao et al., 2016) and block-
term decomposition (Ye et al., 2020).

2. Pruning, quantization, and encoding. The pioneering work
by Han et al. (2015) proposed a three-step pipeline to
compress a pre-trained model by pruning the uninformative
connections, quantizing the remaining weights, and encoding
the discretized parameters. These ideas are complementary
to low-rank factorization—Goyal et al. (2019) demonstrated
a joint use of pruning and low-rank factorization, and
Lee et al. (2021) a combination of quantization and
low-rank factorization.

3. Knowledge distillation. This process aims to transfer
information from a pre-trained teacher network to a
smaller student network. Ba and Caruana (2014) and Hinton
et al. (2015) proposed to train the student network with the
teacher network’s logits (the vector before the softmax layer).
Romero et al. (2014) extend this idea so that the outputs
from both networks match at each layer, with an affine
transformation.

4. Design of compact filters. These techniques reduce
the number of parameters by imposing additional
patterns on fully-connected or convolutional layers.
For example, prior works restrict the matrix in

FIGURE 2 | Tensor diagrams of (A) a scalar a∈R, (B) vector v∈RI, (C)

matrix M ∈ R
I×J, and (D) tensor T ∈ R

I×J×K .

a fully-connected layer to circular (Cheng et al., 2015),
Toeplitz/Vandermonde/Cauchy (Sindhwani et al., 2015), or
the product of special matrices (Yang et al., 2015). Historically,
convolutional layers are considered to be a compact design
of fully-connected layers, where spatial connections are local
(thus sparse) with repeated weights. Recent works further
suggest more compact convolutional layers, such as 1 × 1
convolutional layer (Szegedy et al., 2017; Wu et al., 2017)
(where each filter is a scalar) and depth-wise convolutional
layer (Chollet, 2017) (where connections between features
are sparse).

Our approach combines two of the above approaches: (1)
it uses knowledge distillation to project a pre-trained neural
network onto the set of TNNs with low-rank tensor structures,
and (2) it exploits these low-rank tensor structures, which
naturally correspond to compact architecture designs (structured
connections) and can be efficiently evaluated using generalized
tensor operations. Since other compression methods such as
pruning and quantization complement our approach, they may
be combined with our approach to further improve performance.

3. GENERALIZED TENSOR ALGEBRA

Notation. Bold lower case letters (e.g., v), bold upper case
letters (e.g., M), and calligraphic letters (e.g., T) are used to
denote vectors, matrices, andmulti-dimensional arrays (tensors),
respectivly. We say that the array T ∈ R

I0×···×Im−1 is a m-
order tensor. Furthermore, the kth coordinate of the entries of
T corresponds to the kth mode of T , and Ik is referred to as the
dimension of T along mode-k. By fixing all indices of T , except
that corresponding to mode-k, we obtain the mode-k fibers of T ,
so that the vector Ti0 ,··· ,ik−1 ,:,ik+1 ,··· ,im−1 ∈ R

Ik denotes the mode-k
fiber of T indexed by (i0, · · · , ik−1, ik+1, · · · , im−1).

Tensor diagrams. In Figure 2, we introduce tensor diagrams,
graphical representations of multi-dimensional arrays following

Frontiers in Artificial Intelligence | www.frontiersin.org 3 March 2022 | Volume 5 | Article 728761

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Su et al. Tensorial Neural Networks

TABLE 1 | Primitive tensor operations.

Operator Notation Definition

mode-(k, l)

Tensor Contraction

T (1) = X ×
(k,Ik)
(l,Jl)

Y

= X ×
Ik
Jl
Y

T
(1)
i0 ,··· ,ik−1 ,ik+1 ,··· ,im−1 ,j0 ,··· ,jl−1 ,jl+1 ,··· ,jn−1

=
〈

Xi0 ,··· ,ik−1 ,:,ik+1 ,··· ,im−1
,Yj0 ,··· ,jl−1 ,:,jl+1 ,··· ,jn−1

〉

Inner product of mode-k fiber of X and mode-l fiber of Y

mode-(k, l)

Tensor Convolution

T (2) = X *
(k,Ik)
(l,Jl)

Y

= X *
Ik
Jl
Y

T
(2)
i0 ,··· ,ik−1 ,:,ik+1 ,··· ,im−1 ,j0 ,··· ,jl−1 ,jl+1 ,··· ,jn−1

= Xi0 ,··· ,ik−1 ,:,ik+1 ,··· ,im−1
*Yj0 ,··· ,jl−1 ,:,jl+1 ,··· ,jn−1

Convolution of mode-k fiber of X and mode-l fiber of Y

mode-(k, l)

Tensor Batch Product

T (3) = X ⊗
(k,Ik)
(l,Jl)

Y

= X ⊗
Ik
Jl
Y

T
(3)
i0 ,··· ,ik−1 ,r,ik+1 ,··· ,im−1 ,j0 ,··· ,jl−1 ,:,jl+1 ,··· ,jn−1

= Xi0 ,··· ,ik−1 ,r,ik+1 ,··· ,im−1
Yj0 ,··· ,jl−1 ,r,jl+1 ,··· ,jn−1

Hadamard product of mode-k fiber of X and mode-l fiber of Y

If X ∈ R
I0×···×Im−1 and Y ∈ R

J0×···×Jn−1 , then T (1), T (2), and T (3) are the mode-(k, l) tensor contraction, convolution, and batch product of X and Y, respectively. Note that the

contraction and batch product are defined only if Ik = Jl. Further, T
(1) is an (m + n − 2)-order tensor; T (2), T (3) are (m + n − 1)-order tensors. Finally, we suppress the mode indices

when expressing any of the above operations between tensors using mode ordering-agnostic tensor diagrams (cf. Figure 3).

Grasedyck et al. (2013), Orús (2014). In tensor diagrams, each
array (scalar, vector, matrix or higher-order tensor) is represented
as a node, and its order is denoted by the number of legs extending
from the node. Each leg corresponds to one mode of the tensor,
whose dimension is denoted by an associated positive integer.
Notice that tensor diagrams are ordering-agnostic, e.g., a matrix
M ∈ R

I×J and its transposeM⊤ ∈ R
J×I have the same diagram.

Primitive tensor operations. In Table 1, we define primitives
for generalized tensor operations on arbitrary-order tensors. In
Figure 3, we illustrate these primitives using tensor diagrams.
In these diagrams, a tensor operation is represented with a
(hyper-)edge that links the legs of two input tensors: a solid
edge denotes a tensor contraction, a dashed edge represents a
tensor convolution, and a curved edge corresponds to a tensor
batch product. Since tensor diagrams are ordering-agnostic, we
suppress the mode indices of the tensor operations they illustrate
in order to simplify notation.

Generalized tensor operations. Generalized tensor
operations take two or more tensors as inputs and carry out one
or more primitive operations on those tensors. In Figure 4, we
illustrate three non-primitive generalized tensor operations. We
refer to the primitive tensor operations in Figure 3 as single-
edge-double-node operations; similarly, the three generalized
tensor operations in Figure 4 are called multi-edge-double-node,
single-edge-multi-node, and multi-edge-multi-node operations,
respectively. Given a generalized tensor operation formed
from more than one primitive operation, we may evaluate the
primitives in any order to obtain the same result. However, in
practice, evaluating the primitives in one order may require
substantially more floating point operations (FLOPs) than in
another. While it is NP-hard to obtain the best order (that
requires the fewest FLOPs) (Lam et al., 1997), an exhaustive
search is practical if the number of input tensors is small (Pfeifer
et al., 2014).

