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Classification of user queries
according to a hierarchical
medical procedure encoding
system using an ensemble
classifier

Yihan Deng* and Kerstin Denecke*

Department of Technology and Computer Science, Institute for Medical Informatics, Bern University

of Applied Sciences, Biel/Bienne, Switzerland

The Swiss classification of surgical interventions (CHOP) has to be used in

daily practice by physicians to classify clinical procedures. Its purpose is to

encode the delivered healthcare services for the sake of quality assurance

and billing. For encoding a procedure, a code of a maximal of 6-digits has

to be selected from the classification system, which is currently realized by a

rule-based system composed of encoding experts and a manual search in the

CHOP catalog. In this paper, we will investigate the possibility of automatic

CHOP code generation based on a short query to enable automatic support

of manual classification. The wide and deep hierarchy of CHOP and the

di�erences between text used in queries and catalog descriptions are two

apparent obstacles for training and deploying a learning-based algorithm.

Because of these challenges, there is a need for an appropriate classification

approach. We evaluate di�erent strategies (multi-class non-terminal and

per-node classifications) with di�erent configurations so that a flexible

modular solution with high accuracy and e�ciency can be provided. The

results clearly show that the per-node binary classification outperforms the

non-terminal multi-class classification with an F1-micro measure between

92.6 and 94%. The hierarchical prediction based on per-node binary classifiers

achieved a high exact match by the single code assignment on the 5-fold

cross-validation. In conclusion, the hierarchical context from the CHOP

encoding can be employed by both classifier training and representation

learning. The hierarchical features have all shown improvement in the

classification performances under di�erent configurations, respectively: the

stacked autoencoder and training examples aggregation using true path rules

as well as the unified vocabulary space have largely increased the utility of

hierarchical features. Additionally, the threshold adaption through Bayesian

aggregation has largely increased the vertical reachability of the per node

classification. All the trainable nodes can be triggered after the threshold

adaption, while the F1 measures at code levels 3–6 have been increased from

6 to 89% after the threshold adaption.
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1. Introduction

The Swiss classification of surgical interventions (CHOP)

(BFS, 2022) has to be used in daily practice by physicians to

classify clinical procedures. Its purpose is to encode the delivered

healthcare services for the sake of quality assurance and billing.

It supports the cost reimbursement between hospitals and

insurance companies as well as the reporting to healthcare

authorities. For encoding a procedure, a code of a maximal

of 6-digits has to be selected from the classification system.

For instance, the code “00.65.11” refers to the free textual

category description “Perkutanes transluminales Einsetzen von

intrakraniellen vaskulären Mikrostent(s)” (translation follows).

The first two digits “00” indicate the basic code assignment

at the chapter level (interventions not specified elsewhere).

The additional two digits “65” narrow down the target

procedure to a relatively specific category (“insertion of

other types of intracranial vascular stents”). The last two

digits “11” lead the classification subsequently to a more

concrete type of insertion of vascular micro stents. The

CHOP comprises more than 14,000 different classes at six

levels. 45% of the non-terminal labels have more than

five sub-nodes.

Currently, the classification of clinical procedures is realized

in practice by a rule-based system composed of encoding

experts and a manual search in the CHOP catalog. The

quality of encoding is, therefore, strongly influenced by

the quality of handcrafted rules and the competence of

the human encoder. In the meantime, most of the work

in research has focused on the evaluation of end-to-end

neural network training based on clinical shared data in

English like MIMIC II (Lee et al., 2011) and MIMIC III

(Johnson et al., 2016). A suitable deep learning based method

for German clinical procedure encoding has not been well

explored. In this paper, we will investigate the possibility of

automatic CHOP code generation based on a short query.

The wide and deep hierarchy of CHOP and the differences

between text used in queries and catalog descriptions are

two apparent obstacles for training and deploying a learning-

based algorithm. Because of these challenges, there is a

need for an appropriate classification approach. We will

evaluate different strategies (multi-class non-terminal and per-

node classifications) with different configurations so that a

flexible modular solution with high accuracy and efficiency

can be provided. Beyond that, the log data for the German

OPS classification (BfArM, 2022) (German clinical procedure

encoding corresponding to Swiss CHOP) will be employed

to extend the CHOP log set based on category matching,

the classification result based on different German data sets

and networks configurations will be evaluated within real

industrial settings.

