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Background: The electrocardiogram is an integral tool in the diagnosis of

cardiovascular disease. Most studies on machine learning classification of

electrocardiogram (ECG) diagnoses focus on processing raw signal data rather

than ECG images. This presents a challenge formodels inmany areas of clinical

practice where ECGs are printed on paper or only digital images are accessible,

especially in remote and regional settings. This study aims to evaluate the

accuracy of image based deep learning algorithms on 12-lead ECG diagnosis.

Methods: Deep learning models using VGG architecture were trained on

various 12-lead ECG datasets and evaluated for accuracy by testing on holdout

test data as well as data from datasets not seen in training. Grad-CAM was

utilized to depict heatmaps of diagnosis.

Results: The results demonstrated excellent AUROC, AUPRC, sensitivity and

specificity on holdout test data from datasets used in training comparable to

the best signal and image-based models. Detection of hidden characteristics

such as gender were achieved at a high rate while Grad-CAM successfully

highlight pertinent features on ECGs traditionally used by human interpreters.

Discussion: This study demonstrates feasibility of image based deep learning

algorithms in ECG diagnosis and identifies directions for future research in

order to develop clinically applicable image based deep-learning models in

ECG diagnosis.
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1. Introduction

The electrocardiogram (ECG) is an essential tool in diagnoses of cardiovascular

diseases which are a leading cause of death worldwide (Collaborators GBDCoD, 2018).

As ECGs have transitioned from analog to digital, automated computer analysis has

gained traction and success in diagnoses of medical conditions (Willems et al., 1987;

Schlapfer and Wellens, 2017). Deep learning methods have shown excellent diagnostic

performance on classifying ECG diagnoses using signal data, even surpassing individual

cardiologist performance in some studies. For example, one study which used raw ECG

data created a deep neural network (DNN) which performed similarly to or better than

the average of individual cardiologists in classifying 12 different rhythms, including

atrial fibrillation/flutter, atrioventricular block, junctional rhythm, and supra/ventricular
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tachycardia in single lead ECGs (Hannun et al., 2019). Other

studies used signal data from 12-lead ECGs with excellent results

in arrhythmia classification (Baek et al., 2021).

While automated diagnoses of ECGs provide great promise

in improving workflow many, developed models have focused

on the diagnosis of singular clinical pathology, limiting utility

as ECGs may have multiple abnormalities simultaneously (Biton

et al., 2021; Raghunath et al., 2021). Further, most tools are based

off analysis of raw signal data (Hannun et al., 2019; Hughes et al.,

2021; Sangha et al., 2022). This presents a challenge formodels in

many areas of clinical practice where ECGs are printed on paper

or only digital images are accessible, especially in remote and

regional settings where often there is the largest lack of access

to speciality medical opinion (Schopfer, 2021). In such areas,

imaged based deep learning models for ECG recognition would

FIGURE 1

Example of an ECG image generated from the signal data of one sample in the dataset.

FIGURE 2

Example of an ECG image after grayscale conversion and adaptive thresholding.

serve best of which there are few studies in the literature. One

study developed an image based model to differential between

normal or abnormal ECGs while another achieved 99.05%

average accuracy and 97.85% average sensitivity for 7 cardiac

conditions based off analysis of individual ECG beats (Jun et al.,

2018). A recent paper created a model superior to signal based

imaging achieving area under the received curve (AUROC) of

0.99 and area under Precision-Recall curve (AUPRC) 0.86 for 6

clinical disorders (Sangha et al., 2022).

To the best of our knowledge, this study is the first to train a

convolutional neural network (CNN) capable of classifying raw

images of 12-lead ECGs for 10 pathologies. The method used

in this experiment differs from most other studies in that ECG

image data is directly used to train and test deep learning models

as opposed raw signal data or transformations of signal data.
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FIGURE 3

Example of an activation heatmap for an ECG showing WPW.

FIGURE 4

Example of an activation heatmap for an ECG showing myocardial infarction.

2. Materials and methods

2.1. Datasets

The primary dataset used for model development and

evaluation was PTB-XL. We also tested for external validity of

models across different unseen datasets, as well as with different

datasets in combination.

The following publicly available ECG datasets were used:

• PTB-XL (PTB) (Wagner et al., 2020).