4. TENSORIAL NEURAL NETWORKS
(TNNS)

In this section, we introduce Tensorial Neural Networks, a
type of neural network whose layers (called tensorial layers)

are tensor networks. Tensorial layers generalize traditional
fully-connected/convolutional layers, as the transformations
these layers can be characterized as primitive/generalized
tensor operations. For example, a fully-connected layer, which
involves a matrix-vector product, is equivalent to a contraction
(cf. Figure 3A), and we will see that a convolutional layer is
equivalent to generalized tensor operation (cf. Figure 5A). Our
primary focus is on developing tensorial layers that extend the
traditional convolutional layer—since a fully-connected layer is
simply a convolutional layer with filter size 1× 1.

4.1. Tensorial vs. Convolutional Layers
Each layer in a convolutional neural network (CNN) is given by
a compound operation applied to a 3rd-order input tensor and a
4th-order weight tensor (cf. Figure 5A). In contrast, each layer
in a TNN is given by a arbitrary generalized tensor operation
applied to a higher-order input tensor and multiple weight
tensors (cf. Figure 5B). We describe both types of layers in more
detail below.

Traditional convolutional layer. A traditional 2D-
convolutional layer is parameterized by a 4th-order weight
kernel K ∈ R

H×W×S×T , where H (resp. W) is the height
(resp. width) of the filter, and S (resp. T) is the number of
input (resp. output) channels. Such a layer maps a 3rd-order
input tensor U ∈ R

X×Y×S to another 3rd-order output tensor
V ∈ R

X′×Y ′×T , whereX (resp. Y) is the height (resp. width) of the
input feature maps, and X′ (resp. Y ′) is the height (resp. width)
of the output feature maps. This convolutional layer can be
concisely written using our generalized tensor operations:

V = U
(

∗XH ◦ ∗YW ◦ ×S
S

)

K. (1)

Moreover, a convolutional layer involves a multi-edge-double-
node operation, where multiple primitive tensor operations
are executed along different modes. Specifically, two tensor
convolutions are performed: one along the modes with
dimensions X and H, and the other along the modes with
dimensions Y andW; a tensor contraction along the modes with
dimension S is also carried out.

Tensorial layers. Tensorial layers involve applying a
generalized tensor operation to an input tensor and multiple

Frontiers in Artificial Intelligence | www.frontiersin.org 4 March 2022 | Volume 5 | Article 728761

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Su et al. Tensorial Neural Networks

FIGURE 3 | Diagrams of primitive tensor operations. Given X ∈ R
I0×I1×I2 and Y ∈ R

J0×J1×J2 , we illustrate (A) T (1) = X ×
Ik
Jl
Y ∈ R

I1×I2×J0×J2 , (B)

T (2) = X *
Ik
Jl
Y ∈ R

I′0×I1×I2×J0×J2 , and (C) T (3) = X ⊗
Ik
Jl
Y ∈ R

I0×I1×I2×J0×J2 with the above tensor diagrams.

FIGURE 4 | Generalized tensor operation diagrams. Generalized tensor operations apply one or more primitive tensor operations to two or more tensors. The

above tensor diagrams illustrate three different generalized tensor operations, which represent (A) a 1D-convolutional layer from a neural network, (B) a CP-tensor

decomposition, and (C) a tensor-ring decomposition.

weight kernels. We illustrate several tensorial layers in
Figures 5B–E. In Figure 5B, we illustrate a tensorial layer
inspired by the Tensor-Train (TT) layer (Oseledets, 2011). We
will refer to this layer as a mTT-convolutional layer (the letter
“m” is for “modified;” this layer is slightly different than that
in Oseledets, 2011). A mTT layer takes an (m + 2)-order input
tensor U ′ and returns an output tensor V ′ of the same order.
This layer has (m + 1) kernels {Ki}

m
i=0 as parameters, in order

to preserve the multi-dimensional structure of U ′. Mode-i of
U ′ contracts with its corresponding kernel Ki, and interactions
between modes are captured by contractions between adjacent
kernels (e.g., Ki and Ki+1). These contractions are crucial
for modeling multi-dimensional transformations with high
expressive power. Thus, a mTT-convolutional layer enables the
multi-dimensional propagation of a higher-order input. We refer
to a network with mTT-convolutional layers as a TNN-mTT.
In Figures 5C–E, we develop other tensorial layers inspired by
Tensor-Ring (TR), Canonical polyadic (CP), and Tucker (TK)
tensor decompositions (Kolda and Bader, 2009; Zhao et al.,
2016); we refer to the corresponding networks as TNN-mTR,
TNN-mCP, and TNN-mTK networks, respectively.

4.2. Relationships Between Tensorial and
Convolutional Layers
Approximation via tensor decomposition. We can use a
tensorial layer to approximate to a higher-order linear layer

(fully-connected or convolutional). Suppose U , K, and V in
Equation (1) are reshaped into higher-order tensors U ′, K′, and
V ′, such that input/output channels are indexed bymmodes (i.e.,
U ′ ∈ R

X×Y×S0×···×Sm−1 , K′ ∈ R
H×W×S0×···×Sm−1×T0×···×Tm−1 ,

and V ′ ∈ R
X′×Y ′×T0×···×Tm−1 , where S =

∏m−1
i=0 Si and T =

∏m−1
i=0 Ti). We then have the following relationship between U ′,

K′, and V ′:

V
′ = U

′
(

∗HX ◦ ∗WY ◦ ×
S0
S0
◦ · · · ◦ ×

Sm+1
Sm+1

)

K
′. (2)

For a TNN-mTT tensorial layer, the kernels {Ki}
m
i=0 correspond

to factors of K′, when K′ can be represented with a modified
tensor-train decomposition:

K
′ , K0 ×

R0
R0

K1 ×
R1
R1

· · · ×
Rm−1
Rm−1

Km. (3)

This motivates us to compress a linear layer into a tensorial layer,
and more broadly, compress a traditional NN into a compact
TNN. In section 5, we will study relevant compression algorithms
in detail.

Hypothesis sets of NNs and TNNs. Suppose the class
of traditional NNs and our proposed TNNs share the same
architecture (i.e., only the tensor operation in each layer is
different). We illustrate the relations between their hypothesis
sets in Figure 6. Let Gq and Hq denote the classes of functions
that can be represented by NNs and TNNs, both with at most q
parameters. (1) TNNs generalize NNs. Formally, for any q > 0,

Frontiers in Artificial Intelligence | www.frontiersin.org 5 March 2022 | Volume 5 | Article 728761

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Su et al. Tensorial Neural Networks

FIGURE 5 | Tensor diagrams of convolutional layers. (A) The traditional convolutional layer is the building block for CNN; (B–E) The tensorial convolutional layers

are building blocks for TNNs.

Gq ⊆ Hq holds. (2) NNs can be mapped to TNNs with fewer
parameters and thus TNNs can be used for compression of NNs.
Formally, there exists p ≤ q such thatHp ⊆ Gq.

