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Cardiac computed tomography angiography (CTA) is an emerging imaging

modality for assessing coronary artery as well as various cardiovascular

structures. Recently, deep learning (DL) methods have been successfully

applied to many applications of medical image analysis including cardiac CTA

structure segmentation. However, DL requires a large amounts of data and

high-quality labels for training which can be burdensome to obtain due to

its labor-intensive nature. In this study, we aim to develop a fully automatic

artificial intelligence (AI) system, named DeepHeartCT, for accurate and rapid

cardiac CTA segmentation based on DL. The proposed system was trained

using a large clinical dataset with computer-generated labels to segment

various cardiovascular structures including left and right ventricles (LV, RV), left

and right atria (LA, RA), and LVmyocardium (LVM). This new systemwas trained

directly using high-quality computer labels generated from our previously

developed multi-atlas based AI system. In addition, a reverse ranking strategy

was proposed to assess the segmentation quality in the absence of manual

reference labels. This strategy allowed the new framework to assemble optimal

computer-generated labels from a large dataset for e�ective training of a deep

convolutional neural network (CNN). A large clinical cardiac CTA studies (n

= 1,064) were used to train and validate our framework. The trained model

was then tested on another independent dataset with manual labels (n = 60).
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The Dice score, Hausdor� distance and mean surface distance were used to

quantify the segmentation accuracy. The proposed DeepHeartCT framework

yields a high median Dice score of 0.90 [interquartile range (IQR), 0.90–

0.91], a low median Hausdor� distance of 7mm (IQR, 4–15mm) and a low

mean surface distance of 0.80mm (IQR, 0.57–1.29mm) across all segmented

structures. An additional experiment was conducted to evaluate the proposed

DL-based AI framework trained with a small vs. large dataset. The results

show our framework also performed well when trained on a small optimal

training dataset (n = 110) with a significantly reduced training time. These

results demonstrated that the proposed DeepHeartCT framework provides

accurate and rapid cardiac CTA segmentation that can be readily generalized

for handling large-scale medical imaging applications.

KEYWORDS

cardiac computed tomography, heart segmentation, multi-atlas segmentation,

convolutional neural network, deep learning

Introduction

Cardiac computed tomography angiography (CTA) is

emerging as a non-invasively main-stream imaging modality for

measuring the morphological changes of the heart and coronary

arteries for diagnosing cardiovascular disease. CTA imaging

opens new demands and opportunities on image analysis and

clinical reporting. The quantitative assessment of different

cardiovascular structures involves volumetric measurement of

the ventricles, atria, left ventricular myocardium, and other

great vessels from the CTA images. In practice, manual

delineation by trained medical professionals remains the main

approach to quantify these anatomical volume sizes on CTA

images. This approach is tedious, subject to user variability,

and very time consuming for domain experts to perform on

large-scale clinical studies. A fully automatic segmentation

which improves objectivity and reproducibility is highly

desirable for the quantitative evaluation of different volumetric

cardiac structures.

Accurate and reliable automatic whole heart segmentation

in cardiac CTA remains challenging and is an active area

of research (Zhuang et al., 2019; Habijan et al., 2020). A

Abbreviations: AI, artificial intelligence; CLG, computer label generator;

CNN, convolutional neural network; CTA, computed tomography

angiography; DL, deep learning; GPU, graphics processing unit; HD,

Hausdor� distance; IQR, interquartile range; LA, left atrium; LV, left

ventricle; LVM, LV myocardium; MR, magnetic resonance; MAS, multi-

atlas segmentation; MMWHS, Multi-Modality Whole Heart Segmentation;

MSD, mean surface distance; NHLBI, national heart lung and blood

institute; OLS, optimal label selector; RA, right atrium; RV, right ventricle;

RR, reverse ranking; SGD, stochastic gradient descent; SL, strong label;

sWL, synthetic weak label; WL, weak label.

comprehensive review of existing automatic methods for cardiac

CTA image segmentation was presented in (Bui et al., 2020a,b;
Habijan et al., 2020) which includes several deep learning (DL)

methods (Payer et al., 2017; Yang X. et al., 2017; Liu et al.,

2019; Ye et al., 2019; Baskaran et al., 2020) and multi-atlas

segmentation (MAS) methods (Kirişli et al., 2010; van Rikxoort

et al., 2010; Zuluaga et al., 2013; Yang et al., 2014; Zhuang

et al., 2015; Zhuang and Shen, 2016; Yang G. et al., 2017;