2. Problem definition

The code assignment for a CHOP category is a task of

multilabel classification. Each query will be assigned a sequence

of correlated CHOP codes from top-level chapters to specific

subcategories at lower levels. Exploring the complex hierarchy

of CHOP encoding (labels) is relevant for the design of a

holistic solution for multilabel assignment. Notably, we need to

concentrate on the analysis and use of features learned from the

CHOP hierarchy to facilitate the classification of single nodes

and the prediction of multilabel sequences along the related

CHOP node path.

Formally, let a CHOP category be a partial order

for medical procedure MP, which is presented in a tree-

structured category hierarchy h over an ordered set
(
Ph,≺

)
.

Ph is the category set of 6-digit hierarchical procedure

encoding MP, which has been introduced in Section 1.

The i, j, and k represent three related categories within

the hierarchy MP. The ≺ represents the is-a relationship

between two categories (Wu et al., 2005). The is-a relation is

first irreversible:

if Pi ≺ Pj then ∀Pi, Pj ∈ MP, pj ⊀ pi (1)

Furthermore, the relationship is both anti-reflective and

transitive (Silla and Freitas, 2011).

∀Pi ∈ MP,Pi ⊀ Pi (2)

∀Pi, Pj, Pk ∈ MP,Pi ≺ Pj and Pj ≺ Pk imply Pi ≺ Pk (3)

The hierarchy of the medical procedure follows the true

path rule (Valentini, 2009) along the parent-child chains.

It means if a query has been annotated with a specific

class label, then it is annotated with all its parent classes

recursively. If one query does not belong to a class, it does

not belong to all of its offspring classes. The three features

mentioned earlier of the CHOP category cause the following

challenges to be considered when designing a method for

code generation:

1. Training of classifiers considering hierarchy information:

How should the hierarchical features be incorporated in the

training of classifiers?

2. Feature selection: How can we employ the

features of hierarchical structures by representation

learning? How can we select the most representative

feature set for different categories based on the

hierarchical context?

3. Methods of hierarchical prediction: Is it possible to define

a threshold for each class separately and dynamically? How

should the prediction threshold be determined based on the

output of the base classifier?
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3. Hierarchical evaluation metrics

Unlike conventional evaluation metrics based on the

comparison between one predicted label and a single label from

the benchmark, hierarchical evaluation metrics are calculated

using the entire predicted path. The predicted label path will be

compared to the entire label path to the root. The original label

Y and its ancestors
(
y1, . . . , yn

)
on the true paths Ypath can be

represented as:

Ypath = Y ∪ An
(
y1
)
∪ An

(
y2
)
∪ · · · ∪ An

(
yn
)

(4)

where
(
y1, . . . , yn

)
includes the benchmark y and all its n

ancestors (An) correspond to the sample X. The predicted labels

within the true path can be represented as:

Ŷpath = Ŷ ∪ An
(
ŷ1
)
∪ An

(
ŷ2
)
∪ · · · ∪ An

(
ŷm
)

(5)

where the
(
y1, . . . , ym

)
indicates the predicted label ŷ and all

its m ancestors under the input of sample X. The near loss

or distance between the predicted path and labeled paths is

calculated based on the total steps
∑

E(Y , Ŷ) between predicted

y and label y, where
∑

E(a, b) indicates the total steps between a

and b.

ŴDistance(Y , Ŷ) =
∑

E

(Y , Ŷ) (6)

The hierarchical precision (Hp) and recall (Hr) are metrics

for the evaluation of hierarchical classification methods. Hp

indicates the value of the intersection of prediction and original

label divided by the prediction set size. Hr represents the

intersection of prediction and labels divided by the original

labels. The hierarchical metrics of precision and recall reflect

a hypo-tactic projection (is-a) between the ancestor nodes and

descendant nodes. They show the correlations between general

categories and specific categories and in this way implicitly,

represent the depth of miss classification and their influence on

the entire true path.