PROOF: With the same backbone architecture, it suffices to
prove the inclusion relations in the layer level. (1) is trivial. Since
traditional layers are realization of tensorial layers (by setting
the generalized tensor operation as a convolution or a matrix
multiplication), gq ∈ Gq implies gq ∈ Hq, i.e., Gq ⊆ Hq,∀q > 0.
(2) Let H

p
i be the tensorial layer that use the ith type generalized

tensor operation (Note that the operation types are countable),
we have Hp =

⋃

i H
p
i . Now fix i, there exist pi < q such

that H
pi
i ⊆ Gq — given pi small enough, any h

pi
i ∈ H

pi
i can

be interpreted as a factorized form of some gq ∈ Gq [e.g.,
Equation (3)]. Take p = infi pi, we know H

p
i ⊆ H

pi
i ⊆ Gq,∀i

and thereforeHp =
⋃

i H
p
i ⊆ Gq, which completes the proof.

5. ALGORITHMS FOR TNNS

In this section, we investigate practical algorithms for TNNs.
We first develop prediction and backpropagation algorithms for

TNNs, which allows us to train a TNN from scratch. We then
consider algorithms that can be used to distill a compact TNN
from a pre-trained model.

5.1. Prediction With TNNs
Prediction with TNN is similar to that of traditional neural
networks: inputs are passed through layers in a feedforward
manner. Each layer in a TNN involves applying a generalized
tensor operation to the input and multiple weight kernels, before
applying a nonlinear function such as ReLU. While it is difficult
to determine the most efficient order in which to evaluate
the primitives of a generalized tensor operation in general, we
develop strategies to determine efficient orders for all TNN
architectures introduced in this paper. For example, we can
efficiently evaluate each mTT-convolutional layer as follows:

U1 = U
′ ×

S0
S0

K0, (4a)

Ui+1 = Ui

(

×
Ri−1
Ri−1

◦ ×
Si
Si

)

Ki, (4b)

V
′ = Um

(

∗XH ◦ ∗YW ◦ ×
Rm−1
Rm−1

)

Km. (4c)

Frontiers in Artificial Intelligence | www.frontiersin.org 6 March 2022 | Volume 5 | Article 728761

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Su et al. Tensorial Neural Networks

TABLE 2 | Complexities of traditional convolutional layer and various tensorial convolutional layers.

Layer O (params.) O (forward ops.) O (backward ops., input) O (backward ops., params.)

original k2N2 k2N2D2 k2N2D2 N2D4

mCP (mN
2
m + k2)R (mN1+ 1

m + k2N)RD2 (mN1+ 1
m + k2N)RD2 (mN1+ 1

m + D2N)RD2

mTK (2mN + k2R2m−1)R (2mN+ k2R2m−1)RD2 (2mN + k2R2m−1)RD2 (2mN+ R2m−1D2)RD2

mTT (mN
2
m R+ k2)R (mN1+ 1

m R+ k2N)RD2 (mN1+ 1
m R+ k2N)RD2 (mN1+ 1

m R+ D2N)RD2

mTR (mN
2
m + k2)R2 (mN1+ 1

m + k2N)R2D2 (mN1+ 1
m + k2N)R2D2 (mN1+ 1

m + D2N)R2D2

Suppose X = Y = X ′ = Y ′ = D, S = T = N, H = W = k, and D≫ k (cf. section 4).

Remark: The number of FLOPs does not accurately reflect the actual running time on GPUs, as the existing CUDA library can not fully utilize the degree of parallelism in general tensor

operations.

FIGURE 6 | Relationship between NNs and TNNs. Suppose the class of

NNs and TNNs have the same architecture (i.e., only the tensor operation at

each layer is different), and f is the target concept. (1) Learning of a NN with

q parameters results in gq that is closest to f in Gq, while learning of a TNN

with q parameters results in hq that is closest to f in Hq. Apparently, hq is

closer to f than gq, (2) Compression of a pre-trained NN gq ∈ Gq to NNs with

p parameters (p ≤ q) results in gp that is closest to gq in Gp, while

compression of gq to TNNs with p parameters results in hp that is closest to gq

in Hp. Apparently, the compressed TNN hp is closer to gq than the

compressed NN gp.

Here, U ′ is the layer input, and V ′ is the output. The tensors
{Ui}

m
i=1 are intermediate results. We provide efficient strategies

for performing the forward pass in the other tensorial layers
displayed in Figure 5 and Appendix B. We also summarize the
complexity (the number of FLOPs and amount of parameter
storage required) for each forward pass in Table 2.

5.2. Learning TNNs
To train a TNN via stochastic gradient descent, we derive
backpropagation rules for each tensorial layer displayed
in Figure 5. To derive such rules, we consider the partial
derivatives of some loss function L with respect to the input
(∂L/∂U ′) and kernel factors (e.g., {∂L/∂Ki}

m
i=0 in an mTT-

convolutional layer), given ∂L/∂V ′. As previously done for
performing a forward pass, we develop efficient strategies for
executing backpropagation with each type of tensorial layer. For
an mTT-convolutional layer, an efficient strategy for performing

backpropagation is

∂L

∂Um
=

∂L

∂V ′

(

∗X
′

H

⊤
◦ ∗Y

′

W

⊤
)

Km, (5a)

∂L

∂Km
=

∂L

∂V ′

(

∗X
′

X

⊤
◦ ∗Y

′

Y

⊤
×

T0
T0

◦ · · · ◦ ×
Tm−1

Tm−1

)

Um, (5b)

∂L

∂Ui
=

∂L

∂Ui+1

(

×
Ri
Ri
◦ ×

Ti
Ti

)

Ki, (5c)

∂L

∂Ki
=

∂L

∂Ui+1
(

×X
X ◦ ×Y

Y ◦ ×
S0
S0
◦ · · · ◦ ×

Ti−1

Ti−1
◦ ×

Si+1
Si+1

◦ · · · ◦ ×
Sm−1
Sm−1

)

Ui, (5d)

∂L

∂U ′
=

∂L

∂U1

(

×
R0
R0

◦ ×
T0
T0

)

K0, (5e)

∂L

∂K0
=

∂L

∂U1

(

×X
X ◦ ×Y

Y ◦ ×
S1
S1
◦ · · · ◦ ×

Sm−1
Sm−1

)

U
′, (5f)

where ∗⊤ denotes a transposed convolution. We derive efficient
backpropagation strategies for the other tensorial layers displayed
in Figure 5 and Appendix B, summarizing their complexities in
Table 2.

Learning from Scratch (Learn-Scratch). We can train any
TNN from scratch (referred to as Learning from Scratch, or
Learn-Scratch in short), given suitable algorithms for forward
and backward passes. Since a TNN is formed by replacing each
layer in a traditional NN with a tensorial layer, Learn-Scratch is
as straightforward as training a traditional NN but is inefficient if
we have a pre-trained reference NN.

5.3. Compression via Knowledge
Distillation
Suppose we aim to compress a pre-trained neural network gq ∈

Gq to a model with p parameters, where p ≪ q. As is illustrated
in Figure 6,Hp is a broader class of networks than Gp, and hence
our goal is to obtain the hp ∈ Hp that is, in some sense, closest to
gq, rather than obtain the analogous gp ∈ Gp. We expect that
searching for such a hp yields a network that outperforms the
analogous gp in terms of predictive accuracy. Intuitively, we aim
to “project” a pre-trained NN g ∈ Gq to a TNN h⋆ ∈ Hp. (Note
that we omit the superscripts on g and h to simplify notation.)
Denote the input to g as U and U ′ is a reshaped version of U (so
that U ′ may be an input for h). our goal is to find h⋆ such that

h⋆ = arg min
h∈Hp

dist(h(U ′), g(U)), (6)

Frontiers in Artificial Intelligence | www.frontiersin.org 7 March 2022 | Volume 5 | Article 728761

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Su et al. Tensorial Neural Networks

FIGURE 7 | An interleaved group module without nonlinearity (A) is expressed as a tensorial layer (B).

where dist(·, ·) denotes any distance(-like) metric (e.g., the square
of the ℓ2 distance) between the set of network outputs (the logits
in classification problems). Solving Equation (6) is known as
knowledge distillation; this process “distills” the knowledge from
g and “instills” it into h⋆ (Hinton et al., 2015).

