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Introduction: Sentence-level complexity evaluation (SCE) can be formulated

as assigning a given sentence a complexity score: either as a category, or

a single value. SCE task can be treated as an intermediate step for text

complexity prediction, text simplification, lexical complexity prediction, etc.

What is more, robust prediction of a single sentence complexity needs much

shorter text fragments than the ones typically required to robustly evaluate

text complexity. Morphosyntactic and lexical features have proved their vital

role as predictors in the state-of-the-art deep neural models for sentence

categorization. However, a common issue is the interpretability of deep neural

network results.

Methods: This paper presents testing and comparing several approaches

to predict both absolute and relative sentence complexity in Russian. The

evaluation involves Russian BERT, Transformer, SVM with features from

sentence embeddings, and a graph neural network. Such a comparison is done

for the first time for the Russian language.

Results and discussion: Pre-trained language models outperform graph

neural networks, that incorporate the syntactical dependency tree of a

sentence. The graph neural networks perform better than Transformer and

SVM classifiers that employ sentence embeddings. Predictions of the proposed

graph neural network architecture can be easily explained.

KEYWORDS

sentence-level complexity, BERT, graph neural networks, sentence embeddings, text

complexity, Russian language

1. Introduction

Linguistic complexity is well-studied at various levels of linguistic units from whole

texts (Collins-Thompson and Callan, 2005; Crossley et al., 2008; Heilman et al., 2008)

to individual words (Shardlow et al., 2020, 2021). Sentence Complexity Evaluation

(SCE) task takes an intermediate position between the text fragment level (i.e., several

coherent sentences) and the level of an individual word/phrase complexity prediction.

This intermediate position makes the SCE task harder to resolve. On the one hand, a

sentence has fewer words than larger fragments therefore, it is not enough to collect

reliable statistics (which appear to be useful for the complexity prediction of larger text

portions). On the other hand, each sentence has its own structure that may affect the

complexity and restrict the application of distributional semantics, which is typically used

to capture complexity at a lexical level (complexity of individual words). Recent works

investigate sets of features that can be used in SCE, including lexical, syntactical features
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from the target sentence as well as contextual features from

surrounding sentences (Schumacher et al., 2016; Iavarone et al.,

2021).

The SCE presents issues, especially at the levels of

interpretation of themodel’s results and feature selection. One of

the state-of-the-art approaches is deep neural networks capable

to explore a wide range of features and combine them in

a hierarchical and non-linear manner. For example, Vaswani

et al. (2017) relate natural language processing to Transformer-

based neural architectures, while Devlin et al. (2018) relate this

processing to pre-trained language models (PLMs). What is

more, deep neural networks have been applied in SCE before.

For instance, Schicchi et al. (2020) evaluated the a long short-

term memory (LSTM) model with attention mechanism in a

binary classification of Italian sentences.

Brunato et al. (2018) present a detailed analysis of

features that affect human perception of sentence complexity

is presented. These authors study the contribution of a

set of lexical, morphosyntactic, and syntactic features. The

most important features are sentence length (SL), maximum

dependency length in a dependency syntax tree, etc.; for

sentences with the same length, the most important factors

include average word length (AWL) and lexical density. A

predictive model that focuses on lengths of dependencies and

words tends to be more biased toward shallow representations

that are likely to vary across texts, domains, etc. Such high

variability can harm the robustness of modern state-of-the-art

models. The main research question of this paper is following:

“Can a robust SCE model ignore SL and AWL in a sentence?.”

If so, “How well such a model can perform, and which features

should it use?.” The secondary question is “How to interpret the

SCE results given by such a model?”

This paper studies the performance of different approaches

to sentence complexity prediction excluding the SL and anAWL.

All the approaches incorporate deep neural representations:

sentence embeddings, pure Transformer-based model, fine-

tuned Russian BERT, and a graph neural network (GNN) trained

on the dependency tree of a sentence. The above approaches

are evaluated on both regression and classification. The derived

state-of-the-art results show that successful models need to

incorporate lexical and structural signals from an input sentence.

The fine-tuned Russian BERT model performs the best, the

GNN performs similarly, but better than the pure Transformer.

The rest of the paper is organized as follows. Section 2

discusses the current state of the art. Section 3 presents the

experimental setup including the datasets and methods. Section

4 contains results of the experiments; Section 5 summarizes the

paper by discussing key findings, future work, and conclusion.