Katouzian et al., 2018; Wang et al., 2018). Compared with MAS

methods, DL based approaches have become more popular and

demonstrated higher accuracy with a faster inference time. Zhao

et al. proposed a DLmethod based on landmark registration and

3D fully convolutional network (Zhao et al., 2019). Several works

used U-Net based architecture for whole heart segmentation in

cardiac CTA (Payer et al., 2017; Liu et al., 2019; Ye et al., 2019;

Baskaran et al., 2020). Vigneault et al. introduced Omega-Net

consisting of a set of U-Net for heart segmentation in cardiac

magnetic resonance (MR) images (Vigneault et al., 2018). Ye

et al. presented a multi-depth fused with deeply supervised

mechanism U-Net to segment seven cardiac structures in CTA

images (Ye et al., 2019). Ding et al. proposed a CAB U-Net

which added a category attention boosting module into U-Net

to enhance the gradient flow in the network in cardiac MR

and CTA applications (Ding et al., 2020). A semi-supervised

Dual-Teacher and Dual-Teacher++ was introduced by Li et al.

to use unlabeled and cross-modality data to segment cardiac

CTA images (Li et al., 2020, 2021). A similar semi-supervised

approach using few-shot learning was also presented by Wang

et al. (2021).

Recently, deep learning (DL) based methods have

shown great promise in medical image processing and

analysis. They have achieved superior performance in various

clinical applications with different imaging modalities (Shen

et al., 2017). DL methods have the potential to provide
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faster segmentation and higher accuracy, compared to

the conventional computer vision approaches, such as

the deformable model-based algorithms and multi-atlas

segmentation methods. However, DL requires a large amount

of labeled data for training which is difficult to obtain in

medical imaging field since the manual annotation requires

significant time and efforts from domain experts. In practice,

human observers evaluate the image quality and manual

delineate over hundreds of slices in a CTA study to obtain

ground truth segmentation. This process is extremely labor-

intensive and can introduce bias and variability especially

in large-scale cohort studies. Therefore, manually labeled

data is costly, highly subjective and time consuming. On

the other hand, while DL based methods may produce high

segmentation efficiency and accuracy for in-domain data,

they may cause extraneous regions and other non-physical

artifacts when applied to cross-domain new data. Correcting

such errors would require carefully designed post-processing

steps and sometimes experts’ manual efforts (Kong et al.,

2021).

To overcome aforementioned shortcomings, we propose a

fully automatic artificial intelligence (AI) hybrid framework,

named DeepHeartCT, for multi-structure CTA segmentation

which is trained by using high-quality computer-generated

labels based on a label generator developed in our previous

works (Bui et al., 2018, 2020a,b). The proposed framework

combines several novel techniques includes multi-atlas

segmentation, reverse ranking and convolutional neural

network. The reverse ranking technique leverages a reverse

classification scheme (Valindria et al., 2017) which measures the

segmentation performance in the absence of reference labels.

This allows the system to obtain a better subset of computer-

generated labels to further improve the model performance.

In addition, we will investigate the impact of the training data

quality as well as quantity for the performance of the proposed

framework based on a large cardiac CTA dataset.

Materials and methods

Clinical dataset

The dataset consists of 1,124 clinical cardiac CTA scans

of patients with suspected cardiovascular diseases referred

to National Heart, Lung, and Blood Institute (NHLBI). All

CTA exams were performed under procedures and protocols

approved by the Institutional Review Board of the National

Institutes of Health. Written informed consent was obtained

from all subjects prior to participating in the study. All

CTA studies were performed on a 320-detector row scanner

(Aquillion One Genesis, Canon Medical Systems, Japan) with

0.5mm detector collimation, 275 msec gantry rotation time,

100–120 kVp tube voltage, 200–850mA tube current according

to patient’s attenuation profile determined by the scout image.