• CPSC 2018 database (CPSC) (Liu et al., 2018).

• 12-lead ECG database for arrhythmia research from

Chapman University and Shaoxing People’s Hospital

(Shaoxing) (Zheng et al., 2020).

• Test dataset for: Automatic multi-label ECG diagnosis of

impulse or conduction abnormalities in patients with deep

learning algorithm: a cohort study (Tongji) (Zhu et al.,

2020).

Each dataset contained raw 10-s 12-lead ECG signal

waveform data with corresponding diagnostic labels.

2.2. Data pre-processing

For each individual ECG sample, an image was generated by

plotting the signal data. We used the Python ECG plot library

(dy1901, 2022), which generates 12-lead ECG images resembling

ECG displays and print-outs commonly used in clinical practice.
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FIGURE 5

Example of an activation heatmap for an ECG showing LBBB.

An example is shown in Figure 1. Images were processed at 1,600

× 512 resolution.

The images were then converted to grayscale, then binarised

using simple thresholding, Otsu thresholding, and adaptive

thresholding. A binarised copy was saved for each of the

thresholding techniques. For further data augmentation, a

slightly blurred vision of the grayscale image was created, and

the aforementioned thresholding techniques were also applied.

In total, eight augmented copies of each original ECG image was

generated. An example of an image after grayscale conversion

and adaptive thresholding is shown in Figure 2.

2.3. Classification task overview

Binary classification models were trained predict the

presence and absence of:

• Normal ECG (NORM).

• Left bundle branch block (LBBB).

• Right bundle branch block (RBBB).

• Atrial fibrillation (AFIB).

• Atrial flutter (AFLT).

• First degree AV block (fAVB).

• Myocardial infarction (MI).

• Wolff-Parkinson White (WPW).

• Supraventricular tachycardia.

Models were trained using the PTB-XL dataset and

evaluated on holdout test data from PTB-XL (Table 1).

Additionally, models were also tested on ECG images from

other datasets not involved in training. Further testing was

done on combined datasets, where matching diagnostic labels

were present (Table 2).

TABLE 1 Test results of models trained on PTB-XL ECGs and tested on

a holdout test set from PTB-XL.

Diagnosis AUPRC AUROC Sensitivity Specificity

AFIB 0.999 1.000 0.992 0.999

AFLT 0.985 0.989 1.000 0.964

AMI 0.9895 0.991 0.977 0.944

AVB 0.979 0.985 0.969 0.940

IMI 0.981 0.983 0.948 0.9162

LMI 0.540 0.511 0.349 0.632

LVH 0.934 0.971 0.897 0.954

MI 0.988 0.989 0.960 0.940

NORM 0.997 0.998 0.980 0.980

PVC 0.984 0.986 0.950 0.970

RBBB 1.000 1.000 0.996 1.000

sAVB 0.860 0.960 0.800 0.933

Sex (Female) 0.997 0.996 0.985 0.954

SVT 1.000 1.000 0.875 1.000

tAVB 0.848 0.946 1.000 0.867

AFIB, atrial fibrillation; AFLT, atrial flutter; AMI, anterior myocardial infarction; AVB,

atrioventricular block; IMI, inferior myocardial infarction; LMI, lateral myocardial

infarction; LVH, left ventricular hypertrophy; MI, myocardial infarction; NORM,

normal; PVC, premature ventricular contractions; RBBB, right bundle branch block;

sAVB, 2nd degree atrioventricular block; SVT, supraventricular tachycardia; tAVB, total

atrioventricular block.

For each training run, the included samples from all

datasets were randomly shuffled, and split into training,

validation and holdout test sets, with splits of 0.8, 0.1, and

0.1 respectively.
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TABLE 2 Test results of models trained on combined datasets and tested on holdout data from the combined datasets.