2. Related work

As discussed above, the text complexity is a well-studied

and wide area, therefore the section surveys only research works

closely related to the present study. Inui and Yamamoto (2001)

study the relative complexity of sentences in the readability

context for deaf people. Based on a set of questionnaires,

these authors collected a corpus with pairs of sentences

with paraphrases. Modeling complexity was targeted on the

classification of paraphrases into three levels/classes (“left,”

“right,” “same”). In addition, Inui and Yamamoto developed

a rule-based method and compared it to the SVM classifier

trained on a set of morphosyntactic features. Later, Vajjala and

Meurers (2014) evaluated an SVM classifier to predict relative

complexity on a corpus of pairs of complex and simplified

sentences. Maqsood et al. (2022) compare different machine

learning algorithms for SCE in English dataset with seven

categories.

Similarly, Schumacher et al. (2016) studied models to

estimate the relative reading difficulty of sentences, with and

without the surrounding context. The context covers at least two

sentences before and after the sentence in question. Schumacher

et al. bin sentences according to grade levels (e.g., a sentence

from grade 1 was paired with sentences from grades 3–4,

5–6, 7–8, 9–10, 11–12). What is more, Schumacher et al.

studied lexical and grammatical features (both from the target

sentence and its context) to train a logistic regression classifier

and Bayesian ranker. These authors show that considering the

context improves predicting sentence readability. For feature

selection, authors use the Random Forest Classifier revealing

the most important feature in their model, “AoA” (age of

acquisition of a word). The simplest model has only the AoA-

based features, which allows to achieve higher score on the

dataset. The study describes another interesting result claiming

that 84% of sentence pairs could be answered using vocabulary

features, thus justifying the high performance of the AoA

features. Unfortunately, the author of this paper is not aware of

any large enough lexical databases with AoA information for the

Russian words.

Brunato et al. (2018) applied crowdsourcing to model

human perception of single-sentence difficulty in Italian and

English. These authors investigate a wide set of linguistic features

and how they contribute to human perception of sentence

complexity. Brunato et al. analyzed a few tens of features,

such as “char_tok” (average number of characters per word)

and “n_tokens” (average number of words per sentence). In

their experiments, Brunato et al. show that syntactic features

can play important role in defining the sentence complexity,

but “char_tok” and “n_tokens” features are always in the top

important features as well. What is more, Brunato et al. explicitly

control the SL by binning the dataset into the sentence groups of

the same length (e.g., 10, 15, 20, etc.) up to 35 tokens.

On top of the dataset collected in the previous work,

Iavarone et al. (2021) presented a study of modeling sentence

complexity in context. They report results for the prediction

complexity in terms of MAE for SVM models and BERT

models. Despite the BERT-based model demonstrating high

performance, Iavarone et al. offer an interesting conclusion
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claiming that the BERTmodel does not seem to exploit syntactic

features to predict sentence complexity.

Finally, deep neural networks for sentence complexity

classification were proposed in Lo Bosco et al. (2021). Their

model uses the TreeTagger to extract syntactic features, two

LSTM layers, and a linear layer. The last layer outputs the

probability of a sentence belonging to the easy or complex

class. The experimental results show the increased approach

effectiveness for both Italian and English, compared with several

baselines such as Support Vector Machine, Gradient Boosting,

and Random Forest.

3. Materials and methods

3.1. Data collection and validation

3.1.1. Corpus of school textbooks

The paper uses the initial corpus of the school texts collected

by Solovyev et al. (2018a). Each text in this corpus has a grade

level ranging from 1 to 11. The corpus statistics are provided in

Table 1. Few books in the original collection have non-integer

values of grade level (e.g., 1.5 means “1st grade, advanced”).

Therefore, for classification experiments, labels of such books

were adjusted in the following manner: grade 1.5 transformed

to 2, grade 2.5 transformed to 3, grade 4.5 transformed to 5,

10.5 and 11.5 transformed to 11 (as only one textbook had a

label of 11.5). This adjustment aimed to produce fewer text

categories. The result of the label transformation is shown in

the “Label” column of Table 1 which can be used in both:

regression and classification modes. In addition, each text was

assigned a coarse category (“Category” column), which allows

for evaluating models on a “3-class classification” task.

As one can observe, the average sentence length (ASL) and

AWL are reliable predictors of grade level. Indeed, the dataset

demonstrates the Pearson’s correlation coefficient between

“Grade Level” and ASL of 0.91. The “Grade Level” and AWL

also strongly correlate with each other (0.86). The values of the

Pearson’s correlation are calculated at the level of individual

documents. Obviously, complex sentences are more likely to be

present in books with higher grade levels. This fact is important

because such a high correlation allows for transferring labels

from a textbook to the sentences extracted from the textbook.