Contrast material dose was 50–70mL administered at a flow rate

of 5.0–5.5 mL/sec and adjusted for body habitus. Prospective

ECG-triggered image acquisition was initiated by a target

threshold of 350–400 HU in the descending aorta. For each

dataset, images were reconstructed at a 75% phase window

around diastole in the cardiac cycle with a matrix size of 512 ×

512 and an average pixel size 0.36×0.36 (from 0.26 × 0.26 to

0.43× 0.43) mm2. Each study contains 240–520 images with an

average slice thickness of 0.33 (from 0.25 to 0.5) mm.

Among the 1,124 cases, 60 cases were manually labeled by

two trained observers using a custom developed interactive

image analysis software and reviewed by experienced

cardiologists as the reference standard. There were 12

cardiovascular structures labeled in each study as described in

our previous work (Bui et al., 2020a,b). In this paper, we will

focus on five main cardiovascular structures which include

left and right ventricular cavity (LV, RV), left and right atrial

cavity (LA, RA), and left ventricular myocardium (LVM).

The remaining 1,064 case were used to develop and train the

proposed framework.

DeepHeartCT: A hybrid multi-atlas,
reverse ranking and CNN framework

Deep learning (DL) methods have been demonstrated

great potential in whole heart segmentation, though several of

them reported poor results in a blinded evaluation (Zhuang

et al., 2019). The performance of DL-based methods could

vary greatly across different network structures and training

strategies. In addition, DL requires a large training dataset which

is often difficult to obtain especially in medical field due to

the availability of sufficiently large, curated, and representative

training data that requires expert’s labeling (e.g., annotations).

On the other hand, conventional approaches, mainly based on

multi-atlas segmentation (MAS), showed a reliable and stable

performance while only required a smaller training dataset,

though the accuracy and computational efficiency is often

lower than DL approaches. However, as demonstrated in our

previous works (Bui et al., 2020a,b), the combined multi-atlas

and corrective segmentation (CMACS) framework based on the

multi-atlas approach does not suffer from reduced accuracy

as well as computational deficiency like in previous MAS-

based methods.

In this work, we proposed to use our previous CMACS

framework as a computer label generator to create labeled

dataset for DL training, thus remove the need for domain

experts to manual label and contour the training dataset. In

addition, we presented a reverse ranking (RR) technique to

evaluate the quality of these computer-generated labels in the

absence of manual labels. This RR approach is designed to
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FIGURE 1

Flow diagram of the proposed DeepHeartCT framework: A hybrid CMACS and CNN based framework for fully automatic cardiac CTA image

labeling, quality assurance, fast and accurate segmentation.

grade the quality of computer generated labels, so to remove

less accurate labels and retain the higher quality ones for DL

training. In our implementation, we utilized a U-net based

deep learning architecture, trained it on high-quality computer

generated labels, and validated the model on expert manual

labels. Figure 1 shows the flow diagrams of the proposed

DeepHeartCT framework which is a hybrid system combining

the CMACS and convolutional neural network (CNN) for fully

automatic cardiac CTA image segmentation. Each green block in

Figure 1 will be further elaborated in the following subsections.

Computer label generator

The CLG of the DeepHeartCT framework was part of

our CMACS framework (Bui et al., 2018, 2020a,b). The

CMACS framework consists of three core processing blocks:

(1) bounding box detection, (2) multi-atlas segmentation, and

(3) corrective segmentation, to perform simultaneous multi-

structure heart and peripheral tissue segmentation.

First, the bounding box detection is used to identify the

confined region that contains the whole heart. A series of image

processing steps based on supervoxel and region segmentation

are used to identify the six faces of a 3D bounding box containing

the whole heart in a CTA image volume. Second, the multi-atlas

segmentation begins with a fast strategy to select an optimal

subset of atlases from an atlas library. This is performed by

matching structural similarities (Achanta et al., 2012) between

a given target image and all images in the atlas library to

select an optimal set of nine atlas images. A pairwise atlas-

to-target deformable image registration is then performed on

each selected atlas to obtain a non-linear transformation to

warp the associated atlas label into the target image space

(Heinrich et al., 2013). After the multi-atlas registration, a label

fusion scheme is used to merge the warped labels into a single

consensus target label. Finally, the corrective segmentation is

designed to refine the cardiovascular labels obtained from the

previous processing steps and to separate the intrathoracic tissue

structures surrounding the heart. It begins with automated

image processing steps to extract representative seed voxels from

non-cardiac structures that include lung, chest wall, livers, spine,

and descending aorta. Together with the previously obtained

cardiac structures, a random walk algorithm (Grady, 2006) is

then performed on each seed region in a multiple-pass fashion

to improve the segmentation result for each structure. The final

segmentation is obtained by additional post-processing steps

using morphology and connected region analysis for further

refinement. The quality of these computer-generated labels is

then assessed using an optimal label selector which is described

in the next section.

