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Speech phoneme and spectral
smearing based non-invasive
COVID-19 detection

Soumya Mishra*, Tusar Kanti Dash* and Ganapati Panda*

Department of Electronics and Communication Engineering, C. V. Raman Global University,

Bhubaneswar, India

COVID-19 is a deadly viral infection that mainly a�ects the nasopharyngeal

and oropharyngeal cavities before the lung in the human body. Early detection

followed by immediate treatment can potentially reduce lung invasion and

decrease fatality. Recently, several COVID-19 detections methods have been

proposed using cough and breath sounds. However, very little study has

been done on the use of phoneme analysis and the smearing of the

audio signal in COVID-19 detection. In this paper, this problem has been

addressed and the classification of speech samples has been carried out

in COVID-19-positive and healthy audio samples. Additionally, the grouping

of the phonemes based on reference classification accuracies have been

proposed for e�ectiveness and faster detection of the disease at a primary

stage. The Mel and Gammatone Cepstral coe�cients and their derivatives are

used as the features for five standard machine learning-based classifiers. It is

observed that the generalized additive model provides the highest accuracy

of 97.22% for the phoneme grouping “/t//r//n//g//l/.” This smearing-based

phoneme classification technique can also be used in the future to classify

other speech-related disease detections.

KEYWORDS

COVID-19 detection, machine learning, spectral smearing, phoneme analysis,

COVID-19

1. Introduction

COVID-19 was publicly avowed as an epidemic demanding leading nations with

medical prowess to develop faster and more accurate testing mechanisms. Flu, cough,

exhaustion, asthma, and pneumonia with fatality have been primarily the clinical

symptoms of the affected patients (Peng, 2020). To alleviate the dearth of RT-PCR testing

sets, medicos and testing centers had to discover alternate options such as Computed

Tomography scans (CT scans) for COVID-19 diagnosis of suspected patients. Some

improved COVID-19 detection schemes are used such as contrast limited adaptive

histogram equalization and local histogram equalization for extracting significant

information from raw chest X-ray images (Narlı, 2021; Narli and Altan, 2022). The

velcro-like lung sounds and lung ultrasound readings are also used for the successful

detection of COVID-19 (Kiamanesh et al., 2020; Pancaldi et al., 2022). Radiologists have

been found to be heavily engaged during the epidemic of COVID-19. They somehow

lacked the capacity to decipher a variety of CT scans in due time (Afshar et al., 2021).
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In addition, clinicians could not as well distinguish COVID-19

from CT scans in remote villages, such as rural regions, because

this disease is relatively recent. The importance of reducing the

dose of radiation in radiological studies, particularly concerning

CT, had become a point of apprehension based on its numerous

and dependable medical applications across the globe.

Corona Virus has been primarily hosted on the intra-nasal,

bronchial, and lung systems of the human body (Gallo, 2021),

and therefore, audio analysis of speech segments from infected

samples could potentially indicate respiratory, articulatory, and

breathing aberrations as compared with healthy speech samples.

Speech-based audio detection of COVID-19 would not only

be non-invasive and cost-friendly but can be performed with

huge flexibility and portability from any location, adhering to

social distancing norms. Speech-based disease recognition has

gained immense admiration in recent times predominantly in

diagnosing neurodegenerative diseases affecting regular speech

patterns. Audio features are explicitly extracted from the

concerned database samples, assigned markers for classification,

and fed into the system model for training followed by

validation and performing an accuracy check (Sharma G.

et al., 2020). Phoneme-based disease classification has showcased

progressive accuracy with minimum latency in diagnosing

several diseases such as stroke, amyotrophic lateral sclerosis

(ALS), Parkinson’s disease (PD), cleft lip and palate (CLP),

primary progressive aphasia, spasmodic dysphonia, Alzheimer’s

disease, and dementia.