3.1.2. Dataset with sentence-level annotations

All documents from the initial corpus were tokenized and

divided into sentences. A complexity label for each sentence

was propagated from the document level to the sentence

level: a textbook grade is assigned to each sentence from

the corresponding text. For each sentence, the following two

parameters were calculated: SL in tokens and average symbols

per word in the sentence (AWL). The result of this first step is a

collection of 92,536 sentences along with their complexity labels

(Grade), SL, and AWL. The SL and AWL features will be used

in baseline models. The books from higher grades are typically

longer. What is more, they have more sentences and lead to

an imbalanced dataset. Quite few sentences are longer than 35

tokens (Figure 1). Long sentences (longer than 35 tokens) as

well as sentences shorter than six tokens were removed from the

collection. After this operation, the total number of sentences in

the dataset becomes 75,507.

Two directions of the present study are related to modeling

of (i) single sentence complexity, and (ii) the relative complexity

for a sentence pair. The first direction corresponds to the

question: “How complex is a given sentence?.” The second

direction aims at the question: “Which given sentence in a pair

is more complex?.” A naive answer to both questions faces

the same problem discussed above: the answer will be biased

toward longer sentences and sentences with higher AWL values.

However, many sentences have similar SL and AWL values,

but come from different grade levels. In such cases, the naive

approach is less applicable: one needs to collect more statistics

and use other features. Therefore, ignoring the SL and AWL

factors leads to a less biased sentence complexity prediction

model.

Study in the first direction is denoted as “1-sentence”

(or “1-s”), and the second direction aimed at assessing

relative complexity is referred as “2-sentence” (or “2-s”). The

construction and validation of the “2-s” dataset are presented in

subsection 3.1.3 below.

3.1.3. Dataset with pairs of sentences

The dataset of sentence pairs was constructed in the

following way. Given two books, all possible pairs of sentences

were taken from one of the two different textbooks. This set of

sentence pairs was filtered according to the following criteria: (i)

remove pairs with significantly different SLs, (ii) remove all pairs

with significantly different values of AWL. More precisely, only

pairs with the exact matching values of SL and having values of

AWL deviating by not more than 0.01 from each other remained

in the dataset. This dataset is significantly smaller than the set of

all pairs. What is more, SL and AWL features become useless for

predicting which sentence of the pair is more complex.

The derived 2-s dataset contains over 6 million sentence

pairs. Figure 2 presents the distribution of the number of

samples with respect to grade levels of sentences in each pair.

This pattern is expected since the SL should gradually increase

with the grade level assigned to a sentence. Moreover, Figure 2

shows distribution of number of samples on a logarithmic scale.

The figure also shows the imbalance of the 2-s dataset, i.e., the

higher the grade levels, the more samples are derived.

Obviously, the “Grade” of the first sentence in each pair can

be equal, greater, or less than “Grade” of the second sentence. In

the case of inequality, this information can be represented as a

binary label. Taking into account equality allows for formulating
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TABLE 1 Statistics on sentence length (ASL) and word length (AWL) of the initial textbooks corpus.