Diagnosis Dataset combination AUPRC AUROC Sensitivity Specificity

AFIB PTB+ CPSC+ Shaoxing 0.994 0.999 0.970 1.00

fAVB PTB+ CPSC+ Shaoxing 0.985 0.987 0.95 0.960

LBBB PTB+ CPSC+ Shaoxing 0.987 0.999 0.940 1.000

RBBB PTB+ CPSC+ Shaoxing 0.298 0.739 0.460 0.850

MI PTB+ Shaoxing 0.954 0.987 0.800 0.990

SVT PTB+ Shaoxing 0.980 1.000 0.950 1.000

WPW PTB+ Shaoxing+ Tongji 0.756 0.842 0.930 0.370

AFIB, atrial fibrillation; fAVB, 1st degree AV block; LBBB, left bundle branch block; RBBB, right bundle branch block; MI, myocardial infarction; SVT, supraventricular tachycardia; WPW,

Wolf Parkinson White.

2.4. Model architecture and training

Model were built on VGG16 architecture with Imagenet pre-

trained weights. The original classification layer was removed

and replaced with a classification head consisting of a global

average pooling 2D layer, a dropout layer for training,

followed by a fully connected layer with one output and

sigmoid activation.

The classification head was initially trained for up to

10 epochs with early stopping, while all other layers were

frozen. The entire model was then unfrozen, and trained until

no further drop in validation loss was seen (early stopping

with patience of 6). The learning rate was 1 × 10∧-5. A

learning rate schedule involving reducing the learning rate when

the validation loss plateaued was trialed, without significant

improvement of results. For most training instances, binary

cross-entropy loss was used. We also experimented with focal

loss for highly imbalanced datasets.

3. Results

The models demonstrated good performance when tested

on unseen holdout test data from the original datasets used

on training. Generalization to unseen, external datasets was

poorer. Performance of models trained on a combination of

different datasets mixed together showed good performance on

holdout test splits containing the mixed datasets. The results are

summarized in table below.

3.1. Visual explanation

Gradient-weighted Class Activation Mapping (Grad-CAM)

creates a heatmap to visualize areas of the image which are

important in predicting its class. A few examples are illustrated

below with Figure 3 demonstrating delta waves in WPW,

Figure 4 demonstrating ST segment changes in MI and Figure 5

highlighting deep broad S waves in V1 for LBBB.

4. Discussion

Our model demonstrated strong diagnostic performance

on unseen ECGs sampled from the same population(s) and

dataset(s) as that used for model training. This high level

of internal validity has been reflected in the literature from

previous computer vision-based models (Mohamed et al., 2015;

Jun et al., 2018; Sangha et al., 2022). Jun et al. using a two-

dimensional CNN detected different individual ECG beats to

examine 7 unique cardiac arrhythmias while Sangha et al.

created amodel based on Efficientnet B3 architecture to examine

6 disorders with equivalent to superior performance compared

to signal-based methods. In comparison, our model examined

up to 13 diagnoses, was built on combinations of datasets

and evaluated more datasets when examining external validity.

Table 3 shows results from this model were comparable to the

other recent image-based studies and 12-lead ECG signal based

work. Additionally, some of the most accurate single pathology

signal-based models e.g., for atrial fibrillation have comparable

findings to this study (AUROC 0.997 vs. 1 and Sensitivity

of 0.985 to 0.992) (Jo et al., 2021). While demonstrating

comparable accuracy, this study improves upon several signal-

based studies in the literature focusing on individual pathologies

or single leads that are consequently limited with 12 lead

readings as well as ECGs with multiple pathologies (Javadi et al.,

2013; Biton et al., 2021; Raghunath et al., 2021).

A great advantage presented by our model is that current

deep learning tools primarily rely in signal data which has

not been optimized for lower resources setting such as a rural

and remote environment. A large majority of ECGs in current

practice are either printed or scanned as images which limits

the utility of signal-based models. Additionally, while many

models have been designed to accurately detect individual

disorders, ECGs with multiple co-existing abnormalities present

a challenge. Further, the model also demonstrates consistent

and superior performance compared to previous image-based

studies in identifying the gender of patients from ECGs from

both internal and external datasets, suggesting that hidden
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TABLE 3 Comparison of image and signal based ECG recognition algorithms.