Because the class Hp of TNNs is so vast, in practice, we
minimize the objective in Equation (6), over a much smaller
class of TNNs. Concretely, given the input data U and g ∈ Gq,
we minimize the objective over the class of TNN-mTTs, TNN-
mTRs, TNN-mCPs, and TNN-mTKs, where we assign each of
these models a pre-specified number of layers, kernels per layer,
and kernel dimensions, with a total of p parameters. Given a

model in the class of TNNs selected, let {K
(ℓ)
i }mi=0 denote the

set of (m + 1) kernels of the ℓth layer of that model (replace m
with 2m for TNN-mTKs). Our goal is to now search for kernels

{K
(ℓ)
i }i,ℓ for all L layers in the TNN, such that these kernels can

be used to construct the TNN h that is a good approximation to
g. Specifically, we aim to solve

{K
(ℓ)
i

⋆
}i,ℓ = arg min

{K
(ℓ)
i }i,ℓ

dist(g(U), h(U ′; {K
(ℓ)
i }i,ℓ)). (7)

Here, dist denotes a distance metric, which we assume as the
squared ℓ2 distance in this work. In what follows, we discuss three
different approaches for solving Equation (7).

Layer-wise Decomposition (Layer-Decomp). Given the
relationship between TNNs and NNs (cf. section 4.2), we might
solve Equation (7) with the following two steps: (1) For each
layer (e.g., layer ℓ), we reshape the original kernel K(ℓ) of

g into a higher-order tensor K′(ℓ), and (2) we solve {K
(ℓ)
i }i

such that applying corresponding tensor operation to those

kernels produces the best approximate of K′(ℓ) (we assume
that K(ℓ) is reshaped in a way such that the dimensions

of K′(ℓ) match the ones of the approximate). For a mTT-
convolutional layer, the second step amounts to solving the
following optimization problem.

{K
(ℓ)
i

⋆
}i = arg min

{K
(ℓ)
i }i

‖K′(ℓ) − mTT({K(ℓ)
i }i)‖

2, ∀ℓ, (8)

where mTT({K(ℓ)
i }i) denotes the result of the generalized tensor

operation in Figure 5B on {K
(ℓ)
i }i (we can formulate similar

problems for other tensorial layers). Typically, one solves
Equation (8) via an alternating least squares method (Comon
et al., 2009), as Equation (8) reduces to solving a least squares
problem if we fix all but one kernel in each layer. However,
such a method typically does not yield accurate solutions to
Equation (7). Thus, we usually only use it to initialize parameters
for more advanced approaches.

End-to-end Knowledge Distillation (E2E-KD). A second
approach to solving Equation (7) is end-to-end knowledge
distillation (E2E-KD in short), which uses stochastic gradient
descent (SGD) to optimize the objective in Equation (7) over
all the kernels at once. However, this approach has two main
drawbacks: (1) backpropagation is expensive, as it requires end-
to-end gradient flow in a TNN; and (2) SGD becomes unstable
when we solve for all parameters in all layers simultaneously. To
avoid these challenges, we consider the following third approach.

Sequential Knowledge Distillation (Seq-KD). This third
approach involves splitting Equation (7) into L sub-problems that
we solve sequentially. Given the data input U and the network
g, let V(ℓ) denote its ℓth layer’s output. Additionally, given the

reshaped input data U ′, a TNN, and its kernels {K
(k)
i }i,k, let

hℓ({U
′(ℓ−1)

;K
(ℓ)
i }i,ℓ) denote its ℓth layer’s output. For the ℓth sub-

problem, we assume the kernels {K
(k)
i }i,k are fixed for k < ℓ and

we obtain the kernels {K
(ℓ)
i }i by solving

{K
(ℓ)
i

⋆
}i = arg min

{K
(ℓ)
i }i

‖V(ℓ) − hℓ(U
′; {K

(k)
i }i,ℓ)‖

2. (9)

Note that the input to the ℓth layer of either the original
or compact tensor is given by the output from layer (ℓ −

1), i.e., U (ℓ) = V(ℓ−1) and U ′(ℓ) = V ′(ℓ−1). We solve
Equation (9) using SGD, after deriving backpropagation rules
for the generalized tensor operation used in the ℓth layer of
the compressed TNN. Since the ℓth sub-problem depends on
the result from all previous sub-problems, we must solve these
problems sequentially, beginning with the layer indexed by one,
and ending with the layer indexed by L.

Frontiers in Artificial Intelligence | www.frontiersin.org 8 March 2022 | Volume 5 | Article 728761

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Su et al. Tensorial Neural Networks

FIGURE 8 | A bottleneck module without nonlinearity is expressed as a Tucker

decomposition of the original layer.

FIGURE 9 | Test Error curves for sequential knowledge distillation

(Seq-KD) vs. end-to-end knowledge distillation (E2E-KD) on ResNet-32

for CIFAR-10. Both approaches use layer-wise decomposition

(Layer-Decomp) for initialization.

6. INTERPRETATION OF EXISTING
COMPACT ARCHITECTURES

Recent advances in compact architecture designs such as
Inception (Szegedy et al., 2017), Exception (Chollet, 2017),
interleaved group convolutions (Zhang et al., 2017), and bottleneck
structures (Lin et al., 2013; He et al., 2016b) propose to group
multiple primitive operations into modules. We will show that
we can express all such modules using the framework of tensorial
layers (with minor modifications).

Interleaved group modules. The critical idea in interleaved
group modules involves dividing and branching the input into
several blocks and constraining each block’s connections, which
avoids computations across blocks. The architectures of tensorial
layers utilize a similar strategy: for example, the tensorial layer
in Figure 7B has the same architecture as the network in
Figure 7A, where each length-nine input is divided into three
blocks, and connections exist only within each block. This idea
of grouping operations plays a vital role in the development of
Inception (Szegedy et al., 2017) and Xception (Chollet, 2017).

Bottleneck modules. A bottleneck structure forces a model
to adopt a compact representation by constructing a narrow
bottleneck (with fewer hidden units) in the middle of each
module. Such modules correspond to the low-rank structures
used in tensorial layers, as illustrated by the following example

with matrices: consider a weight matrix W ∈ R
S×S, its low-rank

decomposition W = PQ (with P ∈ R
S×R and Q ∈ R

R×S). This
model requires an input vector u ∈ R

S to first be multiplied by
P and then by Q during a forward pass. Therefore, the input u is
mapped into a low-dimensional space RR after being multiplied
by P, resulting in a bottleneck in this two-steps module. In
practice, the bottleneck module in Lin et al. (2013) and He et al.
(2016b) can be represented by tensor diagrams (cf. Figure 8),
whose input with kN channels is first mapped to a structure with
N channels by kernel K0.