File name (book) Grade level Label Category ASL AWL Total sentences

year_bog_11p.txt 11.50 11 High 18.63 7.13 5,648

year_petrov_11.txt 11.00 11 High 15.65 6.71 5,029

year_guryan_11.txt 11.00 11 High 16.01 6.72 5,848

year_nik_11.txt 11.00 11 High 17.99 6.95 2,078

year_ponom_11.txt 11.00 11 High 15.71 6.65 2,190

year_plenko_11.txt 11.00 11 High 16.66 6.63 3,470

year_bog_10p.txt 10.50 11 High 19.07 6.92 5,579

year_sobol_10.txt 10.00 10 High 15.93 6.75 5,236

year_unk_10.txt 10.00 10 High 16.19 6.68 2,000

year_nik_10.txt 10.00 10 High 17.81 6.91 2,271

year_bog_10.txt 10.00 10 High 18.27 6.78 3,145

year_klimov_10.txt 10.00 10 High 17.09 6.76 3,967

year_bog_09.txt 9.00 9 High 17.88 6.68 1,710

year_nik_09.txt 9.00 9 High 16.90 6.79 2,480

year_bog_08.txt 8.00 8 Medium 17.49 6.72 2,999

year_nik_08.txt 8.00 8 Medium 15.74 6.41 1,821

year_nik_07.txt 7.00 7 Medium 15.41 6.14 1,509

year_bog_07.txt 7.00 7 Medium 15.00 6.46 1,632

year_nik_06.txt 6.00 6 Medium 15.94 6.18 1,029

year_bog_06.txt 6.00 6 Medium 15.13 5.86 985

year_nik_05.txt 5.00 5 Medium 13.11 5.57 1,566

year_vah_4pu.txt 4.50 5 Medium 15.78 5.86 1,174

year_vah_4u.txt 4.00 4 Low 13.78 6.17 1,423

year_ben_4u.txt 4.00 4 Low 12.72 6.38 604

year_gor_4u.txt 4.00 4 Low 14.75 6.56 833

year_rud_3u.txt 3.00 3 Low 14.15 5.67 1,319

year_vah_2pu.txt 2.50 3 Low 11.13 5.75 1,005

year_uch_2pu.txt 2.00 2 Low 14.14 5.73 1,559

year_uch_2u.txt 2.00 2 Low 12.00 6.05 1,621

year_vah_2u.txt 2.00 2 Low 11.10 5.73 1,100

yead_rud_2u.txt 2.00 2 Low 13.40 5.44 619

year_vah_1pu.txt 1.50 2 Low 11.22 5.69 292

year_rag_1u.txt 1.00 1 Low 8.76 5.95 74

year_rog_1u.txt 1.00 1 Low 10.33 5.95 468

year_rud_1u.txt 1.00 1 Low 12.20 5.17 495

year_lut_1u.txt 1.00 1 Low 9.74 6.36 390

year_kur_1u.txt 1.00 1 Low 9.86 6.15 200

year_vah_1u.txt 1.00 1 Low 11.17 5.38 139

a three-way classification task. Finally, the difference between

the two grade levels shows how far the grade levels of the

textbooks (sources of the sentences in the pair) are from each

other. This difference can be used as a target label for regression.

Labels propagated from the textbook grades to the level

of individual sentences can be noisy. For example, a simple

sentence can still appear in a textbook with a high grade.

Therefore, the dataset should be validated. Section 3.1.4 below

presents the approach for validation of the 2-s dataset.

3.1.4. Validation of the dataset

The collected dataset has a specific characteristic that

school textbooks usually contain simple sentences. Typical

native speakers will perceive most of the sentences as easy

to comprehend. Thus, direct validation of both datasets most

probably will be not fair since manual assessment of a sentence

from the 1-s dataset can be biased (most assessors will assign

lower grades to sentences, even to those coming from the

textbooks with higher grades). Another issue with the 1-s dataset
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FIGURE 1

The heatmap shows the number of sentences having label

“Grade” and sentence length between 6 and 36 tokens.

FIGURE 2

The heatmap shows the number of sentence pairs (x, y) where

sentence x has label “grade_x” and sentence y has label

“grade_y” (in logarithmic scale).

is the SL that will affect the assessment. Obviously, the ASL

increases when the grade level of a book grows, but assessors

tend to assign higher complexity scores to longer sentences as

well. Therefore, this factor cannot be isolated completely.

To overcome these issues, a two-step approach was applied

to validate data. In the first step, a random portion of all sentence

pairs from the 2-s dataset was used to train a binary classifier

that predicts whether one sentence in a pair is more complex

than the other one. This classifier is based on the Support

Vector Machines algorithm and uses sentence embeddings as

input features1. The performance depends on margin between

the sentences in a pair. Here, the margin is a minimum value

of the absolute difference in grade levels of the sentences. This

dependency, demonstrates that if a margin is large enough,

then the accuracy of the SVM classifier can be almost 99% (see

Table 2).

1 The classifier is described in detail in section 3.2.

TABLE 2 The accuracy of a binary SVM classifier for pairs of sentences

depends on the di�erence between grade levels (margin).

Margin SVM accuracy No. of document

pairs

No. of sentence

pairs

1 0.774 1,276 4,960,064

2 0.859 1,050 3,379,160

3 0.884 904 2,734,835

4 0.930 764 2,154,622

5 0.957 644 1,763,470

6 0.970 532 1,456,289

7 0.971 422 1,106,292

8 0.979 316 771,637

9 0.990 214 455,475

If the margin equals one, the classifier correctly predicts

labels for more than 75% of the sentence pairs from a test

set. The remaining 25% of sentence pairs are “hard” samples

because the SVM classifier fails to predict a binary label correctly.

