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Artificial intelligence (AI) has played a crucial role in advancing biomedical

sciences but has yet to have the impact it merits in regulatory science. As

the field advances, in silico and in vitro approaches have been evaluated as

alternatives to animal studies, in a drive to identify andmitigate safety concerns

earlier in the drug development process. Although many AI tools are available,

their acceptance in regulatory decision-making for drug e�cacy and safety

evaluation is still a challenge. It is a common perception that an AI model

improves with more data, but does reality reflect this perception in drug safety

assessments? Importantly, a model aiming at regulatory application needs to

take a broad range of model characteristics into consideration. Among them

is adaptability, defined as the adaptive behavior of a model as it is retrained

on unseen data. This is an important model characteristic which should be

considered in regulatory applications. In this study, we set up a comprehensive

study to assess adaptability in AI by mimicking the real-world scenario of the

annual addition of new drugs to the market, using a model we previously

developed known as DeepDILI for predicting drug-induced liver injury (DILI)

with a novel Deep Learning method. We found that the target test set plays

a major role in assessing the adaptive behavior of our model. Our findings

also indicated that adding more drugs to the training set does not significantly

a�ect the predictive performance of our adaptive model. We concluded that

the proposed adaptability assessment framework has utility in the evaluation

of the performance of a model over time.
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AI in regulatory sciences

The term Artificial Intelligence (AI) refers to the ability

of a computer system to learn from past data to predict

future outcomes. Machine Learning (ML), a subset of AI,

refers to the study and use of computer algorithms that

automatically improve in making predictions or decisions

based on their experiences and interactions with the training

data (Gupta et al., 2021). Deep Learning (DL), a subset

of ML, mimics the cognitive behaviors associated with

the approach the human brain would take in learning

and problem-solving of data-intensive problems (Gupta

et al., 2021). Although AI has gained momentum in recent

advancements within the biomedical field, especially in

areas like drug safety evaluation and assessment, from a

regulatory science perspective AI has yet to have the impact

it merits.

Regulatory science is the science of developing new

tools, standards, and approaches to assess the safety, efficacy,

quality, and performance of FDA-regulated products (FDA,

2021). The main role of regulatory science is to certify

the safety, proper labeling, and efficacy of food, drug and

cosmetic items, like mandating food standards for packaging

and quality, and regulating cosmetic products and medical

devices (Patel and Miller, 2012). Despite being a critical

component in the continued evolution of our approaches to

certifying the safety and quality of food and medical products,

regulatory science research has yet to have the impact it merits

(Hamburg, 2011).

As the field of regulatory science advances, in silico

and in vitro approaches have been extensively evaluated as

alternatives to some animal studies, in a drive to identify

and mitigate safety concerns earlier in the drug development

process (Hamburg, 2011). AI and DL tools have begun to

play a crucial role in the advancement of computer-aided

drug discovery, design, and development (Gupta et al., 2021),

specifically for the study of drug safety and efficacy. DL is

arguably the most advanced ML approach that frequently

outperforms conventional ML approaches (Slikker et al., 2012;

Gupta et al., 2021; Anklam et al., 2022). DL usually consists of

multiple layers of neural networks which can be constructed

and connected in diverse ways, giving rise to a broad range

of methodologies. As a result, DL has become the first-choice

algorithm in regulatory science research due to its diversity and

superior performance.

Regulatory frameworks and the
initiatives benefiting from AI

As interest in the use of AI within scientific and clinical

research has grown, the global government agencies such as

the European Medicines Agency, the European Food Safety

Agency, the Unites States National Institute of Standards and

Technology (NIST), the US Food and Drug Administration

(FDA), and the United States Congress have worked to

strengthen the guidance on how to safely implement the use

of AI as software tools and medical devices. In 2021, the US

House of Representatives introduced the FDA Modernization

Act, H.R. 2565 (Text-H.R.2565-117th Congress (2021–2022),

2021) and S.2952 (Text-S.2952-117th Congress (2021–2022),

2021), intended to reform the drug approval process and

drive the use of non-animal testing methods. In June 2022,

the FDA Modernization Act as was passed as an additional

provision, Section 701 (Text-H.R.7667-117th Congress

(2021–2022), 2022), in a larger legislative package of FDA-

related reforms known as the Food and Drug Amendments of

2022, H.R. 7667 (Text-H.R.7667-117th Congress (2021–2022),

2022). NIST has released several whitepapers providing

guidance on how to properly implement AI in regulatory

sciences like the 116th Congress AI in Government Act

of 2020 (Text-H.R.2575-116th Congress (2019–2020),

2020) and the 117th Congress GOOD AI Act of 2021

(Text-S.3035-117th Congress (2021–2022), 2022).