Discussion of compact architecture designs. The two
examples above illustrate one way of designing compact tensorial
layers. This design process starts with a traditional layer (fully-
connected or convolutional), followed by (optional) reshaping
and some tensor decomposition of the (reshaped) kernel.
Consequently, the original layer is transformed into a tensorial
layer with a compact structure. We can also design novel
architectures from scratch (cf. section 3), by, for example, using
tensor networks as building blocks for other architectures. One
recent attempt that applies this methodology is Yu et al. (2017),
where tensor-train networks are used to introduce multilinear
operations to an RNN.

7. EXPERIMENTS

This section is divided into two parts. In section 7.1, we use pre-
trained models to evaluate the effectiveness of our compression
algorithms (cf. section 5.3). In section 7.2, we demonstrate that
our tensorial neural networks can be trained from scratch (i.e.,
without reference models) on a wide range of datasets and
backbone models. In both scenarios, we show that our TNNs
maintain high accuracy, evenwhen they utilize significantly fewer
parameters than traditional neural networks.

Considerations for TNN experiments. There are three items
we consider when designing the experiments with TNNs that
follow: (1) Kernel Reshaping. We refer to an architecture
whose kernels are reshaped into higher-order tensors (before
performing a low-rank kernel factorization) as a TNN; we refer to
an architecture whose kernels are factorized without reshaping as
an NN. Although the latter is also a TNN, we still call it a NN, as
the resulting architecture (after low-rank factorization) consists
only of low-order operations (i.e., matrix multiplications and
multi-channel convolutions), as in traditional neural networks.
In what follows, we will compare the performance of TNNs to
that of NNs. (2) Types of tensor networks. Existing NN baselines
are networks that do not involve any kernel reshaping and use
classical kernel decompositions, e.g., SVD (Denton et al., 2014;
Jaderberg et al., 2014), CP (Denton et al., 2014; Lebedev et al.,
2014), and TK (Kim et al., 2015). Therefore, we refer to these
architectures as NN-SVD, NN-CP, and NN-TK architectures,
where the suffix denotes the type of kernel decomposition.
As discussed in section 4, we may use kernel reshaping and
other types of decompositions to obtain TNNs, which achieve
better expressive power than NNs (cf. Figure 6). Consequently,
we refer to these architectures that involve reshaping kernels
as TNN-mCPs, TNN-mTTs, TNN-mTRs, etc. (3) Training or

Frontiers in Artificial Intelligence | www.frontiersin.org 9 March 2022 | Volume 5 | Article 728761

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Su et al. Tensorial Neural Networks

TABLE 3 | Test accuracy of ResNet-32 on CIFAR-10 — comparison between end-to-end knowledge distillation (E2E-KD) using low-rank compression (NN-C) against

sequential knowledge distillation (Seq-KD) with our TNN-based compression (TNN-C).

Architect.
Compression rate

Architect.
Compression rate

5% 10% 20% 40% 2% 5% 10% 20%

NN-SVD (Denton et al., 2014; Jaderberg et al., 2014) 83.09 87.27 89.58 90.85 TNN-TR (Wang et al., 2018)† - 80.80† - 90.60

NN-CP (Denton et al., 2014; Lebedev et al., 2014) 84.02 86.93 88.75 88.75 TNN-mCP 85.7 89.86 91.28 -

NN-TK (Kim et al., 2015) 83.57 86.00 88.03 89.35 TNN-TK 61.06 71.34 81.59 87.11

NN-TT (Garipov et al., 2016)* 77.44 82.92 84.13 86.64 TNN-mTT 78.95 84.26 87.89 -

Test accuracy of ResNet-32 on CIFAR10.
†Cited from Wang et al. (2018), the accuracy of 80.8% is achieved by 6.67% compression rate.

*The architecture is proposed as a baseline in Garipov et al. (2016).

The original ResNet-32 achieves 93.2% test accuracy with 0.46M parameters (He et al., 2016a).

The bold number indicates the best performance in the table.

compression strategy. We train the above models either via
knowledge distillation or from scratch. To distinguish these
two strategies, we use the term compression for knowledge
distillation (i.e., there exists a pre-trained reference network to
compress). We use the term TNN-based compression (TNN-C)
to describe the process of training the TNN-mCPs, TNN-mTTs,
TNN-mTRs, etc. via knowledge distillation, and the term low-
rank compression (NN-C) to describe the analogous process for
training the NN-SVDs, NN-CPs, NN-TKs, NN-TTs, etc.

7.1. Knowledge Distillation
In this part, we evaluate different algorithms of knowledge
distillation in section 5.3, namely layer-wise decomposition
(Layer-Decomp), end-to-end knowledge distillation (E2E-KD),
and sequential knowledge distillation (Seq-KD). We conduct
extensive experiments on compressing convolutional layers in
ResNet-32 for CIFAR10, andwe aim to figure out the best strategy
for combining these algorithms.

Experimental setup. We find that Layer-Decomp is merely
better than random guesses in our experiments (see the test
errors in Figure 9 at the beginning), Therefore, we can only use
Layer-Decomp as initialization for E2E-KD and Seq-KD. With
both algorithms, all layers are compressed uniformly at the same
compression rate except for the first and last layers. Therefore, the
compression rate is both layer-wise and (approximately) global.
(We investigate the non-uniform allocation of all parameters
across layers, but empirical results show that uniform assignment
performs the best.) For all experiments, we use Adam optimizer
with initial learning rate of 10−3, which decays by 10 every
50 epochs.

Our algorithm achieves 5% higher accuracies than the

baselines on CIFAR-10 using ResNet-32. The results from
Table 3 demonstrate that our TNNs maintain high accuracies
even after the pre-trained networks are highly compressed.
Given a pre-trained ResNet-32 and compression rate 10%,
the NN-CP with E2E-KD reduces the original accuracy from
93.2 to 86.93%; while the TNN-mCP with Seq-KD maintains
the accuracy as 91.28% with the same compression rate—
a performance loss of 2% with only 10% of the number of
parameters. Furthermore, TNN-C achieves further aggressive
compression—a performance loss of 6% with only 2% of the
number of parameters. We observe similar trends (higher

compression and higher accuracy) are observed for TNN-mTT.
The structure of the mTK decomposition makes TNN-mTK less
effective with very high compression, since the decomposition
poses a very narrow bottleneck, which may lose necessary
information. Increasing the network size to 20% of the original
provides reasonable performance on CIFAR-10 for TNN-mTK
as well.

TNN-based compression, sequential knowledge

distillation, or both? Table 3 shows that TNN-C with Seq-
KD outperforms NN-C with traditional E2E-KD. Now, we
address the following question: is one factor (Seq-KD or TNN-C)
primarily responsible for increased performance, or is the benefit
due to synergy between the two?

(1) We present the accuracies of different compression
methods in Table 4. Other than at very high compression rate
(5% column in Table 4), Seq-KD consistently outperforms E2E-
KD. In addition, Seq-KD converges faster and stabler compared
to E2E-KD. Figure 9 plots the test error over the number of
gradient updates for various compression methods.

(2)We present the effect of different architectures on accuracy
in Tables 5, 8, 9. (2.1) First, we compare TNNs with NNs via
Seq-KD. Interestingly, as demonstrated in Table 5, if TNN-based
compression is used, the test accuracy is restored for even very
low compression rates1. (2.2) Second, we compare TNNs with
NNs via Learn-Scratch. As demonstrated in Tables 8, 9, TNNs
outperform NNs trained using Learn-Scratch under the same
number of parameters.