Work Architecture Database Diagnoses Label AUROC AUPRC Sens Spec

Mohamed et al. (2015) Multilayer Perceptron (MLP) Random sample

N = 20

Normal, abnormal Cardiac pathology Not reported Not reported 0.99 0.99

Jun et al. (2018) VGGNet 2D CNN MIT-BIH

N = 106,501

Normal, LBBB, RBBB,

PVC, PB, APC, VF, VEB

Cardiac pathology 0.989 Not reported 0.978 0.996

Sangha et al. (2022) EfficientNet B3 TNMG

N = 2,228,236

Normal, LBBB, RBBB,

AF, fAVB, SB, ST

Hold out set

Cardiac pathology 0.992 0.725 0.817 0.992

Gender 0.934 0.905 0.849 0.875

Cardiologist validated set

Cardiac pathology 0.997 0.915 0.930 0.995

Gender 0.890 0.845 0.798 0.826

External set (PTB–XL)

Cardiac pathology 0.981 0.776 0.805 0.989

Gender 0.899 0.904 0.876 0.738

Real world–lake regional hospital

Cardiac pathology 0.984 0.935 0.909 0.980

Real world–web based

Cardiac pathology 0.932 0.799 0.905 0.949

Gender 0.778 0.784 0.909 0.516

This study VGG16 PTB-XL

N = 21,801

Normal, LBBB, RBBB,

AF, AFLT, fAVB, AMI,

IMI, LMI, WPW, SVT,

sAVB, tAVB, PVC, LVH

Hold out set

Cardiac pathology 0.982 0.967 0.950 0.954

Gender 0.996 0.997 0.985 0.954

Signal based algorithms−12-lead ECG

Ribeiro et al. (2020) TNMG

N = 2,228,236

fAVB, RBBB, LBBB, SB,

AF, ST

Cardiac pathology Not reported Not reported 0.935 0.997

Zhu et al. (2020) 3 Clinical sites

N = 180,112

AF, AFLT, JR, PVC, IVR,

VT, PB, LBBB, WPW

Cardiac pathology 0.983 Not reported 0.867 0.995

fAVB, 1st degree AV block; sAVB, 2nd degree AV block; tAVB, total AV block; AF, atrial fibrillation; AFLT, atrial flutter; AMI, anterior myocardial infarction; IMI, inferior myocardial infarction; LMI, lateral myocardial infarction; APC, atrial premature

contraction beat; AUPRC, area under precision recall curve; AUROC, area under receiver operator characteristic curve; IVR, idioventricular rhythm; JR, junctional rhythm; LBBB, left bundle branch block; NPV, negative predictive value; PB, paced beat;

PPV, positive predictive value; PVC, premature ventricular contractions; RBBB, right bundle branch block; SB, sinus bradycardia; ST, sinus tachycardia; SVT, supraventricular tachycardia; VEB, ventricular escape beat; VF, ventricular flutter wave beat;

WPW, Wolf Parkinson White; LVH, left ventricular hypertrophy; AUROC, area under the received curve; AUPRC, area under Precision-Recall curve; Sens, sensitivity; Spec, specificity.
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FIGURE 6

Example of an activation heatmap for an ECG showing First Degree AV Block.

TABLE 4 Test results of models tested on separate, unseen datasets than those used in training.

Diagnosis Training datasets External datasets AUPRC AUROC Sensitivity Specificity

AFIB PTB+ CPSC Tongji 0.203 0.766 0.510 0.880

AFIB PTB+ CPSC Shaoxing 0.231 0.613 0.760 0.400

AFIB PTB+ CPSC Shaoxing 0.582 0.842 0.640 0.940

AFIB PTB+ CPSC+ Shaoxing Tongji 0.080 0.549 0 1.000

fAVB PTB+ CPSC+ Shaoxing Tongji 0.249 0.824 0.5 0.920

fAVB PTB+ CPSC+ Shaoxing Georgia 0.697 0.956 0.790 0.940

LBBB PTB Testcohort 1.000 1.000 0.996 1.000

MI PTB Georgia 0.308 0.868 1.000 0.270

MI PTB Shaoxing+ Georgia 0.374 0.888 0.950 0.310

MI PTB Shaoxing 0.403 0.908 0.940 0.350

NORM PTB Testcohort 0.187 0.867 0.690 0.850

NORM PTB Shaoxing 0.247 0.728 0.420 0.810

NORM PTB CPSC 0.415 0.874 0.770 0.820

PVC PTB Tongji 0.461 0.889 0.820 0.840

RBBB PTB CPSC 0.934 0.971 0.8967 0.954

WPW PTB+ Shaoxing Tongji 0.751 0.945 0.820 0.920

AFIB, atrial fibrillation; fAVB, 1st degree AV block; LBBB, left bundle branch block; MI, myocardial infarction; NORM, normal; PVC, premature ventricular contractions; RBBB, right

bundle branch block; WPW, Wolf Parkinson White.

features can be recognized accurately as demonstrated in signal-

based models (Attia et al., 2019; Kim and Pyun, 2020). This

provides great promise as ECG data is increasingly collected

with other observations and vital signs which may be utilized

via algorithms.