Optimal label selector based on reverse ranking

After the unlabeled images (n = 1,064) were processed

through the CLG, the next step is to evaluate the segmentation

quality of all images using a reverse ranking (RR) approach to

score and obtain a subset of images with higher segmentation

quality. This approach was inspired from the reverse

classification accuracy introduced by Valindria et al. (2017)

that is useful to assess the segmentation quality in the absence

of manual reference labels. The flow diagram of the proposed

Optimal Label Selector (OLS) is shown in Figure 2. For each

unlabeled (or target) image, CMACS is used to obtain the

computer-generated label. The quality of computer label is

then measured by registering the target image acts as moving

image with nine selected atlases which act as fixed image to

obtain nine reversed target labels. These nine atlases were
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FIGURE 2

Flow diagram of the proposed Optimal Label Selector (OLS) using reverse ranking to rank the segmentation accuracies for all cardiac CTA

clinical studies (n = 1,064).

selected by matching structural similarities technique described

in (Bui et al., 2020a) from a library of 60 manually generated

atlases which have the ground truth labels performed by human

experts. We can then evaluate the segmentation quality of the

target image by calculating the average Dice values of these

nine reversed target labels and their corresponding manual

labels. Such average Dice value is defined as RR score in the

subsequent sections.

CNN architecture: U-net based

The proposed DeepHeartCT framework utilized the well-

known U-net model to generate the labels (Ronneberger et al.,

2015; Çiçek et al., 2016). In our implementation, the model can

be customized to segment up to 12 structures simultaneously.

The bounding box detection was used to crop the raw image

volume before extracting the patches as localizing the heart

would reduce the number of false positive voxels. By processing

the image within the bounding box only, the total number of

voxels was reduced for segmentation, thus further reducing the

training and prediction time. Generally, a bigger patch yields

a better result in DL. However, due to the GPU hardware

limitation, the input patch size was empirically set to 64 ×

100 × 100 with a stride 32 × 64 × 64 between patches. Each

layer contains a convolutional 3D layer and ReLU followed by

a group norm. Dice coefficient was used as the loss function,

as is commonly used for binary semantic segmentation. Since

more than two classes are present in the ground truth, the Dice

loss per channel was computed and then averaged to obtain the

final value. Sigmoid was used after the final layer to normalize

the prediction score to probability score (0, 1). We used sigmoid

activation function because the target segmentation is a binary

task for each label, not a multiclass segmentation task. There

are five binary segmentations, we prioritize the labels in the

following order: LV, LA, RV, RA, LVM, and then combine

them for the final results. In this DeepHeartCT framework,
multi-step learning rate (Paszke et al., 2017) was used as the

learning rate scheduler with milestones set to (van Rikxoort
et al., 2010; Heinrich et al., 2013; Zuluaga et al., 2013; Zhuang

et al., 2015; Payer et al., 2017; Shen et al., 2017; Yang G. et al.,

2017; Vigneault et al., 2018; Wang et al., 2018; Liu et al., 2019;

Bui et al., 2020b; Habijan et al., 2020) and gamma parameter
set to 0.1. Adam stochastic algorithm (Kingma and Ba, 2015)

was used as optimizer with an initial learning rate starts at

0.0001 and weight decay at 0.0001. Batch size, feature maps

scale factor, and number of group norm were empirically set

to 1, 64 and 16, respectively. The number of epochs was set

to 100.
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Evaluation methods

To evaluate the segmentation performances of

DeepHeartCT, we investigated four different settings of

the training dataset:

(1) All (All) dataset: CNN trained on all computer labels

generated by CMACS without OLS to exclude any label (n

= 1,064).

(2) Strong Label (SL) dataset: CNN trained on the computer

labels generated by CMACS with OLS to select the best 10%

of labels (n= 110).