Convergence rate. Compared to end-to-end knowledge
distillation (E2E-KD), an ancillary benefit of sequential
knowledge distillation (Seq-KD) is that it is much faster and
leads to more stable convergence. Figure 9 plots compression
error over number of gradient updates for various methods
(This experiment is for NN-C with 10% compression rate).
There are three salient points: first, Seq-KD has very high error
in the beginning while the “early” blocks are tuned (and the
rest of the network is left unchanged to the values after tensor
decomposition). However, as the final block is tuned (around
2× 1011 gradient updates) in the figure, the errors drop to nearly
a minimum immediately. In comparison, E2E-KD requires

1Note that TNN-mTK remains an exception for aggressive compression due to the

extreme bottleneck structure that we previously discussed.

Frontiers in Artificial Intelligence | www.frontiersin.org 10 March 2022 | Volume 5 | Article 728761

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Su et al. Tensorial Neural Networks

TABLE 4 | Test accuracy of ResNet-32 on CIFAR-10 — comparison between sequential knowledge distillation (Seq-KD) against end-to-end knowledge distillation

(E2E-KD) using NN-C.

Architect.

Compression rate

5% 10% 20% 40%

Seq E2E Seq E2E Seq E2E Seq E2E

NN-SVD (Denton et al., 2014;

Jaderberg et al., 2014)

74.04 83.09 85.28 87.27 89.74 89.58 91.83 90.85

NN-CP (Denton et al., 2014; Lebedev

et al., 2014)

83.19 84.02 88.50 86.93 90.72 88.75 89.75 88.75

NN-TK (Kim et al., 2015) 80.11 83.57 86.75 86.00 89.55 88.03 91.30 89.35

NN-TT (Garipov et al., 2016) 80.77 77.44 87.08 82.92 89.14 84.13 91.21 86.64

The original ResNet-32 achieves 93.2% accuracy with 0.46M parameters (He et al., 2016a).

The bold numbers indicate the better option between sequential knowledge distillation (Seq-KD) and end-to end knowledge (E2E-KD) for each setting.

TABLE 5 | Test accuracy of ResNet-32 on CIFAR-10 — comparison between sequential knowledge distillation (Seq-KD) for both baseline low-rank compression (NN-C)

and our TNN-based compression (TNN-C).

Architect.
Compression rate

Architect.
Compression rate

5% 10% 5% 10%

NN-CP (Denton et al., 2014; Lebedev

et al., 2014)

83.19 88.50 TNN-mCP 89.86 91.28

NN-TK (Kim et al., 2015) 80.11 86.73 TNN-mTK 71.34 81.59

NN-TT (Garipov et al., 2016) 80.77 87.08 TNN-mTT 84.26 87.89

The original ResNet-32 achieves 93.2% accuracy with 0.46M parameters (He et al., 2016a).

The bold numbers indicate the better option between traditional low-rank compression and our TNN-based compression.

50–100% more gradient updates to achieve stable performance.
Finally, the result also shows that for each block, Seq-KD achieves
convergence very quickly (and nearly monotonically), which
results in the stair-step pattern since extra tuning of a block does
not improve (or appreciably reduce) performance.

Application on fully-connected layers. We further
demonstrate that our TNN-based compression can apply
flexibly to fully-connected layers, in addition to convolutional
layers. Notice that if we set the filter height/width (i.e.,
H,W) in any decomposition to one, the decomposition can
be used to compress a fully-connected layer. Table 6 shows
the results of applying TNN-based compression to various
tensor decompositions on LeNet-5 (LeCun et al., 1998).
The convolutional layers of the LeNet-5 network are not
compressed nor trained in these experiments, and we use
E2E-KD for knowledge distillation since there are only a
few fully-connected layers at the top of the network. Table 6
shows the fully-connected layers can be compressed to 0.2%

losing only about 2% accuracy. Furthermore, compressing
the fully-connected layers to 1% of their original size reduces
accuracy by less than 1%, demonstrating the extreme efficacy of
TNN-based compression when applied to fully-connected neural
network layers.

7.2. Learning From Scratch
While it is beneficial to have a pre-trained model as reference (see
Table 7 for a comparison), there are scenarios that knowledge
distillation is not applicable: (1) The pre-trained model is simply

TABLE 6 | Test accuracy of LeNet-5 on MNIST.

Compress. rate

Architect. 0.2% 0.5% 1%

TNN-mCP 97.21 97.92 98.65

TNN-mTK 97.71 98.56 98.52

TNN-mTT 97.69 98.43 98.63

We compress all fully-connected layers using TNN-based compression (TNN-C) with

end-to-end knowledge distillation (E2E-KD). The original LeNet-5 achieves 99.31%

test accuracy with 60K parameters (LeCun et al., 1998).

TABLE 7 | Test accuracy of ResNet-32 on CIFAR-10—comparison between

sequential knowledge distillation (Seq-KD) against learning from scratch

(Learn-Scratch) using our TNNs.

Architect.
Seq-KD Learn-Scratch

2% 5% 10% 2% 5% 10%

TNN-mCP 85.70 89.86 91.28 81.41 82.12 82.93

TNN-mTK 61.60 71.34 81.59 60.65 61.46 65.75

TNN-mTT 78.95 84.26 87.89 79.95 81.82 83.08

The original ResNet-32 achieves 93.2% accuracy with 0.46M parameters (He et al.,

2016a).

not available; (2) The model is too deep that a sequential
knowledge distillation is too expensive; (3)We aim to learn TNNs
with even higher expressive power than NNs. In this part, we

Frontiers in Artificial Intelligence | www.frontiersin.org 11 March 2022 | Volume 5 | Article 728761

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Su et al. Tensorial Neural Networks

TABLE 8 | Test accuracy of Wide-ResNet-28-10 on CIFAR-100.

Compress. rate 0.5% 1% 2% 5%

NN-TT (Garipov et al., 2016) 37.02% 54.65% 52.69% 51.42%

NN-CP (Denton et al., 2014; Lebedev et al., 2014) 40.74% 58.04% 56.9% 64.83%

Compression rate 0.33% 0.5% 0.66% 1%

TNN-mTT 61.67% 65.36% 66.82% 68.83%

We compare baseline NNs against our TNNs by training all models from scratch (i.e., without reference models). The original model achieves 81.25% accuracy with 36.5M

parameters (Zagoruyko and Komodakis, 2016).

The bold numbers indicates the performance under the same compression rate.

TABLE 9 | Top-1 test accuracy of ResNet-50 on ImageNet.

Architect.
Compression rate

Architect.
Compression rate

1% 2% 5% 10% 20% 50% 0.5% 1% 5% 10% 20% 50%

NN-CP 57.86% 64.17% 69.37% 71.52% 72.08% 72.44% TNN-mCP 72.65% 73.76% 74.03% 75.00% 75.31% 77.31%

NN-TT 56.82% 62.23% 65.54% 66.21% 66.90% 66.92% TNN-mTT 69.27% 73.04% 73.51% 73.50% 73.87% 74.14%

NN-TR 56.59% 62.97% 69.59% 71.61% 73.04% 73.21% TNN-mTR 67.49% 73.23% 74.12% 75.01% 75.32% 75.16%

We compare baseline NNs against our TNNs by training all models from scratch (i.e., without reference models). The original ResNet-50 model achieves 78.03% Top-1 test

accuracy with 25.6M parameters (He et al., 2016a).

verify that our TNNs are easily trained from scratch for a wide
range of backbone models and datasets.