The conventional speech features considered are high-

frequency local field potential, zero crossing rate, mean and

standard deviation, spikes in the audio signal, Mel-frequency

Cepstral coefficients (MFCC), Jitter, shimmer, and voice

breaks (Zhang and Wu, 2020). Perceptual linear prediction

(PLP), relative spectra (RASTA), and linear prediction

coefficients (LPC) have also been reported as instrumental

in classification (Moro-Velazquez et al., 2019). Prospective

artificial intelligence/machine learning and deep-learning

phoneme classification methodologies have been the topic

of interest in research advancements for decades (Lamba

et al., 2021). Phonemes in the process of articulation can

be distinctively segregated into six categories such as stop,

affricate, fricative, nasal, and lateral. Subsequently, they can be

sub-categorized to the next level of distinction based on modes

of sound articulation originating in the vocal tract forming

a tubal resonance effect while producing speech (Katamba,

1989). Phonemes, irrespective of dialects, spoken language,

or vocabulary adhered across diversities, can alone suffice to

be a powerful speech segment for processing speech-based

recognition applications. Researchers have actively formulated

words made up of relevant phonemes to trigger the appropriate

vocal parametric articulations for detecting speech disorders,

indicating anomalies (Wielgat, 2008).

1.1. Motivation

In previous research outcomes, it has been apparent that

variations in phoneme lengths and frequency, as well as changes

in phoneme-dependent tone and formant gradients, represent

the phonemic segment reliance on phonation and articulation

shifts with Parkinson’s severity. Yet, there has been a preliminary

study on speech-based COVID-19 detection focusing mainly

on cough, breath, and vowels (Han et al., 2021; Kumar and

Alphonse, 2021) and a generalized comparison of the COVID-

19 assessment of phoneme-vowel categories (Boothroyd et al.,

1996). Not every affected patient might show cough and

shortness of breath as potential symptoms. In this case,

phonemes may emerge as worthy indicators for early detection

of the disease. The best bet to utilize phonemes as an efficient

classification strategy is based on the fact that a speaker need

not necessarily generate his samples to train all words in

the vocabulary list but only the phonetic segments need to

be processed.

1.2. Research objective

An effort is initiated in this article to classify COVID-

19-affected positive and healthy candidates by disintegrating

the audio speech sentence spoken by the concerned specimen

into relevantly available English phonemes. The various

phonemes are then labeled as positive and healthy classes

as demarcated in the referred corpus. In an attempt to

enhance classification accuracy, the individual phoneme audio

wave has been smeared using low-pass filter noise. Most

importantly, the phonemes acquiring the highest classification

performance have been concatenated to propose a phoneme

group called “buzzword.” The so-called buzzword may be used

in the future to detect the disease, evading the dependency

on cough or breath samples. In this article, 16 distinct

English phonemes with three vowels have been utilized on

the available datasets, using 78 feature-sets comprising MFCC,

GTCC, and its variant features with five machine-learning

classification techniques. The findings of the investigation are

as follows:

• Selection of appropriate smearing bandwidth for

improving the classification accuracy for different

feature sets.

• Use of smearing signal for enhancing the classification

accuracy.

• Application of Phoneme-based Buzzwords to assist

clinicians and patients with more precise and focused

detection mechanism.
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TABLE 1 Phoneme database prepared for this study.

Sl. Phoneme Phoneme category No of speech samples (C-19 p +n)

1 /b/ Stop 112+104

2 /d/ Stop 108+110

3 /v/ Fricative 108+110

4 /m/ Nasal 108+108

5 /l/ Alveolar Lateral approximant 104+104

6 /f/ Fricative 112+110

7 /Oy/ Diphthong vowel 105+108

8 /r/ Post-alveolar fricative/voiced approximant liquid 108+110

9 /w/ Labio-velar approximant 110+110

10 /p/ Stop 112+112

11 /n/ Nasal 105+104

12 /s/ Fricative 110+110

13 /t/ Stop 112+112

14 /k/ Stop 108+110

15 /h/ Voiceless glottal fricative/Approximants 110+108

16 /g/ Stop 108+110

17 /a/ Vowel 100+100

18 /e/ Vowel 100+100

19 /o/ Vowel 100+100

*(C-19 p+n) denotes (COVID-19 Positive + Healthy).