(3) Weak Label (WL) dataset: CNN trained on the computer

labels generated by CMACS with OLS to select the worst

10% of labels (n= 110).

(4) Synthetic Weak Label (sWL) dataset: a synthetic weak

label dataset was artificially created from the SL dataset by

performing 5mm erosion on the four cardiac chambers,

and then expanding the LVM to cover the entire LV cavity

to create the synthetic labels (n= 110).

In our evaluation, we intentionally degraded the labels

quality and created the sWL dataset since the WL dataset’s

quality, even though selected from the lowest reverse ranking

scores, is still very reasonable. This sWL dataset allows us to

evaluate the effectiveness of the proposed OLS and compare

their performance against good labels for CNN training. A

qualitative example of the Strong Label and Synthetic Weak

Label is shown in Supplementary Figure 1. Four differentmodels

were built using these four training datasets with the same

CNN hyperparameters under the DeepHeartCT framework

for comparisons.

The model performance was evaluated using five-fold cross

validation. As shown in Table 1, The All dataset (n= 1,064) was

divided into 851 cases for training and 213 cases for validation,

while SL, WL, and sWL (n = 110) dataset was divided into

88 cases for training and 22 cases for validation. After the

training, all four models were tested using the independent

manual label dataset (n = 60) for performance evaluation. To

further compare the performance of the four models, a public

domain dataset provided by the Multi-Modality Whole Heart

Segmentation (MMWHS) challenge (Zhuang et al., 2019) which

included 20 cardiac CTA images with manual segmentation

from an independent institution was evaluated. This dataset was

acquired from different CT scanners and with different imaging

parameters to test the generalizability of our models.

The proposed framework was implemented in Python and

Interactive Data Language (Harris Geospatial Solutions). The

registration method was developed in C++ by Heinrich et al.

(2013) and compiled to dynamic link library under Microsoft

Visual Studio in our framework. All studies were processed with

the same parameter settings on a computer with an Intel Core

TABLE 1 Training, validation, and testing sample size for the proposed

DeepHeartCT framework based on All, strong label (SL), weak label

(WL), and synthetic weak label (sWL) dataset.

Dataset Training

samples

(cases)

Validation

samples

(cases)

Testing

samples

(cases)

All 851 213 60

SL, WL, sWL 88 22 60

i9-10980XE 3.00GHz CPU, NVIDIA GeForce RTX 3090, and

128GB RAM.

For the performance evaluation of the automated

segmentation, three quantitative metrics that measure the

differences between the automatic results vs. the corresponding

manual labels are computed which include Dice coefficient

(Dice), Hausdorff distance (HD) and mean surface distance

(MSD). Summary statistics of the results are expressed as

the median and 95% confidence interval for non-normally

distributed data and as mean and standard deviation for

normally distributed data. A p < 0.05 indicates a statistically

significant difference.

Results

An important new feature in the proposed DeepHeartCT

framework is the new OLS block to select an optimal subset

of computer-generated labels for training, as described in the

section Optimal Label Selector based on Reverse Ranking.

Figure 3 shows the average reserve ranking (RR) scores for the

five segmented structures (LV, RV, LA, RA, and LVM) from the

four datasets, i.e., All (n = 1,064), SL (n = 110), WL (n = 110),

sWL (n= 110).

As the overall segmentation quality assessed using the

reverse ranking scheme in OLS for the entire (All) dataset was

mostly excellent to good, with average RR scores ranged from

0.84 to 0.94 in five segmented structure. For this reason, we

created the synthetic weak label (sWL) dataset to evaluate the

effectiveness of our RR scheme to grade labels with lower quality.

As shown in Figure 3, it is clear that DeepHeartCT-SL has the

highest RR score with a median value of 0.92 (IQR, 0.91–0.92)

within all five structures. DeepHeartCT-All and DeepHeartCT-

WL have slightly lower scores with the median RR score of

0.90 (IQR, 0.87–0.92) and 0.88 (IQR, 0.77–0.88), respectively.