Those pairs are not only hard for the classifier but can also

be hard samples for human assessors. To test this assumption,

a set of hard samples (1,526 sentence pairs) was transmitted

to a crowdsourcing platform (Yandex Toloka) for manual

annotation. In Toloka, each sentence pair was annotated by at

least seven assessors and with one of four possible labels (“first,”

“second,” “same,” “unknown”):

• “first” means that the first sentence is more complex than

the second;

• “second” means that the first sentence is less complex than

the second

• “same” means that both sentences have similar complexity;

• “unknown” means that complexity cannot be assessed (e.g.,

due to an error, typo, etc.).

Human judgments were compared to original labels from

the 2-s dataset. The experiment was applied for different margin

values, 1, 3, and 9. The larger the margin between sentences, the

higher the agreement between manual assessments and labels

from the 2-s dataset. The agreement for the margin<3 was too

weak while setting up margin value to 9 produces too “simple”

dataset (see the last row of the Table 2). Thus, we set the margin

to three and eliminate both the SL and word length factors from

further evaluation, and construct a dataset that can be used to

model perceived complexity at the sentence level.

The final validation step was the following. For a randomly

sampled 50 sentence pairs, an expert was asked to manually

assess their complexity. The resulting confusion matrix between

the expert’s labels and labels derived from Toloka is presented

in Table 3; it shows moderate agreement between the expert and

assessors.
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TABLE 3 Confusion matrix between a human expert’s labels and

aggregated crowdsourcing labels.

Expert’s label First Same Second Unknown

First 10 5 5 0

Same 8 4 2 2

Second 1 3 9 1

In all further experiments and evaluations, the margin

parameter was fixed (margin = 3, the highlighted line in

Table 2). For smaller margin values, the 2-s dataset labels are

less reliable, while for higher values of the margin sentences

in each pair are much easier to distinguish. A sentence in

each pair at least three grade levels apart from the other

sentence in the same pair. A similar approach was used to bin

the 1-s dataset’s labels into three categories: low (1–4 grades),

medium (5–8 grades), and high (9–11 grades) which is presented

in Table 1.

3.1.5. Tasks for sentence-level complexity
prediction

This subsection summarizes datasets and experimental

settings to evaluate complexity prediction for the current

study. In general, complexity prediction can be formulated

in two modes: regression and classification. Table 4

shows five combinations of experimental settings that

can be used depending on the dataset. Regression and

binary classification can be formulated with the 2-s

dataset, while the dataset with single sentences allows

for three tasks: regression, 3-class classification, and

11-class classification.

3.2. Modeling sentence-level complexity

Recent works evaluated several lexical and syntactical

features for modeling sentence-level complexity. This paper

focuses on neural architectures that are capable to extract

features from input data and solve the task in an end-to-end

manner. The models applied in the evaluation include baseline

models (linear regression and SVM classifier), a transformer

encoder with 1-layer of self-attention, a pre-trained BERT

model (DeepPavlov’s RuBERT from Kuratov and Arkhipov,

2019) and GNN. The models were tested on the five tasks

presented in the previous section using accuracy, precision,

recall, and F1-macro score for classification tasks; as well as R2,

mean squared error (MSE), and mean absolute error (MAE)

for regression. The performance of all models was evaluated

using the same dataset split, i.e., 90% for training and 10% for

testing2.

Transformer-based deep neural network architectures are

well-known for their effectiveness in different natural language

processing problems, including text classification, machine

translation, and text generation (Vaswani et al., 2017).

Bidirectional encoder representations from transformers (BERT,

Devlin et al., 2018) are derived as a result of semi-supervised

pre-training on a large corpus, stored as a set of neural

network weights (usually, hundreds of millions or more). These

representations can be fine-tuned to solve a down-stream task,

such as SCE. Graph neural networks are less commonly applied

to texts.

3.2.1. Fine-tuning a pre-trained BERT

This study evaluates a state-of-the-art pre-trained RuBERT

model. This model can be applied in all the settings defined

in Table 4. Fine-tuning on the 1-s dataset only needs encoding

the input sentence and correctly defining a loss function for

the output (CLS) token and tune training hyper-parameters.

Note, that the model does not explicitly depend on the input SL;

however, the model can use a SL implicitly. The architecture is

presented in Figure 3.