PrecisionH =

∣∣∣Ŷpath ∩ Ypath

∣∣∣
∣∣∣Ŷpath

∣∣∣
(7)

RecallH =

∣∣∣Ypath ∩ Ŷpath

∣∣∣
∣∣∣Ypath

∣∣∣
(8)

4. Related studies

Early approaches of clinical encoding have been

implemented as rule-based classification (Farkas and Szarvas,

2008), or feature engineering with conventional machine

learning (Medori and Fairon, 2010). As features, uni-grams and

bi-grams (Chute et al., 2006), syntactic features (Goldstein et al.,

2007), or similarity scores obtained through concept mapping

with external knowledge bases (Atutxa et al., 2018) were

applied to train the encoding algorithms. Different conventional

classifiers like Naı̈ve Bayes (Chute et al., 2006), C4.5 decision

tree (Farkas and Szarvas, 2008), SVM (Perotte et al., 2013), and

random forest (Atutxa et al., 2018) have been confirmed to be

capable of assigning a category code to text input for different

medical encoding systems.

Pérez et al. (2018) proposed an encoding mechanism based

on a transformer architecture. CNN and RNN encoding and

their combinations have been evaluated. With the further

development of neural networks, the representation obtained

through word embedding and gated recurrent unit (GRU) has

also been considered for the task of ICD-9 classification using

discharge summaries from the MIMIC III database (Catling

et al., 2018). The prediction based on neural models has achieved

the best F1 score of 68.8% at the chapter level among the entire

ICD-9 code hierarchy. Using 1D Convolution, LSTM, and GRU

as prediction models and word sequence embedding as input,

Huang et al. (2018) achieved nearly 90% accuracy on the task

of classification of the top-10 ICD-9 codes. In order to learn a

suitable representation for the enriched non-sequential clinical

term vectors, Deng et al. (2018) employed stacked denoising

autoencoders to learn a reduced vector representation for the

CHOP catalog and queries. In particular, the representations

were firstly learned locally and then fine-tuned globally with a

supervised training set. The obtained representation achieved

a Micro F1 of 70.78% on the task of query and catalog

matching. Moreover, the classifier trained on hierarchical

features regarding the medical encoding outperformed the flat

classification based on a single code training set (Perotte et al.,

2013; Catling et al., 2018). Valentini (2011) applied hierarchical

ensembles for gene function prediction in Gene Ontology and

FunCat taxonomies. The true path rule (positive predictions of

a node influence ancestors, while negative predictions influence

offspring) can also be applied to the CHOP classification

(Valentini, 2009) since it also has a tree-like category structure.

In contrast to existing work, we will conduct the hierarchical

classification with a hierarchy of base classifiers. These base

classifiers are trained with a large number of real user queries.

The text representation will be learned using stacked denoising

autoencoders. The hierarchical training set will be gathered

through the rolling up of a descendent training set to reflect

the nature of CHOP encoding. As state of the art described

before indicates, the automatic code assignment in the entire

code system can typically provide only accuracy around 30–60%

(Perotte et al., 2013; Catling et al., 2018), while the classification

based on a selected subset of the full encoding system can reach

a higher accuracy (90%) (Boytcheva, 2011; Atutxa et al., 2018).

Therefore, we will conduct the code assignment on a set of the

most frequently used CHOP codes as classification targets.