This result is expected because the SL dataset was selected

from the top 10% of the entire dataset based on the RR

score. Finally, the sWL dataset has the lowest score with the

median RR score of 0.70 (IQR, 0.68–0.72) which is also expected

because we manipulated the segmentation quality to obtain

these weak labels. Figure 3 demonstrates that the proposed OLS
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FIGURE 3

Average reverse ranking (RR) scores computed using the labels

from Computer Label Generator (CLG). RR scores are plotted for

each structure with the four datasets in the order of All, strong

label (SL), weak label (WL), and synthetic weak label (sWL).

with reversed ranking technique is effective for assessing the

segmentation quality in the absence of manual labels.

Next, we evaluated the segmentation accuracy of four

trained models using the 60 independent CTA studies that were

manually annotated by the domain experts. Figure 4 shows the

Dice score for each structure comparing the four trainedmodels.

DeepHeartCT-All yielded a median Dice of 0.98 (IQR, 0.97–

0.99) for LV, 0.94 (IQR, 0.90–0.96) for RV, 0.94 (IQR, 0.92–0.96)

for LA, 0.93 (IQR, 0.88–0.95) for RA, and 0.93 (IQR, 0.89–

0.94) for LVM. DeepHeartCT-SL yielded a median Dice of 0.98

(IQR, 0.97–0.99) for LV, 0.94 (IQR, 0.90–0.96) for RV, 0.95 (IQR,

0.92–0.97) for LA, 0.93 (IQR, 0.87–0.95) for RA, and 0.92 (IQR,

0.88–0.94) for LVM. DeepHeartCT-WL yielded a median Dice

of 0.98 (IQR, 0.96–0.99) for LV, 0.92 (IQR, 0.89–0.94) for RV,

0.94 (IQR, 0.91–0.96) for LA, 0.92 (IQR, 0.88–0.94) for RA, and

0.91 (IQR, 0.87–0.93) for LVM. DeepHeartCT-sWL yielded a

median Dice of 0.67 (IQR, 0.63–0.71) for LV, 0.71 (IQR, 0.65–

0.78) for RV, 0.68 (IQR, 0.59–0.73) for LA, 0.70 (IQR, 0.61-

0.74) for RA, and 0.73 (IQR, 0.66–0.78) for LVM. Furthermore,

Supplementary Figure 2 shows the Dice score comparison based

on the MMWHS dataset.

Figure 5 shows the HD error measurements for the five

segmented structures using four different models. For the

DeepHeartCT-All model, the median HD was 6mm (IQR, 4–

8mm) for LV, 7mm (IQR, 4–16mm) for RV, 6mm (IQR, 4–

11mm) for LA, 7mm (IQR, 4–11mm) for RA, and 8mm

(IQR, 4–17mm) for LVM. For the DeepHeartCT-SL model,

the median HD was 5mm (IQR, 4–8mm) for LV, 8mm

(IQR, 4–19mm) for RV, 6mm (IQR, 4–14mm) for LA, 7mm

(IQR, 4–16mm) for RA, and 9mm (IQR, 5–18mm) for LVM.

FIGURE 4

Dice score calculated from the testing of 60 independent

cardiac CTA studies comparing the four trained models based

on the All, strong label (SL), weak label (WL), and synthetic weak

label (sWL) dataset. Average Dice score is reported for each

structure including left and right ventricles (LV, RV), left and right

atria (LA, RA), and LV myocardium (LVM).

FIGURE 5

Hausdor� distance (HD) calculated from the testing of 60

independent cardiac CTA studies comparing the four trained

models based on the All, strong label (SL), weak label (WL), and

synthetic weak label (sWL) dataset. Average HD is reported in

mm for each structure including left and right ventricles (LV, RV),

left and right atria (LA, RA), and LV myocardium (LVM).

DeepHeartCT-WL yielded a median HD of 7mm (IQR, 5–

9mm) for LV, 8mm (IQR, 5–16mm) for RV, 7mm (IQR, 4–

11mm) for LA, 8mm (IQR, 5–13mm) for RA, and 7mm

(IQR, 5–12mm) for LVM. For the DeepHeartCT-sWL model,

the median HD was 11mm (IQR, 9–17mm) for LV, 10mm

(IQR, 8–21mm) for RV, 9mm (IQR, 6–16mm) for LA, 12mm

(IQR, 8–21mm) for RA, and 18mm (IQR, 16–20mm) for

LVM. Furthermore, Supplementary Figure 3 shows the HD

error comparison based on the MMWHS dataset.
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FIGURE 6

Mean surface distance (MSD) calculated from the testing of 60

independent cardiac CTA studies comparing four trained

models based on the All, strong label (SL), weak label (WL), and

synthetic weak label (sWL) dataset. Average MSD is reported in

mm for each structure including left and right ventricles (LV, RV),

left and right atria (LA, RA), and LV myocardium (LVM).