3.2.2. SVM model with BERT sentence encoder

Typically, fine-tuning a PLM needs optimizing many

parameters in the transformer layers. Fine-tuning can be

unstable and time-consuming. Therefore, another option is to

use a PLM as a feature extractor. For each sentence, the pre-

trained ruBERT-tiny2 sentence encoder (Dale, 2021) produces

a fixed-length vector with 312 dimensions. The embeddings can

be used as features for a high-level classifier (the SVM classifier).

As Figure 4 shows, the same architecture can be applied in the

regression setting if the SVM classifier is exchangedwith an SVM

regressor (SVR). For binary classification of sentence pairs, a

similar architecture can be applied (see Figure 5).

The Transformer-based architectures process text input as a

sequence of tokens. For many applications, this way of treating

texts is natural and usually performs well. However, for text

complexity analysis, syntactical features also proved to be useful,

as mentioned by Solovyev et al. (2018b) and Iavarone et al.

(2021). The sentence syntax tree does not form a sequence

and, therefore, cannot be processed with a PLM. The Section

3.2.3 below presents an approach that combines syntactic and

lexical information about a sentence and applies a graph neural

architecture to predict sentence complexity.

2 Experiments with di�erent proportions (80/20) have shown similar

results with some drop in performance.
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TABLE 4 Setup of five tasks used for model evaluation in the study: two regression tasks, one binary classification, and two multiclass classification

tasks.

Dataset Regression Binary classification Multiclass classification

1-s Dataset Grade level (value) – 11 or 3 Categories

2-s Dataset Difference between grade levels Complex/Simple sentence –

FIGURE 3

Fine-tuning of RuBERT for single sentence complexity prediction.

FIGURE 4

SVM + ruBERT-tiny2 architecture for single sentence complexity prediction.
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FIGURE 5

SVM + ruBERT-tiny2 architecture for classification and regression for sentence pairs.

3.2.3. GNN model with fastText word
embeddings

Graph neural network is a type of neural architecture

intended to process data represented as graphs, e.g., for

prediction properties of chemical molecules, syntactic trees,

etc.; for more information, please, refer to the review of

GNNs by Wu et al. (2020). Typically, GNNs are based on a

message-passing mechanism when each node in a graph has

an internal state (node embedding) that can be transferred

to its neighbors. During message-passing, the node “sends”

its state to adjacent nodes (neighbors). Thus, after each

message-passing, all neighbors aggregate the messages from

adjacent nodes. Usually, these messages are passed over the

network for a fixed number of iterations. These message-

passing steps are treated as network layers. Node embeddings

aggregated after the whole process can be viewed as contextual

representations. The context size depends on the number

of layers.

This paper employed a Multi-layer Graph Convolutional

Network (GCN) with self-attention3. The GCN is a model

that has the following layer propagation rule to calculate the

hidden representation of the i-th node h
(l+1)
i using hidden

representations of all its neighbors h
(l)
j from the previous

3 The implementation of the GCN architecture can be found in the

Deep Graph Library (Wang et al., 2019).

layer (l).

h
(l+1)
i = σ





∑

j∈N (i)

1

cij
h
(l)
j W(l)



 (1)

Here,N (i) represents a set of neighbors of the i-th node. The

ReLU activation function is used as a default setting for the non-

linear transformation function σ (·). The matrix W(l) contains

trainable parameters of a convolution filter and the cij represents

a normalization constant. At the last layer, each node of a graph

has its vector representation; these representations are averaged

and passed through a fully connected layer to train the model for

classification or regression.

This paper uses the following GCN architecture. The first

and the second layers apply the multi-head attention with six

heads, and the third layer is a convolutional layer that outputs

64-dimensional vector for each node in a graph. The result is

projected via a linear layer to the desired output, i.e., 11 or 3

values in case of multi-class classification, and a scalar value in

case of regression.

In a sentence-level complexity prediction, each sentence is

treated as a graph derived from a dependency syntax tree of the

sentence. Precisely, the graph edges are constructed from the

edges of a dependency tree for a given sentence, plus backward

edges that help message-passing. Each tree node represents a

token from the source sentence. When the GNN is initialized,

node representation in the input layer are loaded from the
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fastText embedding for Russian (fastText, Bojanowski et al.,

2016). Therefore, the input to the GNN combines syntactic

features at the edge level with lexical features at the node level.

An example of an input sentence is presented in Figure 6,

where one can see the original sequence, fastText embeddings,

and dependency tree with additional backward links. The

dependency trees for all sentences were produced by DeepPavlov

dependency parser. The proposed approach to using a GNN

in sentence complexity evaluation is novel to the best of the

author’s knowledge.