Cao et al. (2020) exploited hyperbolic and Co-graph to

represent the code co-occurrence and hierarchical correlation.
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With the two separate representation enhancements, they have

achieved the state of the art accuracy using testing data from

MIMIC III (top 50), MIMIC II, and MIMIC III all labels. Xun

et al. (2020) have used Correlation Networks for Extreme Multi-

label Text Classificationwith examples of ICD classification. One

additional correlation detection layer has been added above the

prediction and learning layer so that the correlation between

the code labels can be modeled better. Song et al. (2020) have

applied graphic neural networks (GCNN and GRNN) to label

description to encode the label affinity to the model. However,

the neural network based methods (Cao et al., 2020; Song

et al., 2020; Xun et al., 2020) have only focused on the end-

to-end model implementation for automatic ICD encoding,

the concrete pro node situation and model explainability have

largely been ignored. Moreover, the models have only been

validated on the MIMIC II and MIMIC III data sets with limited

label selection. Transferring the models to a real medical data

set with clinical validation and to other languages requires still

further verification.

5. Data set

As underlying data set, we have gathered the queries from

server logs and bug tracker entries from a real production

server of a current rule-based code retrieval system (refer to

Table 1). In the following part of this paper, by “query,” we

are referring to search phrases from the bug tracker or server

logs. The training set is highly imbalanced, i.e., the number of

negative training examples is clearly larger than the number of

positive examples. Since there is no interconnection between

categories, the CHOP category can be transformed into a tree

structure. Each parent node has a certain number of children

nodes, whereas each child node is linked to only one direct

parent node. The CHOP-tree comprises six levels, which reflect

the six hierarchical levels of the CHOP. To incorporate the

hierarchical nature of the CHOP structure into the training

set, we have applied a “siblings” policy mentioned in Fagni

and Sebastiani (2007), Silla and Freitas (2011): The positive

examples for a code c are used as positive examples for its

ancestors f. The positive examples for a code c are used as

negative examples for its siblings s. If this positive example for

a sibling s of code c occurs as a positive example for c, then

this positive example will not be used as a negative example

for c.

In the data set, we could observe that there are CHOP

categories that provide a large number of server logs from

the current system. These are categories that are frequently

used in daily clinical work. On the other hand, rarely used

procedures in daily practice result in a very small number of

logs for the corresponding CHOP category, or no log data is

TABLE 1 Training data statistics of CHOP and OPS+CHOP.

Metrics CHOP OPS+CHOP

Level 1 1,784,645 4,874,823

Level 2 887,163 2,229,208

Level 3 1,048,608 2,733,439

Level 4 702,454 1,684,298

Level 5 408,901 1,119,466

Level 6 80,415 177,763

Total 4,912,186 12,818,997

Query count 55,845 91,999

Vocabularies 46,169 53,120

Trainable nodes 2,793 3,545

The training pairs at each level are listed. The query count indicates the sum of unique

user queries from all query pairs. Vocabulary represents the total number of unique

words in CHOP and OPS+CHOP. We selected the CHOP nodes with at least 21 positive

examples as trainable nodes for data balancing.

available. Hence, we decided to focus on the most frequently

used CHOP categories to develop a CHOP encoding classifier

with reliable accuracy for the most frequently used CHOP codes.

With this restriction, we obtained a node set with 2,793 most

frequently used CHOP categories from all six hierarchical levels.

Seven hundred of them are non-terminal codes, while the rest

2,093 categories are leaf nodes. We have 4,912,180 training

pairs (505,022 positive and 4,407,158 negative) from these three

different sources in the form of “query, code id, label.”

To increase the number of training examples, we

consider the German medical procedure classification OPS

(Operationen- und Prozedurenschluessel). It covers nearly all

the CHOP categories. Therefore, the log data from OPS can

directly be used as training samples for the corresponding

CHOP categories. In order to increase the positive examples

for CHOP categories, we have gathered the additional log

samples from the encoding system for the German medical

procedure classification OPS. The total query-node pairs have

been increased from 4,912,186 to 12,818,997. The trainable

categories (nodes) have been increased from 2,793 to 3,545

(refer to Table 1). The effectiveness of the transfer training will

be evaluated in the following sections. Figure 1 shows a working

example of a system log from the current encoding server. The

input of the model training is one query log presented with

the following tuple: [“Naht geburtsbedingter Riss” (suture of a

birth-related tear), code id: 75.51, label 1]. It indicates that the

query text belongs to code category 75.51. Label 1 indicates the

positive relevance between the query and code, while the query

(“Naht geburtsbedingter Riss,” code id 33.4, label –1) indicates

that the query is irrelevant to the category with code id 33.4

[“naht eines bronchusrisses” (suture of a bronchus tear), refer to

Figure 1].
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FIGURE 1

Working example for query log “Naht geburtsbedingter Riss” and relevant and irrelevant codes within the CHOP. The model with log input