The FDA has made major strides in guiding developmental

and more recently computational opportunities within

regulatory science through programs like the Drug

Development Tool Qualification Programs (U. S. Food andDrug

Administration, 2021a) and the FDA’s Predictive Toxicology

Roadmap (U. S. Food and Drug Administration, 2017), as

well as many initiatives at the Center for Drug Evaluation and

Research (CEDR) and for the first time an AI/ML specific Action

Plan named “Artificial Intelligence/Machine Learning (AI/ML)-

Based Software as a Medical Device (SaMD) Action Plan” has

been instituted by the Center for Devices and Radiological

Health (CDRH) (U. S. Food and Drug Administration, 2019b,

2021b).

In 2016 the FDA passed the Cures Act which defined a

three-stage qualification process that allowed the use of qualified

Drug Development Tools (DDTs) across drug development

programs (U. S. Food and Drug Administration, 2021a). DDTs

are methods, materials, or measures that have the potential

to facilitate drug development. There is a total of four DDT

Qualification Programs (U. S. Food and Drug Administration,

2021a). A qualified DDT has been determined to have a

trusted specific interpretation and application within drug

development and regulatory review for the qualified context

of use. Once qualified, DDTs are made publicly available and

can generally be included in Investigational New Drug (IND),

New Drug Application (NDA), or Biologics License Application

(BLA) submissions without requiring the FDA to reconsider or

reconfirm its suitability (U. S. Food and Drug Administration,

2017, 2021a,c). The four programs, Animal Model, Biomarker,

Clinical Outcome Assessment (COA), and the newest addition

the Innovative Science and Technology Approaches for New

Drugs (ISTAND) Pilot Program, rely on a context of use
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statement. The Context of use statement is one of the most

important parts of the qualification process. The context of

use should describe all elements that characterize the manner

and purpose of use for the DDT being submitted (U. S. Food

and Drug Administration, 2021a). Once qualified the context

of use will define the boundaries that justify to others where

they can use the qualified DDT. The ISTAND Pilot Program

(U. S. Food and Drug Administration, 2021c) was developed

to expand the current types of DDTs by encouraging the

development and acceptance of DDTs that are outside of the

scope of existing programs but are still novel approaches to

drug development and acceptable for regulatory use. Once a

new model is considered qualified by the FDA for a specific

context of use, industry and other stakeholders may use it for the

qualified purpose during product development without the need

for FDA reviewers to re-review the underlying supporting data

(U. S. Food and Drug Administration, 2017, 2021a,c).

In December of 2017 the FDA’s Toxicology Working

Group published the FDA’s Predictive Toxicology Roadmap

(U. S. Food and Drug Administration, 2017), a six-part

framework outlining Agency priorities and engagement in

predictive toxicology, and identifying current toxicology issues

related to FDA-regulated products. The roadmap describes

the FDA’s current thoughts on practical ways to incorporate

the development and evaluation of emerging toxicological

methods and innovative technologies into the FDA regulatory

review process. The six-part framework moves to enhance

FDA engagement in the science of toxicology through the

organization of a senior-level Toxicology Working Group

that will help identify areas where research is needed, assist

with efforts to reduce duplication and increase collaboration

inside and outside the FDA through the encouragement of

frequent communication and fostering collaborations across

sectors and disciplines both nationally and internationally

(U. S. Food and Drug Administration, 2021a).

Adaptability of AI in regulatory
science

Although there are several interpretations of adaptability

and adaptive AI in the field, within this article we define

adaptability as the study of the adaptive behavior of a model as

it is retrained on unseen data. An adaptive model is a model that

has the ability to continuously learn and change as it is used,

meaning as time goes on the same question will not yield the

same results as the model learns to better address the problem.