4. Results

The experiment results are grouped according to the tasks

formulated in Section 3.1.5. Regression task on the 1-s dataset

is trained on the grade level value, while training on the 2-s

dataset is done on the grade difference between two sentences

that constitute a pair. In addition to the models described in

Section 3.2, we trained and evaluated two linear regression

models. The first one is a linear model of two predictors: SL and

AWL. The second linear regression is trained on the sentence

embeddings generated for an input sentence by a pre-trained

model. Results on the test set for all models are presented in

Table 5. The values in the first row of the table are absent because

they correspond to linear regression that uses SL and AWL

features. However, both sentences in each pair of the 2-s dataset

have the same input values of SL and AWL. Obviously, linear

regression would not produce any meaningful results in this

case. On the 1-s dataset linear regression model performs worse

than all others giving the maximum of both MSE = 8.34 and

MAE = 2.32. Comparing the second and the third lines of the

table, one can see that the support vector regressionmodel works

better on both datasets than linear regression. Both models work

with contextual features generating 312-dimensional sentence

embeddings through the RuBERT-tiny2 that is most likely the

source of performance boosting.

On the 2-s dataset the SVR is outperformed by RuBERT and

GNN because fixed-size vectors fail to represent a distinction

between two sentences. The contextual sentence embeddings

useful in the regression task on the 1-s dataset do not show good

results on the 2-s dataset. The difference between grade levels

of sentences cannot be less than three due to the setup of the

margin; thus, the MAE = 2.28 derived by the SVR model is far

from an acceptable result.

As expected, comparing GNN and the fine-tuned RuBERT

shows that a more complex model (RuBERT) has higher

performance that is still close to the GNNperformance. RuBERT

has a few hundred million parameters, while the GNN-based

model has less than one million trainable parameters. Both

RuBERT and the GNN models take into account structural

features but do it differently. RuBERT does it via self-attention

by training an N × N matrix of attention weights where

each token can pass a message to any other token in the

sentence. Despite the GNNmodel uses a similarmechanism, this

model leverages the dependency tree structure to pass messages

between tokens. Finally, the pure Transformer model works

well, but experiments show that increasing themodel complexity

(e.g., by adding more layer) leads to overfitting.

Table 6 presents the results of classification models trained

and evaluated on the 1-s dataset. Again, fine-tuned RuBERT

shows better results than the SVM and GNN models. As

expected, predicting sentence complexity with three target

categories (low/medium/high) is much easier than classifying

with 11 classes. On both tasks, according to the F1-macro

score, the SVM and GNN models show similar quality, but

they have different precision and recall values. SVMs have

higher values of recall than precision, while GNN demonstrates

the opposite behavior. This fact can be used when building

ensemble models.

Table 7 shows the results of the binary classification task

on the 2-s dataset. Here, all three models perform quite

well. The SVM performance is higher than it was before (see

Table 2) which is due to the larger training dataset. The binary

classification task can be considered as easy when the minimum

margin is three grade levels.

5. Analysis and discussion

Section 5 compares this study to prior research in terms

of key findings and novelty. In addition, this section discusses

limitations and directions for future work.

5.1. Novelty and application

In this study, a 2-s dataset contains pairs of sentences

sampled from different books. Each sentence can describe

completely different context that complicates the regression

and classification tasks and forces a model to consider

features not related to paraphrasing as it is usually done in

related work (Inui and Yamamoto, 2001). Many researchers

study how lexical and morphosyntactic features affect the

text complexity of a sentence. The present paper proposes

a new model that can be used to extract features for

the SCE task. Indeed, the GNN operates directly with

representations of tokens and syntax dependencies of a

sentence. The last linear layer of the classifier aggregates the

representation of each node with a weighted combination

of individual node embeddings. This aggregation leads

to a straightforward interpretation of the GNN model

results. In fact, activations in the last linear layer can

be interpreted as positions of words that directly affect

model output.
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FIGURE 6

Constructing a graph input for GNN from a dependency tree (solid lines) augmented with backward edges (shown as dashed arcs). Each node in

the graph is represented with a fastText embedding of the corresponding word.

TABLE 5 Regression of single sentence complexity (1-s data) and pairs (2-s data).