generates a list of relevant codes as output. The green codes are relevant (positive examples) to the query, while the brown codes are irrelevant

categories (negative examples). The obtained classification model should be able to determine the corresponding category and generate the

relevant CHOP code for a query.

FIGURE 2

The architecture of the proposed code assigning pipeline.

6. Methodology

6.1. Overview of classification
architecture and strategies

The proposed pipeline consists of five crucial components

(refer to Figure 2): query input normalization and enrichment,

representation learning, base classifiers, the hierarchical

prediction based on the result of the base classifiers, and the

threshold adaption. With these components, three variations of

representation learning will be compared.

First, the stacked denoising autoencoder proposed in our

previous settings (Deng et al., 2018) is compared to a self-

attentive denoising autoencoder. The hierarchical context is
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concatenated using all possible positive query examples on the

same true path.

Second, the classification strategies of multiclass classifiers

for non-terminal nodes will be compared with the configuration

of assembled binary classifiers (per-node) with a one vs. rest

strategy. The multiclass classifier of a non-terminal node is

solely applied to determine whether an incoming query is the

instance of one of the children nodes. The assembled per-node

binary classification follows the strategy of one vs. rest, which

means the binary classifier is trained to distinguish the target

code from the non-target code. In this sense, the per-node

model from one base classifier always has two classes as output,

namely relevant to the node or irrelevant to the node, while the

multiclass classification has n+1 classes. In contrast, n indicates

the number of children nodes and 1 represents the residual

category indicating the irrelevance to all other children classes.

As input data, the gold standard data from system logs have been

separated into a 60% training set and a 40% validation set for

5-fold validation.

The third configuration is the fine-tuning of prediction

with thresholds. The post adaption during the prediction will

be evaluated based on two algorithms: average bottom-up and

Bayesian aggregation. In the following sections, the architectures

and configurations will be explained in detail.

6.2. Representation learning using
autoencoders and self-attention

In contrast to the representation learning based on both

query and category text, for the task of query matching, we will

learn our representation only using queries from different server

logs. The length of the queries in our data set ranges from 2 to

6 terms. To deal with this situation of short phrases, the queries

are normalized with a pre-processing toolkit ID MACS R©. This

tool transforms a query string into a bag of concepts model

with concepts from the underlying terminology server. The

terminology server ID MACS R©—medical semantic network,

software provided by the German company ID Information

und Dokumenation im Gesundheitswesen. With ID MACS R©

it is possible to analyze medical texts and, for instance, to

extract structured information on diagnoses and procedures

and map them onto a chosen medical terminology (Faulstich

et al., 2010; Kreuzthaler et al., 2011). The semantic network

incorporates theWingert Nomenclature, a German derivative of

an early version of SNOMED, as a knowledge base (Wingert,

1984). Through this transformation process, the query text

has been matched to the medical concepts and depicts the

relationship between individual concepts. This bag of concepts

model is then enriched by adding further entries for similar

medical concepts, weighted by their similarity to the concepts

in the original semantic representation. This transformation

aims to bridge the syntactic and semantic discrepancy between

query and catalog text and to achieve a common language

space. This semantic enrichment using similar terms from

the ID MACS R© results in a 46,170-dimensional sparse vector

representation for each text document. We have 55,845 unique

query and catalog text pairs resulting in 4,912,180 pairs

of matching between enriched semantic representations of

documents (queries and catalog texts) and CHOP codes.

However, in this bag of concept representation, all information

on word order as provided in the original text sequence

is lost.

After pre-processing, we conducted a dimension reduction

as the second step. The principal component analysis (PCA)

and stacked autoencoder have been used (see Figure 3).