A locked model is trained, developed, and tested to produce the

best version of the model and once the model is launched for

public or private use it should produce the same results every

time the same input is used.

The AI/ML specific action plan was a response to a

discussion paper published by the FDA in April of 2019 with a

request for stakeholder feedback on the potential approach to the

premarket review of AI and ML driven software modifications

for Software used as a Medical Device (SaMD) (U. S. Food

and Drug Administration, 2019b, 2021b). SaMD (Health et al.,

2018) is “software intended to be used for one or more medical

purposes that perform these purposes without being part of

a hardware medical device” as defined by the International

Medical Device Regulators Forum (IMDRF) (U. S. Food and

Drug Administration, 2019a). As stated in the proposed plan,

the FDA has cleared or approved several AI/ML-based SaMDs,

but to date, SaMDs have typically only included algorithms that

are “locked” prior to the systems or software’s launch to market.

Any proposed algorithm changes to a “locked” algorithm

will likely require an FDA premarket review, especially if

those changes are beyond the original approved authorization

(U. S. Food and Drug Administration, 2019b). However,

some algorithms have the capability and need to adapt over

time through continuous learning from real-world experience

after distribution.

The advantage and drawback, depending on the

circumstance, of a “locked” algorithm is the fact it will not

continually adapt or learn from its post market use, this

feature is important in some instances but occasionally an

adaptive algorithm is needed. The newly released AI/ML-

Based SaMD Action Plan outlines five actions that the FDA

intends to take to advance the use of AI/ML based software

within regulatory science. The first of which is tailored

toward the further development of adaptive AI and ML

algorithms within the regulatory framework through the

“issuance of Draft Guidance on the Predetermined Change

Control Plan” which includes SaMD Pre-Specifications (SPS),

where manufacturers describe “what” aspects they intend

or anticipate modifying through continuously learning,

and Algorithm Change Protocol (ACP) which explains

“how” the algorithm will learn and change while remaining

safe and effective (U. S. Food and Drug Administration,

2021b). The four other actions include encouraging the

development of good ML practices, fostering a patient-

centered approach through incorporating transparency to

users, supporting regulatory science efforts to evaluate and

improve ML algorithms; and working with stakeholders who

are piloting the Real-World Performance (RWP) process for

AI/ML-based SaMD.

Programs like ISTAND and the AI/ML-based SaMD Action

Plan help lay the foundation for methodologies and tools to

advance the use of computation within regulatory science. To

test the assumption that drug safety models improve as more

data is added to the training set, we set up a comprehensive

study to mimic the real-world scenario of annually adding novel

drugs to the market, using a model we previously developed for

assessing drug-induced liver injury (DILI), known as DeepDILI

(Li et al., 2021). In using this approach, we addressed two

important questions: First, did themodel’s performance improve

Frontiers in Artificial Intelligence 03 frontiersin.org

https://doi.org/10.3389/frai.2022.1034631
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Connor et al. 10.3389/frai.2022.1034631

or decline as more data was added? Second, did the context of

use change as the model adapted? Our evaluation followed the

real-world scenario where a model was developed based on the

drugs approved in the early years (before 1997) and assessed with

the drugs approved thereafter (after 1997).

DeepDILI: A deep learning model to
evaluate drug-induced liver injury in
humans

Evaluating DILI has been a persistent challenge for the

past 60 years and continues to be the leading cause of toxicity

failures in pharmaceutical development (PoPPer et al., 1965;

Zimmerman, 1999; Van Norman, 2019). In our previous study,

we developed an AI drug safety model, known as DeepDILI

(Li et al., 2021), a deep learning-powered prediction model

designed to identify drugs with DILI potential in humans

solely based on chemical structure information. DeepDILI was

created by combining model-level representation generated

from five conventional ML algorithms [k-nearest neighbor

(kNN), logistic regression (LR), support vector machine

(SVM), random forest (RF), and extreme gradient boosting

(XGBoost)] with a deep learning framework usingMold2 (Hong

et al., 2008) chemical descriptors. With DeepDILI, we aimed

to evaluate whether the DILI potential of newly approved

drugs could be predicted by accumulating knowledge from

previously approved drugs. For that reason, the DeepDILI

model was trained with 753 drugs released to the market

prior to 1997 and evaluated on the 249 drugs approved in

1997 and thereafter. Upon evaluation the model yielded an

accuracy of 68.7%. In addition, DeepDILI was compared with

a published DL DILI prediction model using three external

validation sets, resulting in the DeepDILI model achieving

better results with two data sets and comparable result

with one.