Similarly results were found on the MSD error

measurements for the five segmented structures. As shown in

Figure 6, DeepHeartCT-All yielded a median MSD of 0.34mm

(IQR, 0.21–0.59mm) for LV, 1.14mm (IQR, 0.88–1.68mm)

for RV, 0.89mm (IQR, 0.61–1.21mm) for LA, 1.14mm (IQR,

0.89–1.74mm) for RA, and 0.61mm (IQR, 0.45–0.78mm)

for LVM. DeepHeartCT-SL had a median MSD of 0.31mm

(IQR, 0.16–0.57mm) for LV, 1.14mm (IQR, 0.83–1.71mm)

for RV, 0.81mm (IQR, 0.55–1.22mm) for LA, 1.14mm (IQR,

0.86–2.00mm) for RA, and 0.59mm (IQR, 0.46–0.93mm) for

LVM. DeepHeartCT-WL yielded a median MSD of 0.39mm

(IQR, 0.24–0.61mm) for LV, 1.39mm (IQR, 1.04–1.89mm)

for RV, 0.87mm (IQR, 0.63–1.21mm) for LA, 1.22mm (IQR,

0.94–1.73mm) for RA, and 0.68mm (IQR, 0.47–1.01mm) for

LVM. DeepHeartCT-sWL generated a median MSD of 5.1mm

(IQR, 4.6–5.5mm) for LV, 4.3mm (IQR, 3.6–5.1mm) for RV,

4.2mm (IQR, 3.6–4.5mm) for LA, 4.1mm (IQR, 3.3–4.6mm)

for RA, and 2.5mm (IQR, 2.4–2.8mm) for LVM. Furthermore,

Supplementary Figure 4 shows the MSD error comparison

based on the MMWHS dataset.

Overall, these quantitative results show that DeepHeartCT-

All and DeepHeartCT-SL had a compatible performance for

segmenting the five main cardiac structures in CTA image.

However, DeepHeartCT-SL reduces the total CNN training time

by using a smaller but better samples. Finally, the segmentation

performance from both DeepHeartCT-All and DeepHeartCT-

SL models is significantly better than the DeepHeartCT-

sWL model.

A comparison of the training and inference time between

DeepHeartCT-All and DeepHeartCT-SL is summarized in

Table 2 with the same hyper-parameters settings. While the

inference time was similar between DeepHeartCT-All and

DeepHeartCT-SL models, the required training time was

significantly reduced from 90min in DeepHeartCT-All to only

50min in DeepHeartCT-SL.

Discussions

In this study, we have presented a new AI framework

for rapid and automated multi-structures segmentation from

cardiac CTA scans for image labeling, quality assurance, and

accurate segmentation. The proposed DeepHeartCT framework

significantly reduces the effort for manually annotating a large

dataset for CNN training which was a bottleneck in many

medical image analysis applications because obtaining such

gold-standard labels is often very time-consuming, especially

in large-scale clinical studies or in the studies where multiple

annotated labels are needed for different anatomic structures

such as cardiac CTA images.

We have addressed three main challenges in CNN-based

medical image segmentation using DL for large clinical studies.

First, training labels for CNN require domain expertise for

manual contouring or masking of the images. Second, CNN

requires not only a large amount of labeled data for training but

also high quality labels. Finally, a long training time for CNN

is often required with a larger sample size. We tackled the first

challenge by exploiting large quantity of computer-generated

labels through the CMACS processing. Next, we employed a

novel reverse ranking (RR) approach to evaluate the quality of

these computer labels in the absence of ground truth labels.

Finally, we presented an optimal label selector based on the

proposed RR score to attain only high-quality computer labels

to speed up CNN training while maintain a similar or improved

accuracy. By selecting good labels for training, we can lessen the

influences of low-quality computer labels on training the CNN.