A PCA was applied to the vector representation of the

46,170 dimensional vector resulting in a 15,000 dimension

vector. We determined this size as the output of the

PCA according to the available hardware capacity and

computing efficiency. As next, we applied a stacked denoising

autoencoder for further representation learning. The stacked

autoencoder is a layerwise non-linear method based on

nested multiple two-layer autoencoders. We have followed the

principle of layer-wise pre-training (unsupervised) so that a

representation with better generalizability and differentiability

can be obtained (for more details see Deng et al., 2018). After

the dimension reduction with autoencoder, a dense vector

with 125 dimensions is available as an input vector. The ith

query vector is defined as qi = (x1, x2, · · · , xn) ∈ R,

where n = 125.

Generally, the attention mechanism enables the system to

focus on specific subsets of the input (Vaswani et al., 2017). The

selection of the subset is typically based on the state of the system

which is itself a function of the previously attended subsets.

The goal of applying the attention mechanism in our

settings is to let the network focus on specific aspects

of the input and, thus, improve its ability to consider

the most relevant information for all relevant inputs, thus

yielding improvements in the quality of the generated

hierarchical outputs.

The attention mechanism maps an input (the qi vector

with 125 dimensions) to a set of query-key-value pairs as

outputAttention(Q,K,V). The query is the entire representation

on the true path; query (Q), key (K) and values (V) are

obtained through the linear transformation with a learned

parameter matrix based on input vector representation, while

the three parameter matrices are the target of the self-attention

mechanism. The output is computed as a weighted sum

of the values, where the weight assigned to each value is

computed based on the query and the corresponding key. In

attentive autoencoders, there are three types of attention, namely

encoding attention, encoder-decoder attention, and decoding

attention (refer to Figure 4).
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FIGURE 3

Unsupervised nested denoising autoencoders. The layer in circle is the representation vector (125 dimensions), we used for the downstream

classification task.

Attention(Q,K,V) = softmax

(
QKT

√
dk

)
V (9)

where Q ∈ Rnq×dk , attentive query representation, generated

based on the previous decoder, the multihead attention

mechanism produces n subvectors from query input, which

stack the query vector q into query matrixQ. dk is the dimension

of query vector and key vector, i.e., query and key have the same

dimension. dv is the dimension of the value vector. K ∈ Rnk×dk

and V ∈ Rnk×dv are queries, keys, and values, respectively.

Key values are calculated based on the output of the encoder.

nq is the number of queries and nk is the number of key-value

pairs. The encoder transforms a query into a list of vectors, one

vector per input head. Given the input embedding sequence

x = (x1, ..., xn), we produce hidden representations, he =

(he1, ..., hen) with the following equations:

x = (x1, . . . , xn) (10)

he =
(
he1, . . . , hen

)
(11)

a′e = Attention
(
xW

q
e , xW

k
e , xW

v
e

)
(12)

ae = LayerNorm
(
a′e + x

)
(13)

h′e = ReLu
(
aeWe1 + be1

)
We2 + be2 (14)

he = LayerNorm
(
h′e + ae

)
(15)

where W
q
e ∈ Rdm×dk , Wk

e ∈ Rdm×dk , Wv
e ∈ Rdm×de ,

We1 ∈ Rdm×df , and We2 ∈ Rdf×dm are parameter matrices;

be1 ∈ Rdf and be2 ∈ Rdm are bias vectors. LayerNorm denotes

layer normalization and ReLU is employed as the activation
function. In order to compare with the aforementioned stacked
denoising autoencoder, the same enriched query vector (15,000

dimensions) with external knowledge will be used as input
for the self-attentive autoencoder. Besides, we have selected

and grouped the queries for all possible true paths in our
trainable nodes, so that the representation can be learned
from all queries within full true paths. Particularly, we

have 1,416 trainable true paths in total after we merge the

CHOP and OPS data. Hence, we have trained 1,416 models

based on a self-attentive autoencoder. After unsupervised self-

attentive learning, the models have been fine-tuned through

the task of supervised code classification. In the phase of

code prediction, the corresponding model from self-attentive

autoencoder and code classification can be called sequentially

regarding the CHOP hierarchy (details refer to Section 5).