Adaptability of DeepDILI: An
assessment based on a real-world
scenario

To explore the adaptability of an AI solution for drug

risk, we implemented a time-split based adaptability framework

using our DeepDILI prediction model (Li et al., 2021). We

utilized our DILI Severity and Toxicity (DILIst) dataset, which

is currently the largest binary human DILI classification data

set (Thakkar et al., 2020). The 1,002 drugs from DILIst were

first split based on the drugs’ approval year; 753 drugs with an

approval year before 1997 were used for model development

and 249 drugs with an approval year after 1997 were used

for testing. To implement a time-split adaptability framework

analysis, the 249 drugs (with an approval year of 1997–2019)

were split into five chronological groups or buckets of relatively

the same size (Figure 1). Drugs approved from 1997 to 1998

were put into bucket 1, 1999 to 2001 in bucket 2, 2002 to 2004

in bucket 3, 2005 to 2007 in bucket 4, and 2008 to 2019 into

bucket 5, with 53 (36+/17–), 44(29+/15–), 46(24+/22–), 45

(23+/22–), and 61 (38+/23–) drugs, respectively in each bucket

(Figure 1). DILI positive and negative are labeled as “+”and

“–”, respectively.

The adaptability of DeepDILI was assessed by adding drugs

from each of the previously mentioned buckets by year into the

training set to develop adaptive DeepDILI models (Figure 2A).

The new training set was used to develop a new and evolved

DeepDILI model. More in depth details about the model

development can be found in our previous DeepDILI work

(Li et al., 2021). To mimic the real-world scenario of annually

adding novel drugs to the market, we increased the number

of new drugs by stepwise and chronologically adding each

bucket of drugs. Through this method, there was at most four

buckets of drugs added to the initial locked training set (i.e.,

the 753 drugs approved before 1997) and one bucket used

for evaluating the performance of the adaptive models. For

example, if bucket 5 containing drugs approved from 2008

to 2019 was used as the test set, the adaptative models were

developed as follows (Figure 2B). The first adaptative model

was developed with the locked training set (602 drugs approved

before 1997) in addition to the new drugs from bucket 1 (53

drugs approved in 1997 and 1998) and evaluated with bucket

5 (61 drugs approved in 2008 to 2019). The second adaptive

model was developed with the locked training set in addition

to the new drugs from bucket 1 and bucket 2 (44 drugs

approved in 1999 to 2001) and evaluated with bucket 5. The

third adaptive model was developed with the locked training

set in addition to the new drugs from buckets 1 through 3 (46

drugs approved in 2002 to 2004) and evaluated with bucket

5. The fourth adaptive model was developed with the locked

training set in addition to the new drugs from buckets 1 through

4 (45 drugs approved in 2005 to 2007) and evaluated with

bucket 5. Additionally, the performance of the four adaptive

models were compared with that of the initial DeepDILI model

with the test bucket, which in this case is bucket 5. This

process was reiterated five times. Each time a different bucket

served as the new test set and all remaining buckets were

chronologically added to the training set as described above.

The data and code are available through https://github.com/

TingLi2016/Adaptability.

To assess the adaptative nature of DeepDILI, seven

performance metrics were compared between the locked and

adaptive DeepDILI models. We calculated seven performance

metrics to evaluate the performance of the model: the area under

the receiver operating characteristic curve (AUC), accuracy,

sensitivity, specificity, F1, Matthew’s correlation coefficient
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FIGURE 1

Data preparation: the data set was adopted from the previous DeepDILI study. The DeepDILI test set was split into five buckets based on the

information of drugs’ approval year. DILI positive and negative was labeled as “+”and “–”.

FIGURE 2

Adaptability Assessment Framework. (A) General framework of the adaptive model development, where the DeepDILI model adapts to new data

by incorporating more data in the initial training set; (B) One iteration of the adaptability assessment process. In this iteration, bucket 5 was used

as the test set, and the other four buckets served as the new drugs, that were chronologically and incrementally added to the initial training set.