2. Materials and methods

2.1. Dataset

The proposed non-invasive COVID-19 detection scheme

is trained and tested in a combined speech dataset, which is

prepared from speech samples collected from the Telephone

band speech dataset (Ritwik et al., 2020) and Coswara

dataset (Sharma N. et al., 2020). A total of 19 speakers’ voice has

been used in the Telephone band speech dataset, out of which

10 are COVID-19 positive and 9 are healthy. The original speech

samples are recorded with 44.1 kHz sampling frequency. But it

has been observed that most of the relevant speech components

are present within the frequency range of 300 Hz to 3.4 kHz (Jax

and Vary, 2004). In the next step, the filtered speech samples are

segmented into different phoneme categories using the Audacity

Toolkit1. There are a total of 432 speech samples in 16 phoneme

categories and the details are mentioned in Table 1. From the

Coswara dataset, three vowel sounds are taken and the samples

are down sampled to 8 kHz sampling frequency. The speech

samples are combined and labeled into 19 phoneme categories

belonging to vowels, diphthongs, stops, fricatives, glides, liquids,

approximants, and nasals. To deal with the insufficient speech

samples, the existing speech phoneme samples are processed by

1 http://www.audacityteam.org/

an audio data augmentation scheme (Salamon and Bello, 2017).

The details of the prepared dataset are listed in Table 1.

2.2. Proposed methodology

The proposedmethod is implemented in the following steps:

dataset preparation, spectral smearing, extraction of cepstral

features, and training and testing of the classificationmodel. The

proposed COVID-19 detection scheme is shown in Figure 1.

2.3. Smearing of phonemes

It has been observed that various speech components

respond differently to spectral and temporal cues which can

be helpful in speech recognition (Xu et al., 2005). The

process of spectral smearing is obtained by multiplying the

signal with a low-pass filter noise. The approach is known

to replace the individual tone factor of the audio-spectrum

with a noise band whose center-frequency collides with the

particular tone. By this, the bandwidth of the modulated

tone is increased twice the tone factor. It has been reported

that the effect of smearing has enhanced phoneme detection

accuracy (Boothroyd et al., 1996). In Golestani et al. (2009),

the authors have conducted experiments on native-language

detection to emphasize that certain words can be more

Frontiers in Artificial Intelligence 03 frontiersin.org

https://doi.org/10.3389/frai.2022.1035805
http://www.audacityteam.org/
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Mishra et al. 10.3389/frai.2022.1035805

FIGURE 1

Block diagram of the proposed model.

conveniently detected at a particular noise configuration than

others. This has been accounted for the differential-phoneme-

recognition outcomes in a noisy environment. In this case, the

speech signals have been smeared using varying SNR levels

and it has been observed that this technique provides superior

performance as compared to the phonemes without smearing.

In yet another study (Shannon, 2005), speech detection has been

shown to be possible with highly distorted and degraded audio

signals. The spectral information can be modified by smearing

to a considerable level till it starts degrading the classification

outcome. A study by Goldsworthy (Goldsworthy et al., 2013)

has demonstrated evaluating psycho-acoustic phoneme-based

identification methods in normal hearing vs. cochlear-implant

subjects. The presence of fluctuating noise-makers has shown

better interpretation for normal hearing participants. By varying

the range of low pass cut-off frequencies, vowel, and consonant

recognition scores have shown marked differences illustrating

the relativity of spectral resolution (Xu et al., 2005).

In the present study, an attempt has been made to

apply spectral smearing to increase phoneme recognition

without affecting signal perception by the addition of noise.

In the first step, the smearing signal is generated by

combining a sinusoidal signal with varied center frequencies

and additive white Gaussian noise. This signal is passed

through low-pass filters having cut-off frequencies ranging

from 10 Hz to 10 kHz. The smearing signal is then

multiplied by the phoneme signal to generate the smeared

phoneme. The best values of these center frequencies and

cut-off frequencies of low-pass filters are calculated based

on the classification accuracies from the support vector

machine-based classifier. The corresponding values are listed in

Tables 2, 3.

2.4. Feature extraction

The objective of signifying an audio signal through its

features is primarily to represent a huge data set through a

compact form without compromising its vital information. The

cepstral features are one of the effective features that are widely

used in speech signal processing and mechanical engineering.

These features are specially designed by considering the

perceptual quality of the human hearing system (Dash et al.,

2021a). The following steps are usually performed in cepstral

feature extraction:

• Short-time Fourier transforms of windowed speech frames

of the input signals.