For instance, the CHOP codes 75, 75.5, and 75.51 have

910, 681, and 131 positive queries, respectively. For this true

path, we can train a self-attentive autoencoder with 1,722

training examples.

In contrast to the attention autoencoder method proposed

by Zhang and Wu (2018), our self-attention component in
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FIGURE 4

Self attentive autoencoder: The input can be all queries or grouped queries on all true paths.

the first transduction model has been extended with the

queries from all specific true paths, refer to Figure 4. The

residual connection has been used to connect the sub-

layers.

The motivation for the application of self-attention is the

length of the path and the construction of representation based

on the unified vocabulary of the true path. Learning long-

range dependencies is a crucial challenge in many sequence

transduction tasks. It is noteworthy that the application of

the deconvolution layer together with the transformer has

also yielded enhanced results by image classification (Ruifrok

and Johnston, 2001; He et al., 2022). The deconvolution

layer upsamples the feature input and generates more sparser

encoding and brings additional generalizability to the input with

a more completely reconstructed target distribution. However,

due to our preprocessing through the terminology server,

the maximal generalizability namely the entire vocabulary has

already been employed to enrich the input, our focus on learning

and inferencing is, therefore, the exploring of correlation

between those vocabularies. Hence, we have chosen a self-

attention layer to cope with the transformer to achieve this all

to all correlation learning instead of further upsampling through

deconv-layer.

6.3. Training of base classifier using the
hierarchical training set

For the selection of base classifiers, we have chosen random

forest, Ada booster, and feed-forward neural network (DNN)

with softmax. The random forest has proven to achieve

both, high accuracy and efficiency as a base classifier (Atutxa

et al., 2018), whereas the DNN and Ada booster have not

been evaluated in previous studies. The stacked autoencoder

and DNN have been implemented with Tensorflow. The

random forest and the Ada booster have been realized with

Scikit Learn 0.20.1 and Scipy 1.2.0. The DNN has two

hidden layers (90–60) with 0.1 dropouts and AdamOptimizer.

The random forest and Ada booster are both applied

with standard configurations given by Scikit learn. Our

neural networks related experiments have been performed

on an NVIDIA DGX station (4 x Tesla V100, 256G main

memory).

As already mentioned in Section 5, despite the pre-filtering,

the positive and negative data sets are still strongly imbalanced.

Hence, we have applied the oversampling method on the

minority classes, while the majority class (negative examples)

is kept the same (see Figure 5). We used the synthetic minority
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FIGURE 5

Hierarchical search based on non-terminal nodes and leaf nodes. The target query representation is learned with all query examples on its true

path, so that the representation can be adapted according to all its relevant representations.

over-sampling technique (SMOTE) (Chawla et al., 2002), which

generates new samples based on the distribution of existing

samples. This method increases the proportion of positive

examples and provides additional diversity to the training

data set. With one trivial classification task against 8 top-level

categories, we have validated the enhancement of accuracy after

SMOTE oversampling, the 8 categories, classifications have not

been improved by 3–4% within cross-validation. Considering

this improvement, we have applied SMOTE oversampling on

our entire data set and used the balanced data set as default.

Hence, all the follow-up implementations are based on this

enhancement through SMOTE oversampling.

6.4. Predicting the encoding path using
base classifiers

For the per-node binary classification (refer to pseudo-

code in Figure 6), the search procedure starts from top-level

categories (level 1). Seventeen top-level classifiers (one of the

18 categories has no training data) are called to determine

the top category. After that, only classifiers from the relevant

subcategories are invoked. The prediction procedure goes

through the entire hierarchy recursively to level 6 with the

binary results returned by the corresponding base classifiers.