The process iterates five times as each bucket served as a test set.
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FIGURE 3

MCC distribution of the locked DeepDILI and adaptive DeepDILI models: the red triangle is the MCC of locked DeepDILI and the black dots

represent the MCCs of the adaptive DeepDILI models for every test bucket. For example, 1997_1998 means that the tested drugs were approved

in 1997 and 1998.

(MCC), and balanced accuracy (BA), were calculated using the

following formulas:

True Positive (TP), True Negative (TN), False Positive (FP),

and False Negative (FN)

accuracy =
TP + TN

TP + TN + FN + FP
(1)

sensitivity =
TP

TP + FN
(2)

specificity =
TN

TN + FP
(3)

F1 =
2TP

2TP + FP + FN
(4)

MCC =
TP∗TN − FP∗FN

√

(TP + FP)∗ (TP + FN)∗ (TN + FP)∗ (TN + FN)

BA =
sensitivity+ specificity

2
(5)

MCC ranges from −1 to 1, with extreme values −1 and 1

representing perfect misclassification and perfect classification,

respectively. All the other sixmetrics range from 0 to 1; a score of

1 indicates the model makes correct decision on every test case.

Thus, the higher value the better. Although we evaluated seven

metrics for the locked and adaptative DeepDILI models, it was

common to find that one model had better performance in some

metrics but may be inferior to other metrics during the model

comparison. Therefore, we selected MCC as the main metric,

which has proven to have advantages in the binary classifications

for an unbalanced data set (Chicco and Jurman, 2020; Chicco

et al., 2021).

Key questions in adaptability assessment
for the DeepDILI model

Has the model performance improved?

Figure 3 illustrates the comparison of the MCCs for the

adaptive models (marked by the black dots) to the MCCs of

the locked model (marked by the red triangles) for all five test

sets, buckets 1–5. The locked DeepDILI model achieved the

highest MCC of 0.538 and 0.436 in comparison to the adaptive

models in the same test sets for bucket 2 (1999 to 2001) and

bucket 4 (2005 to 2007), a comparable MCC of 0.376 and 0.106

in comparison to the adaptive models in the same test sets for

bucket 1 (1997 to 1998) and bucket 5 (2008 to 2019), and the

lowest MCC of 0.213 in comparison to the adaptive models in

the same test sets for bucket 3 (2002 to 2004). Thus, we found

that bucket 3 (2002 to 2004) was the only bucket in which the

adaptive models MCC improved, as more drugs were added,

in comparison to the locked DeepDILI model. The same trend

was observed for the accuracy and F1, but a slight variance

was found in the AUC, BA, sensitivity and specificity. Detailed

information for these seven performance metrics can be found

in Supplementary Table 1.

How does the performance of the model adapt
as the number of drugs increases?

To investigate whether the model performance was

positively associated with the increasing number of drugs in

the training set, we assessed the MCCs of the locked DeepDILI
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FIGURE 4

The trend of MCC among the locked DeepDILI and adaptive DeepDILI models within each buckets test set: for example, (A) showed the MCC

trend of the locked DeepDILI model (labeled DeepDILI) and four adaptive DeepDILI models (labeled by the added drugs’ approval year) on the

test set with the drugs approved in 1997- and 1998. The following 4 sub-figures (B–E) follow this exact trend with their corresponding years.

model (labeled as DeepDILI) and individual adaptive DeepDILI

model for each test set (Figure 4). The locked DeepDILI

model, which has the smallest number of drugs in the training

set as compared to the adaptative DeepDILI models, was

used as a baseline. In Figure 4A, the MCCs of the adaptive

DeepDILI models for the test set of bucket 1 (1997 to 1998)

decreased as more drugs were added to the training set. In

Figures 4B,D, the MCCs of the adaptive models for the test

sets of buckets 2 (1999 to 2001) and 4 (2005 to 2007) presented

as a wave shape as more drugs were added to the training

set. In Figures 4C,E, the MCCs of the adaptive models for

the test sets of buckets 3 (2002 to 2004) and 5 (2008 to 2019)

exhibited a relatively flat trend as more drugs were added to

the training set, indicating that as more drugs were used in

the training, the performance of the adaptive models did not

improve. Thus, there is no positive relationship between the

model performance and the number of drugs in the training

set. In addition, no general pattern was found in the adaptive

models performance as we increased the number of drugs in the

training set.