• Calculation of the short-time energy of speech frame.

• Application of auditory filter bank on the power spectrum.

• Calculation of logarithm and Discrete cosine transform.

• Extraction of specific cepstral features based on the

auditory filter bank used.

The third step is the crucial step that works on the

conversion between the linear frequency scale and to perceptual

frequency scale. Depending on the conversion, two cepstral

features such as Mel and Gammatone cepstral Features are used

in the proposed implementation scheme. The conversion scale
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TABLE 2 Values of center frequency of sinusoidal signal and cut-o� frequencies of low-pass filter for before and after tuning SVM.

Phonemes Cf/LPBW

pre-tuning

Accuracy

pre-tuning

Cf/LPBW

post tuning

Kernel function/ gamma/C Accuracy post tuning

STOPS /b/ 6.3/6.2 64.25 1.4/4.9 Quadratic /1/ 8.73 89.2

NASALS /m/ 4.2/7.9 76.85 1.1/4.3 Gaussian /3.63/238.6 84.2

DIPHTONGS /Oy/ 3.1/6 82.6 1.9/2 Gaussian /0.007 /635 84.3

GLIDES + /r/ 8.6/8.5 67.7 2.1/4.8 Gaussian/0.001/6523.4 89.9

FRICATIVES /s/ 5.6/4.4 67.7 9.9/2.9 Quadratic/1/0.1 85.3

Vowel a 9/7.1 63.6 8/6.6 linear/1/12.6013 79.4

*Cf and LPBW denote Cosine frequency Low Pass Bandwidth in kHz, GLIDES+ denotes the GLIDES, APPROXIMATES, and LIQUIDS.

of the Mel scale is mentioned in Equation (1)

fmel = 2595 × log10

(

1+
flin
700

)

flin = 700 ×






10

(
fmel

2595
)
− 1







(1)

Where, fland fmare the linear scale andmel scale frequencies,

respectively.

2.4.1. Mel-scale cepstral features

Studies have shown that short-time speech-based Mel-

Cepstral features have been noise evasive, and have significantly

detected the pathologies on the vocal tract and vocal folds in past

years. The MFCC feature considers human hearing by warping

the frequency onto the Mel scale (Milner, 2002). It computes the

cepstrum to separate the glottal source and vocal tract filtering

information (Quatieri, 2002). The MFCCs have been chosen for

this study because, in the presence of voice issues, these have the

inherent ability to reflect either irregular movements of the vocal

folds or a lack of closures produced by an increase in size or a

variation in the attributes of the tissue covering the vocal folds.

In this study, 13 feature-based MFCC coefficients, 13 MFCC

Delta coefficients, and 13 MFCC Delta-Delta coefficients have

been extracted. The delta values represent the first and second

derivatives that depict the dynamics of variation in MFCC

feature values.

2.4.2. Gammatone cepstral features

Gammatone Cepstral coefficients (GTCCs) are

physiologically inspired adaptations that use Gammatone

filters and have comparable rectangular bandwidth bands.

Several papers (Cheng et al., 2005; Lee et al., 2014)

have examined the benefits and use of the Gammatone

function in the modeling of the human auditory filter

response. The Gammatone filter impulse response is

calculated by multiplying a Gamma distribution function

by a pure sine wave tone. The delta and double delta

TABLE 3 Best values of the center frequency of the sinusoidal signal

and cut-o� frequencies of low-pass filter for the smearing of di�erent

phonemes.

Phonemes Center frequency

(kHz)

Low-pass filter cut-off

frequency (kHz)

/b/ 1.4 4.9

/d/ 3.2 1

/v/ 8.2 1.6

/m/ 1.1 4.3

/l/ 4.3 9.6

/f/ 6.3 2

/Oy/ 1.9 2

/r/ 2.1 4.8

/w/ 3.1 2.9

/p/ 3.7 9.9

/n/ 4.4 2

/s/ 9.9 2.9

/t/ 8.1 4.7

/k/ 8.4 9.6

/h/ 8.2 4.2

/g/ 0.3 6.8

Vowel /a/ 8 6.6

Vowel /e/ 9.1 4.5

GTCC variants (Cheng et al., 2005) are also taken

into consideration. In essence, 13 feature-based GTCC

coefficients, 13 GTCC Delta coefficients, and 13 GTCC

Delta-Delta Coefficients.