As shown in Figures 4–6, the segmentation results among

DeepHeartCT-All, DeepHeartCT-SL, DeepHeartCT-WL, and

DeepHeartCT-sWL were compared using three different

quantitative metrics. A comparable Dice score of 0.94 was

obtained in most of the structures when selecting only the

high-quality dataset (DeepHeartCT-SL) from a large computer

labeled dataset (DeepHeartCT-All) for CNN training. While

DeepHeartCT-SL shows no improvement in term of HD

compared to DeepHeartCT-All, it shows an average of

3.2% improvement in the MSD measurements. To compare

DeepHeartCT-SL and DeepHeartCT-sWL, an average of 34.9%

improvement in the Dice score was observed. Furthermore,

there was an average of 41.6% and 80.1% improvement in HD

and MSD error measurements, respectively (see Figures 5, 6).

A similar trend in performance comparison was observed in

Supplementary Figures 2–4 when testing the four models on

the MMWHS dataset from another institution. These results
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TABLE 2 Computational time comparison for the proposed

DeepHeartCT frameworks using All and strong label (SL) dataset.

Dataset Training

samples

(cases)

GPU

training

time (mins)

GPU

inference

time (secs)

CPU

inference

time (secs)

All 1,064 90 20.6± 4.80 32.0± 7.79

SL 110 50 21.9± 4.81 34.2± 7.04

may be explained by the fact that the CNN performs better with

more accurate labels as it does not need to account for the poor

segmentation labels.

In general, a larger amount of training samples is desired in

deep learning but a longer training time is also expected. It was

also known that more training data can lead to lower estimation

variance and hence a better model performance. More labeled

data also increases the probability of useful information in CNN

training. However, more labeled data does not always helpful

if the quality of the labels is suboptimal or noisy. With the

proposed OLS approach and RR technique, we are able to

reduce the CNN training time while maintain a similar or better

segmentation accuracy by using a smaller but better quality

training dataset.

For the training time comparison (see Table 2), the

DeepHeartCT-SL framework took about 50min which is about

45% faster than the DeepHeartCT-All. For the inference time,

DeepHeartCT is comparable with other DL-based methods as

presented in the Multi-Modality Whole Heart Segmentation

Challenge (Zhuang et al., 2019). The inference time of

DeepHeartCT is also considerably faster than our previous

CMACS framework which took about 2min (Bui et al., 2020b),

and is significantly faster than other multi-atlas based methods

which have been reported to take around 21min (Zhuang et al.,

2019).

There were existing methods which aim at identifying, fixing

or discarding training samples that are likely to have incorrect

labels (Karimi et al., 2020). Vo et al. proposed supervised and

unsupervised image ranking methods for identifying correctly

labeled images in a large quantity of images with noisy labels (Vo

et al., 2015). Their proposed methods were based on matching

each image with a noisy label to a set of representative images

with clean labels. Xue et al. also proposed a self-supervised

method to regularize the networks to utilize noisy samples in

medical image classification task (Xue et al., 2022). To our best

knowledge, this work is the first study to leverage the reverse

ranking strategy to evaluate the segmentation quality without

the ground truth labels. This approach enables us to exploit a

large number of computer labels without human manual efforts

and effectively mitigate the impact of weak labels in training

neural networks.

There are some limitations in our study. All studies were

retrospectively collected from a single center and from a

single vendor, and all images includes only a single-phase

(i.e., 75% time point) of the cardiac cycle. Our work did

not include patients with congenital heart defects such as

single ventricle, atrial and ventricle septal defects, or other

abnormal cardiac structures, or under cardiovascular surgeries.

We only selected a subset of high quality labels based on

the top 10% RR score rather than a more comprehensive

selection of different subset sizes for performance and

speed evaluations.

In summary, the proposed DeepHeartCT framework

includes a CLG block to provide computer generated labels

from a large clinical dataset with over a thousand cardiac

CTA scans. This framework also includes a novel OLS block

to automatically select high-quality labels for CNN training,

and improve the training speed and model performance

for multi-structure cardiac CTA image segmentation.

Our quantitative comparisons based on an independent

dataset showed a strong agreement between DeepHeartCT

automatic and expert manual segmentation for all five cardiac

structures assessed. These results demonstrated that the

proposed fully automatic AI system provides high-quality

and rapid cardiac CTA segmentation that can be readily

generalized for processing large-scale datasets for further

clinical applications.
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