1-s data 2-s data

Model R
2 MSE MAE R

2 MSE MAE

Linear Reg. on two parameters (SL+AWL) 0.13 8.34 2.32 – – –

Linear Reg. on sentence embeddings 0.65 3.39 1.37 0.73 10.55 2.56

SVR on sentence embeddings 0.71 2.79 1.11 0.77 8.96 2.28

Transformer (1 layer, 4 heads, dim.= 64) 0.66 3.32 1.22 – – –

Fine-tuned RuBERT 0.80 1.96 0.80 0.98 0.79 0.56

GNN 0.73 2.58 1.10 0.97 1.15 0.75

TABLE 6 Classification of sentences with 3 and 11 complexity categories.

1-s Dataset 3 Classes 11 Classes

Model Acc. F1 P R Acc. F1 P R

SVM on sentence embeddings 0.85 75.78 73.61 81.08 0.61 44.33 42.12 51.94

Transformer 0.81 68.32 68.01 75.42 0.55 41.31 44.21 40.15

Fine-tuned RuBERT 0.87 81.99 82.67 81.38 0.68 55.89 56.30 55.76

GNN 0.82 73.48 75.53 71.95 0.62 48.04 50.98 46.99

For example, Figure 7 below shows an activation

pattern for a sentence with the “high” complexity label.

The input sentence is the following: Одной из массовых

профессий в нынешнем столетии становится профессия

программиста./“”. One of the mass professions in this

century is the profession of a programmer. The mapping

between nodes identifiers and sentence tokens the words is the

following: (0: “ROOT,” 1: “Одной”/One, 2: “из”/of,
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TABLE 7 Binary complexity classification of sentence pairs.

2-s Dataset (with margin = 3)

Model Accuracy F1 P R

SVM on sentence embeddings 0.93 93.18 93.18 93.18

Fine-tuned RuBERT 0.98 98.47 98.44 98.50

GNN 0.97 96.60 96.60 96.60

FIGURE 7

An activation pattern of the GNN for the input presented above

in text. Columns correspond to graph nodes, rows correspond

to three complexity classes. The maximum activation

corresponds to words “mass professions” that “fire” for the label

with the highest complexity.

3: “массовых”/mass, 4: “профессий”/professions,

5: “в”/in, 6: “нынешнем”/this, 7: “столетии”/century,

8: “становится”/is, 9: “профессия”/profession,

10: “программиста”/programmer, 11: “.”). Simple sentences

demonstrate an opposite pattern with high activations for

“simple” words. Such property of the GNN can be transferred

to edges and edge types of the dependency tree allowing

interpretation of syntax dependencies from the point of text

complexity, but it needs additional investigation. What is more,

the analysis of the token-level activation can be applied in the

lexical complexity prediction task. Note, that it is much harder

to interpret the output of the BERT-based and the SVM-based

models in the same manner. For the BERT-based model, the

“[CLS]” token has a fixed embedding size of 768, while the

SVM-based model produces 312-dimensional embeddings of

input sentences.

Note, that in contrast to the work of Brunato et al.

(2018) the present paper eliminates the effects of SL and

AWL completely. The methods proposed in the paper need no

sophisticated feature engineering and can be easily transferred

to Italian and English datasets to compare classification and

regression performance.

One can compare the above to the results that also

show that SVM performs worse than the deep neural

networks even when trained on contextual sentence

embeddings. The best F1-scores reported in Lo Bosco

et al. (2021) (for a binary classification) are around 0.88–

0.89. Currently, the values of performance metrics are

similar, but direct comparison is possible only on the

same datasets.

5.2. Key findings

The study tests several neural architectures for the sentence-

level complexity prediction task. The results show that fine-

tuning of PLMs performs slightly better than training a GNN.

The contextualized sentence embeddings are considered as an

appropriate representation of the input text for the complexity

prediction task. However, fixed sentence embeddings seem to

be not enough for predicting the difference in the complexity

levels between two sentences. The key difference with previous

studies on SCE is that SL and AWL are not used as features.

Finally, a proposed approach to using the GNN is promising for

its performance and interpretability.

5.3. Future work

The future work of the study is organized in two directions.

First, the plan implies multilingual and cross-lingual sentence

complexity evaluation. In this direction, evaluation of models

on Italian and English data, as well as training a multi-lingual

model (either using a multilingual BERT or using multilingual

embeddings in a GNN) can be done. The second direction

is related to extending the GNN-based model taking into

account the types of syntactic relations applying a relational

convolutional graph network, and studying the usefulness of

embeddings that the model is capable to produce.
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