2.5. Classification

Machine learning-based (ML) classifiers working along

with time and frequency extracted features have made

substantial progress in this field. Even in noisy conditions, this

combination exhibited outstanding accuracies for discrete

sound categorization (Dash et al., 2021b). To initiate
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FIGURE 2

Selection of the values of C and gamma in the SVM classifier.

classification, all the above-mentioned 78 features were

extracted from the speech signal and were provided as inputs

to the following classifiers. The smeared phonemes were

Short-Time Fourier transformed (STFT) using the hamming

window of a length of 1,024, having a 30 ms analysis window

with a 20 ms overlap. As the noise level varies during the time of

recording of different speech samples, the speech enhancement

algorithms are widely used to reduce the interfering noise.

In the proposed implementation, one of the popular speech

enhancement algorithms called the multi-band spectral

subtraction method is used in the preprocessing stage before

feature extraction (Kamath and Loizou, 2002).

2.5.1. Support vector machines

The primary objective of a support vector machine (SVM)

classifier is to obtain the most feasible hyperplanes to assess a

proposed model for classification (Soumaya et al., 2021). SVMs

have been widely used in speech classification tasks and have

shown superior performance (Dash and Solanki, 2019). In this

study, bayesian optimization has been applied to select the best

SVMparameters. The best values of c and gamma are taken from

the comparative analyses between the values of c and gamma vs.

classification accuracy as plotted in Figure 2 for the “rbf” kernel.

2.5.2. Linear discriminant analysis

Linear discriminant analysis (LDA) has been employed

in multiple speech disease detection or health anomalies

through audio analysis (Fredouille et al., 2009; Akbari and

Arjmandi, 2014). Fisher’s approach is commonly used in

linear discriminant analysis. This approach is based on the

sample averages and covariance matrices generated from the

several groupings that comprise the training sample. Based

on the training sample, a discriminant rule is developed and

used to classify fresh occurrences into one of the categories.

Fisher’s linear discriminant analysis is a basic and widely used

discriminating approach (Croux et al., 2008).

2.5.3. Generalized additive model

For analyzing the data set and picturing the affiliation

of a dependent variable with an independent variable, the

generalized additive model (GAM) is used, which evolves from

a class of generalized linear models (GLM) (Liu, 2008). Previous

studies have shown that the GLM classifier has given appreciable

results in temporal feature integration based on music genre

classification (Meng et al., 2007). In this case, the boosted tree

is used as a shape function for each predictor to capture a

nonlinear relation between a predictor and the response variable.

2.5.4. Feed-forward fully connected neural
network

Neural network-based classifier models are widely used in

speech processing for improved performance (Lopez-Moreno

et al., 2016; Dash et al., 2020). In this case, feed-forward fully

connected neural network (FCNN) is used with the input

layer connected to a fully connected layer of 10 neurons, a

ReLU function, followed by a second fully connected layer, a

softmax function. A memory-limited device based loss function

minimization approach used here is the Broyden-Flecter-

Goldfarb-Shanno quasi-Newton algorithm (LBFGS) (Nocedal

andWright, 2006; Hui et al., 2019), where the cross-entropy loss

is reduced during the training phase.

2.5.5. K-nearest neighbor

K-nearest neighbor (KNN) is one of the effective

and popular classifiers that are used for speech-based

applications (Alsmadi and Kahya, 2008). The categorization

process is divided into two stages: the first is determining the

closest neighbors, and the second is determining the class based

on those neighbors. The K-nearest neighbors are selected using

the Grid search method that provides the best value of k as 5.

2.6. Validation

K-fold cross-validation is a commonly applied validation

approach (He et al., 2018). The entire set of voice samples is

randomly divided into k equal-sized subgroups. Each fold has

an equal proportion of two different types of class labels (glottal

and normal stop speech). One of the subsamples is engaged for

testing, while the remaining k-1 subsamples can be utilized for

training (Altan, 2021, 2022). The process is replayed k times

(the folds), for each of the k subsamples serving as testing data.
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TABLE 4 Performance comparison of classifiers on di�erent phoneme categories.