What additional factors influence the models’
performance?

As the performance of the models adapted to the addition

of new drugs, we observed the average MCC varied from

one test set to another (Supplementary Table 1). The test set

of bucket 2 (1999 to 2001) achieved the highest average

MCC of 0.379, while bucket 5 (2008 to 2019) yielded the

lowest average MCC of 0.031. The test sets of buckets 1

(1997 to 1998), 3 (2002 to 2004), and 4 (2005 to 2007)

yielded similar average MCCs of 0.235, 0.243, and 0.213,

respectively. This indicates that different test sets presented

various levels of challenges for DILI prediction, showing that

the properties of the test set data are a key factor in the

model’s performance.
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Discussion

Although AI is promising, there is still work to do; a

comprehensive assessment of the adaptive behavior and context-

of-use of AI models for regulatory application is required. As

two important aspects of regulatory significance, especially for

the application of AI, the applicability domain and context

of use play a significant role in enhancing AI solutions

for risk assessments within the regulatory arena. On every

occasion, the context of use should clearly convey to users

where the model is best utilized as well as whether the model

is intended to complement or replace current technologies

(Anklam et al., 2022), while the applicability domain outlines

how the model is used through defining best practices

(Anklam et al., 2022).

When it comes to using adaptive models and assessing

their adaptive behavior there are a number of strategies and

approaches being used across the field of AI (Groce et al., 2002;

Yang et al., 2005; Xiao et al., 2016; López and Tucker, 2018).

Currently, a random split cross-validation model is considered

the ML standard for model building and evaluation (Morita

et al., 2022). Random split cross-validation is often found

to be overoptimistic in comparison to real-world situations,

while a time-split approach is considered suitable for real-world

prediction (Morita et al., 2022). In this study, we proposed

a time-split adaptability framework approach to exploring the

adaptive behavior of an AI-based solution for drug toxicity and

risk assessments within regulatory science. In using the time-

split approach, we were able to discuss two important questions:

(1) Did the models performance improve or decline as more

data was added? And (2) Did the context of use change as the

model adapted?

Through the real-world scenario of annually adding new

drugs to the market to retrain our model, we found that the

target test set plays a major role in the adaptive behavior

of our model. Our findings suggest that regardless of the

individual model performance, the average MCC was found to

vary from one test set to another. This indicates that different

test sets possess different levels of challenge for prediction,

demonstrating that the target test set appears to be the most

important factor in performance. The context of use for our

DeepDILI model was the same for the locked and adaptive

models. DeepDILI aims to flag the human DILI potential of

DILI positive drugs using the chemical structure that have a

molecular weight lower than 1,000 g/mol. Since these criteria

were used to screen the drugs for the initial model that our

adaptive framework was remodeled from our context of use did

not change as the model adapted to “new” data. Although a

time-split approach is seen to be better for real-world prediction,

a major caveat of this approach are the limitations with

respect to the amount of usable or available data for model

training, development, and testing. In future studies, it would

be beneficial to assess the application of our adaptive framework

to other types of predictive models to determine their adaptive

behavior. Since drug induced organ injury is a leading cause of

drug withdrawals, it would be beneficial to see how our locked

and adaptive model frameworks perform when used on other

organ systems.

Our results indicated that adding more drugs to the

training set did not substantially contribute to the performance

of the adaptive DeepDILI model. Overall, based on these

findings we conclude that the proposed adaptability assessment

framework has utility in the evaluation of a model’s adaptive

performance over time, which would greatly support the

advancement of AI-based models in regulatory science. Using

comprehensive assessments to evaluate the adaptive behavior

and context-of-use of AI based safety evaluation and risk

assessment models, whether locked or adaptive, can have

a positive impact on decision making within regulatory

science. Currently, reviewers utilize animal pharmacology and

toxicology data, manufacturing information, clinical protocols

and any past knowledge of the compound to assess the safety

of a new drug. The development and parallel use of alternative

approaches to identify and signal different safety concerns

earlier in the review process are essential to the future of

regulatory science.
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