Our model incorporated the use of Gradient-weighted Class

Activation Mapping (Grad-CAM) to highlight the regions in

an image predicting a given label. This also allowed evaluation

of whether the assigned labels identified clinically relevant

information or were founded in heuristics from spurious data

features (DeGrave et al., 2020). We found there was large

correspondence with features used in human interpretation

of ECGs. For example, Grad-CAM highlighted delta waves

in WPW (Figure 3), ST segment changes in MI (Figure 4),

deep broad S waves in V1 for LBBB (Figure 5), prolonged PR

segments in 1st deg AV block (Figure 6), and QRS without
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P waves in AF, and. In few cases, it was less relatable to

human diagnosis, e.g., highlighting the area following an

ectopic beat rather than the abnormally large QRS complexes

which would normally stand out to human interpreters. These

occurred in a small percentage and may be improved on

using more model training across a variety of data sets or

integrating other technologies such as HiResCAM (Draelos

and Carin, 2020). In application, by presenting a heatmap, it

provides context and evidence demonstrating how the diagnosis

was achieved. This allows the clinician to make a visually

informed decision about the algorithm diagnosis assisting

in potential better integration into routine clinical practice

(Makimoto et al., 2020).

In terms of computational complexity, our study had

PC specifications of Ryzen 9 5900x CPU, RTX 3080 and

3080 Ti, and 64 GB RAM running on Linux Mint. Training

times took from 18 to 36 h for fine tuning of VGG 16 for

binary classification of each diagnosis label individually, until

stopped by the early stopping callback based on plateauing

validation AUROC. Inference times were in the range of 3–

5 s per diagnosis label for each image. Although not previously

reported in imaged based algorithm studies, it demonstrates

that while model training can be relatively time consuming to

train, the output is reached in a timely manner. Previously,

computerized interpretations of ECGs have been shown to

reduce analysis times and such findings highlights the potential

for incorporation of computer vision algorithms into routine

clinical care as an adjunct for diagnosis and decision making

(Schlapfer and Wellens, 2017).

4.1. Future work and limitations

The models were not as accurate when applied unseen

external datasets-this may be due to differences in labeling

criteria for diagnoses between the datasets, or variances in ECG

quality. Nonetheless, some diagnostic labels were accurately

classified with unseen external datasets (e.g., LBBB, RBBB and

WPW) as shown in Table 4, which shows that this technology

has the potential to be useful on unseen datasets, given a

sufficient amount of training data and more consistent labeling

of training data. Accuracy could be better improved with

further pre-processing steps such as shuffling positions of

different leads on the image to help the model learn the

relevance of different leads, and inclusion of even more different

independent datasets. We could also explore the effect of

adding additional clinical information known to clinicians

at time of ECG interpretation, such as age, gender, weight

and height and evaluate accuracy with such data and image-

based algorithms could bolster disease stratification models.

Combination in architectures between papers may further hold

superior results.

5. Conclusion

This research demonstrates that computer vision AI

models can diagnose conditions on ECG with good accuracy.

Future research which could bring this technology closer

to clinical application could focus on developing models

which can generalize to a wide range of ECG image

formats from various sources and cover a wider range of

relevant clinical diagnoses. Additional diagnoses which would

be of interest clinically would include diagnosing STEMI

in patients with LBBB or pacemaker, differentiating SVT

with aberrancy vs. VT, and specific subtypes of AV block.

Furthermore, models could be developed to be applicable to

different ECG formats or styles. The techniques demonstrated

here could also be applied for novel practical applications,

such as smartphone applications to diagnose photos of

ECGs, or in telehealth. Overall, classification performance on

ECG images using deep CNNs is comparable to the best

models using raw ECG signal holdout test data from the

same dataset.
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