Smeared phoneme category Model Accuracy AUC Precision Recall F-2 Score

STOPS SVM 0.9± 0.0045 0.87 0.92± 0.0012 0.9± 0.004 0.75± 0.002

/b/,/d/, LDA 0.81±0.025 0.83 0.81± 0.007 0.86± 0.0063 0.70±0.0069

/g/,/k/, GAM 0.9± 0.02 0.96 0.9± 0.0033 0.9± 0.0047 0.75± 0.0033

/t/,/p/ FCNN 0.85±0.016 0.89 0.87± 0.0022 0.86± 0.0033 0.72± 0.0022

KNN 0.80± 0.023 0.79 0.86± 0.0067 0.77± 0.0031 0.65± 0.0071

FRICAT SVM 0.92± 0.01 0.8 0.97± 0.0032 0.92± 0.0058 0.69± 0.0041

IVES LDA 0.72±0.02 0.74 0.67± 0.0015 0.70± 0.0033 0.57± 0.0011

/f/,/s/,/v/ GAM 0.89± 0.2 0.94 0.89± 0.0073 0.92± 0.0064 0.76± 0.0022

FCNN 0.64±0.04 0.59 0.70± 0.0017 0.68± 0.001 0.57± 0.0046

KNN 0.82± 0.015 0.77 0.84± 0.0069 0.82± 0.0022 0.69± 0.004

NASALS SVM 0.87±0.02 0.88 0.87± 0.0033 0.87± 0.0071 0.73± 0.006

/m/,/n/ LDA 0.67± 0.06 0.68 0.70± 0.004 0.63± 0.0022 0.53± 0.0011

GAM 0.94± 0.01 0.98 0.95± 0.001 0.93± 0.0023 0.77± 0.0066

FCNN 0.87± 0.01 0.91 0.77± 0.0014 0.89± 0.008 0.72± 0.004

KNN 0.77±0.02 0.76 0.78± 0.0012 0.76± 0.0011 0.63± 0.0032

VOWELS SVM 0.78± 0.0012 0.77 0.78± 0.0046 0.78± 0.0010 0.70± 0.0067

/a/,/e/, /o/ LDA 0.63± 0.0071 0.68 0.59± 0.0012 0.73± 0.0012 0.58± 0.0033

GAM 0.84± 0.0045 0.91 0.79± 0.0033 0.85± 0.004 0.69± 0.0012

FCNN 0.85± 0.0023 0.90 0.89± 0.0047 0.83± 0.0033 0.69± 0.001

KNN 0.64± 0.0017 0.64 0.55± 0.0014 0.68± 0.004 0.54± 0.0064

GLIDES+, SVM 0.81± 0.006 0.81 0.81± 0.0035 0.81± 0.0010 0.73± 0.0022

/l/ /w/ LDA 0.80± 0.0011 0.74 0.75± 0.0044 0.86± 0.006 0.7± 0.004

/r/ /h/ GAM 0.96± 0.0014 0.98 0.95± 0.008 0.95± 0.0010 0.8± 0.0041

FCNN 0.57± 0.0079 0.66 0.55± 0.0011 0.57± 0.001 0.5± 0.007

KNN 0.82± 0.0015 0.83 0.85± 0.0066 0.79± 0.002 0.67± 0.006

DIPTHO SVM 0.79± 0.0028 0.76 0.78± 0.0044 0.78± 0.0035 0.75± 0.008

NGS LDA 0.63± 0.0067 0.54 0.68± 0.0033 0.54± 0.0022 0.47± 0.006

/Oy/ GAM 0.87± 0.0011 0.93 0.85± 0.0014 0.85± 0.001 0.71± 0.0022

FCNN 0.88± 0.0036 0.80 0.88± 0.0026 0.86± 0.006 0.72± 0.001

KNN 0.67± 0.0044 0.67 0.73± 0.007 0.57± 0.007 0.5± 0.0041

The classification accuracy is calculated for each operation. The

mean classification accuracies are calculated using 10 times in

10-fold cross-validation (Muthusamy et al., 2015) for this study.