Wide-ResNet for CIFAR-100. In order to demonstrate that
TNNs are compatible with other backbones (in addition
to ResNet), we evaluate our TNNs with Wide-ResNet
backbone (Zagoruyko and Komodakis, 2016) on the CIFAR-100
dataset. As shown in Table 8, our TNNs (in particular TNN-
mTT), when trained from scratch, already outperform other
state-of-the-art low-rank factorization-based methods.

ResNet for ImageNet-2012. To show that our TNNs scale to
large datasets, we evaluate their performance on the ImageNet-
2012 dataset with a ResNet-50 backbone. The results in
Table 9 show that our TNNs significantly outperform the low-
rank factorization-based methods at each compression rate.
Furthermore, our TNNs maintain very high accuracies given less
than 10% of the parameters of the original ResNet-50.

VGG, ResNet andWide-ResNet with full parameters.While
we use TNNs mostly for model compression in this article, one
remaining question is the performance of TNNs when they have
the same number of parameters as the original model. To answer
this question, we train TNN-mTTfrom scratch with architectures
VGG-16 (Simonyan and Zisserman, 2014), ResNet-34 (He et al.,
2016b) and WRN-28-10 (Zagoruyko and Komodakis, 2016)
on CIFAR-10. As shown in Table 10, TNNs (without hyper-
parameter optimization) match/outperform their original model
(where the hyper-parameters are highly optimized) when their
numbers of parameters are the same.

8. CONCLUSION

In this work, we introduced a new suite of generalized tensor
algebra, which provides systematic notations for generalized
tensor operations (a.k.a., tensor networks). Based on these
generalized tensor operations, we developed a family of tensorial

TABLE 10 | Performance of TNNs vs. NNs counterparts on CIFAR-10.

Acc.
TNN

VGG

NN

VGG

TNN

WRN

NN

WRN

TNN

ResNet

NN

ResNet

Train 100% 100% 100% 100% 100% 100%

Test 93.68% 92.64% 95.09% 95.83% 91.79% 92.49%

NN stands for the uncompressed model proposed by the original paper. All models are

trained from scratch (i.e., without reference models).

layers, extending existing fully-connected/convolutional layers
in traditional neural networks. We constructed tensorial neural
networks (TNNs) using tensorial layers as building blocks, and
empirically showed that our TNNs maintain high predictive
performance even when they contain significantly fewer
parameters than traditional neural networks. Our experiments
on LeNet-5, VGG, ResNet, and Wide-ResNet consistently
verified that our TNNs outperform the state-of-the-art low-rank
architectures under the same compression rate.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found at: https://www.cs.toronto.edu/~kriz/cifar.html;
https://image-net.org/challenges/LSVRC/2012/.

AUTHOR CONTRIBUTIONS

JS developed the core ideas for this article under the guidance of
FH and implemented all tensorial layers. JL and XL coded the
experiments for CIFAR-10 and ImageNet-2012, respectively. TR,
CC, and T-CT helped with the experimental design and assisted
with the paper writing. All authors contributed to the article and
approved the submitted version.

Frontiers in Artificial Intelligence | www.frontiersin.org 12 March 2022 | Volume 5 | Article 728761

https://www.cs.toronto.edu/~kriz/cifar.html
https://image-net.org/challenges/LSVRC/2012/
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Su et al. Tensorial Neural Networks

FUNDING

This research was supported by a startup fund from the

Department of Computer Science at the University of

Maryland, the National Science Foundation IIS-1850220

CRII Award 030742-00001, and DOD-DARPA-Defense
Advanced Research Projects Agency Guaranteeing AI
Robustness against Deception (GARD). FH was also

supported by Adobe, Capital One and JP Morgan
faculty fellowships.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/frai.2022.
728761/full#supplementary-material

REFERENCES

Ba, J., and Caruana, R. (2014). “Do deep nets really need to be deep?” in Advances

in Neural Information Processing Systems, 2654–2662.

Cheng, Y., Wang, D., Zhou, P., and Zhang, T. (2017). A survey of model

compression and acceleration for deep neural networks. arXiv [Preprint]

arXiv:1710.09282.

Cheng, Y., Yu, F. X., Feris, R. S., Kumar, S., Choudhary, A., and Chang, S.-F. (2015).

“An exploration of parameter redundancy in deep networks with circulant

projections,” in Proceedings of the IEEE International Conference on Computer

Vision (Santiago), 2857–2865.

Chollet, F. (2017). “Xception: deep learning with depthwise separable

convolutions,” in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (Honolulu, HI), 1251–1258.

Cichocki, A., Lee, N., Oseledets, I., Phan, A.-H., Zhao, Q., Mandic, D. P.,

et al. (2016). Tensor networks for dimensionality reduction and large-scale

optimization: part 1 low-rank tensor decompositions. Found. Trends R© Mach.

Learn. 9, 249–429. doi: 10.1561/2200000059

Cichocki, A., Phan, A.-H., Zhao, Q., Lee, N., Oseledets, I., Sugiyama, M.,

et al. (2017). Tensor networks for dimensionality reduction and large-scale

optimization: part 2 applications and future perspectives. Found. Trends R©

Mach. Learn. 9, 431–673. doi: 10.1561/2200000067

Cohen, N., and Shashua, A. (2016). “Convolutional rectifier networks as

generalized tensor decompositions,” in International Conference on Machine

Learning (New York, NY), 955–963.

Comon, P., Luciani, X., and De Almeida, A. L. (2009). Tensor decompositions,

alternating least squares and other tales. J. Chemometrics J. Chemometrics Soc.

23, 393–405. doi: 10.1002/CEM.1236

Denton, E. L., Zaremba,W., Bruna, J., LeCun, Y., and Fergus, R. (2014). “Exploiting

linear structure within convolutional networks for efficient evaluation,” in

Advances in Neural Information Processing Systems, 1269–1277.

Garipov, T., Podoprikhin, D., Novikov, A., and Vetrov, D. (2016). Ultimate

tensorization: compressing convolutional and fc layers alike. arXiv preprint

arXiv:1611.03214.

Goyal, S., Choudhury, A. R., and Sharma, V. (2019). “Compression of deep

neural networks by combining pruning and low rank decomposition,” in 2019

IEEE International Parallel and Distributed Processing Symposium Workshops

(IPDPSW) (Rio de Janeiro: IEEE), 952–958.

Grasedyck, L., Kressner, D., and Tobler, C. (2013). A literature survey of

low-rank tensor approximation techniques. GAMM-Mitteilungen 36, 53–78.

doi: 10.1002/GAMM.201310004

Han, S., Mao, H., and Dally, W. J. (2015). Deep compression: Compressing deep

neural networks with pruning, trained quantization and huffman coding. arXiv

preprint arXiv:1510.00149.

Hayashi, K., Yamaguchi, T., Sugawara, Y., and Maeda, S.-i. (2019). “Exploring

unexplored tensor network decompositions for convolutional neural

networks,” in Advances in Neural Information Processing Systems, 5552–5562.

He, K., Zhang, X., Ren, S., and Sun, J. (2016a). “Deep residual learning for image

recognition,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (Las Vegas, NV), 770–778.

He, K., Zhang, X., Ren, S., and Sun, J. (2016b). “Identity mappings in deep residual

networks,” in European Conference on Computer Vision (Amsterdam: Springer),

630–645.

Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the knowledge in a neural

network. arXiv preprint arXiv:1503.02531.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q. (2017). “Densely

connected convolutional networks,” in CVPR, vol. 1 (Honolulu, HI), 3.

Jaderberg, M., Vedaldi, A., and Zisserman, A. (2014). Speeding up convolutional

neural networks with low rank expansions. arXiv preprint arXiv:1405.3866.

Khrulkov, V., Novikov, A., and Oseledets, I. (2018). “Expressive power of recurrent

neural networks,” in International Conference on Learning Representations

(Vancouver, BC).

Kim, Y.-D., Park, E., Yoo, S., Choi, T., Yang, L., and Shin, D. (2015). Compression

of deep convolutional neural networks for fast and low power mobile

applications. arXiv preprint arXiv:1511.06530.

Kolda, T. G., and Bader, B. W. (2009). Tensor decompositions and applications.

SIAM Rev. 51, 455–500. doi: 10.1137/07070111X

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “Imagenet classification

with deep convolutional neural networks,” in Advances in Neural Information

Processing Systems, 1097–1105.

Lam, C.-C., Sadayappan, P., andWenger, R. (1997). On optimizing a class of multi-

dimensional loops with reductions for parallel execution. Parallel Process. Lett.

7, 157–168.

Lebedev, V., Ganin, Y., Rakhuba, M., Oseledets, I., and Lempitsky, V.

(2014). Speeding-up convolutional neural networks using fine-tuned cp-

decomposition. arXiv preprint arXiv:1412.6553.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning

applied to document recognition. Proc. IEEE 86, 2278–2324.

Lee, D.,Wang, D., Yang, Y., Deng, L., Zhao, G., and Li, G. (2021). Qttnet: quantized

tensor train neural networks for 3d object and video recognition. Neural Netw.

141, 420–432. 10.1016/j.neunet.2021.05.034

Lin, M., Chen, Q., and Yan, S. (2013). Network in network. arXiv preprint

arXiv:1312.4400.

Novikov, A., Podoprikhin, D., Osokin, A., and Vetrov, D. P. (2015). “Tensorizing

neural networks,” in Advances in Neural Information Processing Systems, 442–

450.

Orús, R. (2014). A practical introduction to tensor networks: matrix product

states and projected entangled pair states. Ann. Phys. 349, 117–158.

doi: 10.1016/j.aop.2014.06.013

Oseledets, I. V. (2011). Tensor-train decomposition. SIAM J. Sci. Comput. 33,

2295–2317. doi: 10.1137/090752286

Pfeifer, R. N., Haegeman, J., and Verstraete, F. (2014). Faster identification of

optimal contraction sequences for tensor networks. Phys. Rev. E 90, 033315.

doi: 10.1103/PhysRevE.90.033315

Romero, A., Ballas, N., Kahou, S. E., Chassang, A., Gatta, C., and Bengio, Y. (2014).

Fitnets: Hints for thin deep nets. arXiv preprint arXiv:1412.6550.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning

representations by back-propagating errors. Nature 323, 533–536.

doi: 10.1038/323533a0

Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556.

Sindhwani, V., Sainath, T., and Kumar, S. (2015). “Structured transforms for small-

footprint deep learning,” in Advances in Neural Information Processing Systems,

3088–3096.

Su, J., Byeon, W., Kossaifi, J., Huang, F., Kautz, J., and Anandkumar, A. (2020).

“Convolutional tensor-train lstm for spatio-temporal learning,” in Advances in

Neural Information Processing Systems, 33.

Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A. A. (2017). “Inception-v4,

inception-resnet and the impact of residual connections on learning,” in AAAI,

vol. 4 (San Francisco, CA), 12.

Frontiers in Artificial Intelligence | www.frontiersin.org 13 March 2022 | Volume 5 | Article 728761

https://www.frontiersin.org/articles/10.3389/frai.2022.728761/full#supplementary-material
https://doi.org/10.1561/2200000059
https://doi.org/10.1561/2200000067
https://doi.org/10.1002/CEM.1236
https://doi.org/10.1002/GAMM.201310004
https://doi.org/10.1137/07070111X
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1137/090752286
https://doi.org/10.1103/PhysRevE.90.033315
https://doi.org/10.1038/323533a0
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Su et al. Tensorial Neural Networks

Wang, D., Zhao, G., Li, G., Deng, L., and Wu, Y. (2020). Compressing

3dcnns based on tensor train decomposition. Neural Netw. 131, 215–230.

doi: 10.1016/j.neunet.2020.07.028

Wang, W., Sun, Y., Eriksson, B., Wang, W., and Aggarwal, V. (2018). “Wide

compression: tensor ring nets,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (Salt Lake City, UT), 9329–9338.

Wu, B., Iandola, F. N., Jin, P. H., and Keutzer, K. (2017). “Squeezedet: unified,

small, low power fully convolutional neural networks for real-time object

detection for autonomous driving,” in CVPR Workshops (Honolulu, HI), 446–

454.

Yang, Y., Krompass, D., and Tresp, V. (2017). “Tensor-train recurrent neural

networks for video classification,” in International Conference on Machine

Learning (Sydney, NSW: PMLR), 3891–3900.

Yang, Z., Moczulski, M., Denil, M., de Freitas, N., Smola, A., Song, L., and Wang,

Z. (2015). “Deep fried convnets,” in Proceedings of the IEEE International

Conference on Computer Vision (Santiago), 1476–1483.

Ye, J., Li, G., Chen, D., Yang, H., Zhe, S., and Xu, Z. (2020). Block-term

tensor neural networks. Neural Netw. 130, 11–21. doi: 10.1016/j.neunet.2020.

05.034

Yu, R., Zheng, S., Anandkumar, A., and Yue, Y. (2017). Long-term forecasting

using higher order tensor rnns. arXiv preprint arXiv:1711.00073.

Zagoruyko, S., and Komodakis, N. (2016). Wide residual networks. arXiv preprint

arXiv:1605.07146.

Zhang, T., Qi, G.-J., Xiao, B., and Wang, J. (2017). “Interleaved group

convolutions,” in Proceedings of the IEEE International Conference on Computer

Vision (Venice), 4373–4382.

Zhang, X., Zou, J., Ming, X., He, K., and Sun, J. (2015). “Efficient and accurate

approximations of nonlinear convolutional networks,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (Boston, MA),

1984–1992.

Zhao, Q., Zhou, G., Xie, S., Zhang, L., and Cichocki, A. (2016). Tensor ring

decomposition. arXiv preprint arXiv:1606.05535.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Su, Li, Liu, Ranadive, Coley, Tuan and Huang. This is an open-

access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Artificial Intelligence | www.frontiersin.org 14 March 2022 | Volume 5 | Article 728761

https://doi.org/10.1016/j.neunet.2020.07.028
https://doi.org/10.1016/j.neunet.2020.05.034
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

	Compact Neural Architecture Designs by Tensor Representations
	1. Introduction
	2. Related Work
	3. Generalized Tensor Algebra
	4. Tensorial Neural Networks (TNNs)
	4.1. Tensorial vs. Convolutional Layers
	4.2. Relationships Between Tensorial and Convolutional Layers

	5. Algorithms for TNNs
	5.1. Prediction With TNNs
	5.2. Learning TNNs
	5.3. Compression via Knowledge Distillation

	6. Interpretation of Existing Compact Architectures
	7. Experiments
	7.1. Knowledge Distillation
	7.2. Learning From Scratch

	8. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