The validation accuracy is computed from confusion metrics as

shown below

Classification Accuracy =

(

TP + TN

TP + TN + FP + FN

)

(2)

where TP stands for True-Positives, TN stands for True-

Negatives, FP for False-Positives, and FN for False-

Negatives. The Precision and Recall are calculated as

mentioned below.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

(3)

The F-2 score is calculated as

F2−Measure =
(5 × Precision × Recall)

(4 × Precision + Recall)

=
TP

TP + 0.2FP + 0.8FN

(4)

The F-2 score is one of the important parameters in medical

diagnosis since it indicates the cases who are False Negative (who

have COVID-19 infection but have been incorrectly classified as

healthy by the model).

3. Results and discussions

After completing the experimental setup, the simulations

study has been performed on the MATLAB platform using a

Core i5, 12GB RAM processor. The results are analyzed in three
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FIGURE 3

Performance comparison of phonemes in non-smearing and smearing conditions.

TABLE 5 Comparison of GAM Classification performance for best phoneme categories and groupings.

Phoneme grouping Classification accuracy Precision Recall F-2 Score

/t/ 0.95± 0.01 0.95± 0.0021 0.93± 0.030 0.94± 0.014

/r/ 0.94± 0.01 0.94± 0.001 0.94± 0.021 0.94± 0.017

/n/ 0.94± 0.012 0.94± 0.0024 0.94± 0.003 0.94± 0.01

/g/ 0.93± 0.012 0.94± 0.013 0.94± 0.001 0.93± 0.008

/l/ 0.92± 0.016 0.93± 0.015 0.93± 0.0012 0.93± 0.006

/t//r//n/ 0.96± 0.0011 0.97± 0.001 0.96± 0.001 0.96± 0.004

/t//r//n//g//l/ 0.97± 0.0005 0.97± 0.001 0.97± 0.001 0.97± 0.0013

broad categories: the selection of the best classification model,

the effect of smearing, and the formation of the grouping of

phonemes.

3.1. Performance comparison of di�erent
classifiers on smeared phoneme
detection

For the selection of the best performing classifier for

COVID-19 detection using phoneme and smearing, the

performance of the five different classifiers (SVM, LDA, GAM,

FCNN, and k-NN) are compared. For this, the classification

accuracy, area under the curve (AUC), precision, recall, and F-2

score are used and the results are plotted in Table 4. The average

classification performances are listed for six broad categories of

phonemes including stops, fricatives, nasals, vowels, voiced, and

dipthongs.

In terms of classification accuracies, /t/, /a/, /f/, /k/, /l/, /m/,

/n/, /o/, and /r/ have obtained the best results under GAM

Classifier. Similarly, /b/, /e/, /g/, and /oy/ have achieved their

highest classification accuracies under FCNN Classifier. LDA

Classifier outperformed the rest for /p/, and /v/. SVM offered

the highest classification accuracies for both /w/, and /s/. Finally,

KNN achieved the best performance in the case of /h/ phoneme.

Conclusively, GAM delivers an overall best performance for all

phonemes as compared to other classifiers.

3.2. Comparison of classification
accuracy between non-smeared and
smeared phonemes

To detect the effect of smearing on the classification

performance, a comparative analysis is carried out between the

phonemes with and without smearing. For the classification

of the best performing model from the classification analysis,
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GAM is used. The same 78-dimensional feature vector sets

have been extracted from corresponding phoneme samples. The

simulation results are shown in Figure 3.

It is evident from the above figure that the smearing

of phonemes yields appreciably better classification

accuracies in the majority of the cases. The phoneme /t/

exhibits the highest classification accuracy of 95.92%, and

phoneme/a/ exhibits the lowest accuracy of 83.08% under the

smeared conditions.

FIGURE 4

ROC-AUC plot for the phoneme group /t//r//n//g//l/.

3.3. Phoneme groupings

After analyzing the classification performance of smearing

and individual phonemes, a phoneme grouping based approach

is adopted. Based on the individual classification accuracy

of phonemes, the 3-tuple and 5-tuple phoneme buzzwords

are created by combining the high-performing individual

phonemes (Moro-Velazquez et al., 2019). By taking the first

reference level of 95.67% classification accuracy, the first

phoneme group of “/t/-/r/-/n/” is used as a 3-tuple buzzword.

Then, the threshold is set at 94.07% classification accuracy

to form the second phoneme group of “/t/-/r/-/n/-/g/-/l/.”

The best performing five phonemes are then combined. In

these combinations, the phoneme classification accuracies are

taken in descending order where the /t/ is having the highest

classification accuracy and /l/ is having the lowest classification

accuracy among the group. Audacity software is used to combine

the individual phonemes to form 104 speech samples in both the

categories of COVID-19 positive and healthy for the phoneme

group of “/t/-/r/-/n/” and “/t/-/r/-/n/-/g/-/l/.” The same 78-

dimensional feature vectors are extracted and applied to the

GAM classifier and the results are listed in Table 5. The ROC-

AUC curve is plotted for the phoneme group /t//r//n//g//l/ in

Figure 4 and the comparison between spectrogram of COVID-

19 positive sample and healthy sample is plotted in Figure 5.

It is observed that the phoneme group with the buzzword

“/t//r//n//g//l/” performs better as compared to /t//r//n/. The

spectrograms of the buzzword “/t//r//n//g//l/” are plotted for

FIGURE 5

The plot of the Spectrogram of (A) COVID-19 positive sample and (B) a healthy sample.
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FIGURE 6

t-SNE plots of phoneme group buzzword “/t//r//n//g//l/” for

MFCC and GTCC features.

COVID-19 positive and healthy speech samples are plotted

in (Narlı, 2021).

A person affected by COVID-19 may lack in energy to

produce sound, thus disrupting the normal speech production

phenomena. In the stage of sound phonation, the sub-glottal

thrust must cross a certain threshold to set the vocal folds

in vibration. If the respiration stage of speech production is

interrupted, the phonation of the larynx will be accordingly

compromised (Asiaee et al., 2020). Therefore, the audio

waveform of the plosive /t/ in healthy candidate exhibits strong

energy compaction due to sufficient sub glottal pressure as

compared to the diseased case. The healthy vocal folds exhibit

glottal closures with a trail of strong impulses due to the

quick closure of vocal folds, whereas a disordered vocal fold

produces a weak impulse due to the incomplete closure of vocal

folds (Mandal and Rao, 2018). The ability to increase or decrease

vocal cord length and tension governs the frequency at which

the cord vibrates and, consequently, the pitch of the sound

produced. As the mass of the vocal cords increases, the vibrating

frequency and pitch decrease (Dettelbach et al., 1994). In the

above spectrograms, the healthy waveform depicts equivalent

variation for all phonemes, whereas, in the case of COVID-19

affected sample, certain phonemes are subdued as compared

to others. To further evaluate the effectiveness of the extracted

MFCC and GTCC features for phoneme group buzzword

“/t//r//n//g//l/,” the t-SNE plot is shown in Figure 6 (der Maaten

and Hinton, 2008). It is observed that in the input space, the

pattern of the extracted features is linearly separable which

improves the performance of the classification especially the

phoneme group buzzword “/t//r//n//g//l/.”

This approach to phoneme grouping has the advantage of

designing a low computational complexity based COVID-19

detection model as the individual phonemes are not recorded

and the group has a higher classification accuracy as compared

to individual phonemes.

4. Conclusion

In this study, a hybrid model is designed for the detection

of COVID-19 from speech signals by combining phoneme-

based signal analysis and spectral smearing. The performance

of the detection model is evaluated for 19 individual phonemes

and two phoneme groupings using five ML-based classifiers. It

is observed that the GAM model performs appreciably better

for most pathological phoneme detection. These methods are

expected to perform well among suspected COVID-19 patients

with minimal or no cough and shortness of breath. Due to

insufficient audio samples present in the corpus and to avoid

the issues of imbalanced data, the final dataset has been created

with the help of data augmentation prior to further processing.

In the future, a phone or a web application may be developed for

detection based on this buzzword. This proposed methodology

needs to be clinically validated in hospitals with large speech

datasets.
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