Let encodei(x) be a vector that stores the id of a prediction

result for classifier x at level i. With a prediction call with

n classifiers at one level, the decision encodei(x) is assigned

to the predictor with the largest probability encodei(x) =

argmax([p̂1(x), p̂2(x), · · · , p̂n(x)]), where the p̂n represents the

prediction result obtained by classifier n. Naturally, the

prediction result can also be determined based on threshold

t instead of maximal value. If p̂(x) > threshold t, the

corresponding dimension of encodei(x) will be assigned with

1, otherwise with 0. A default setting for t is 0.5. The

search result of level i is the sorted non-zero dimension of

encodei(x). Similarly, the search using non-terminal classifier

ˆpnt(x) proceeds top-down starting from the root recursively.

When the classification of a query text reaches a non-terminal

classifier, it will provide the most probable children category

(pointer to the corresponding classifier) as the next classifier

that should be called. The classifier of a category returns a

score for each direct subcategory. However, the predictions

[p̂1(x), · · · , p̂n(x)] are generated by one non-terminal multiclass

classifier ˆpnt(x). Then, from the subcategories, the one with

the highest score is chosen. The search proceeds recursively

from that subcategory until a leaf category is reached. The

last reached node in the hierarchy and its ancestor path

is returned as the candidate category. Using this prediction

method, we can find the single most suitable code for one

query.
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FIGURE 6

Algorithm of the hierarchical prediction of CHOP codes with base classifier. Adaptions refers to bottom-up average and Bayesian aggregation.

More details about these two adaption methods are introduced in Section 6.5.

6.5. Hierarchical threshold adaption
using bottom-up average and Bayesian
aggregation

The prediction threshold refers to the probability boundary

of predicted positive and negative labels. The setting of

prediction thresholds by the classifier can fine-tune the

performance of the prediction according to a hierarchical

context. We adapt the smooth method mentioned in Notaro’s

work on the prediction within the human gene ontology

(Notaro et al., 2017). They adapted the non-terminal

node related threshold in a bottom-up way after the

validation phase.

The principle of the smooth process goes from leaf nodes

to ancestor nodes. The threshold of the ancestor node will

be compared with the average threshold value of all children

nodes. Figure 7 shows the bottom-up strategy: 1) Use the

smaller predicted value from the children nodes as a threshold

to replace the threshold of their parent nodes recursively.

2) Values of the threshold for each node are initialized by

the proportion of the positive and negative training data

(Vthreshold =
numpositive

numpositive+numnegative
) by the n-fold training and
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FIGURE 7

The bottom-up average for the threshold adaption.

FIGURE 8

Bayesian aggregation for the threshold adaption. The blue circles represent the binary values of a CHOP node. The green circles represent the

observed classifier outputs.

validation phrase; and 3) the threshold lowering aims to avoid

the blocking of the true path since we observed that the node

at the lower level (leaf level) can sometimes be blocked at the

upper-level (in the direction of top-level) nodes. Thus, if the

threshold value of the ancestor nodes is larger than the average

threshold value from all children, the ancestor threshold will be

replaced with this small value. Through this updating with the

average values, the lower threshold value from children nodes

will be propagated to upper-level nodes, which eases recognition

of the true path regarding the thresholds. According to the

evaluation results on a gold standard test, the per node threshold

with smoothing done by children-node average thresholds has
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achieved a better augmentation in contrast to the settings with

static thresholds (for details refer to Section 7.3).

Inspired by the Bayesian aggregation method proposed by

DeCoro et al. (2007), we used the classification results of a base

classifier to construct the supportive Bayesian network, which

represents the CHOP code structure. As can be seen in the

right part of Figure 8, the variables were represented by a CHOP

node in the hierarchy while the edges indicate conditional

dependence. Let yi represent the labeled binary outcome to class

i, and ŷi represents the predicted value. The Eyparentsi denotes the

explicit affiliation to parent classes of i. E.g., let yi stand for a

category related to “computer assisted surgery based on MRI,”

with ŷi the prediction of that procedure category, and Eyparentsi
representing the category of "computer assisted surgery with

images support" and "computer assisted surgery" (top-levels).

For n nodes in CHOP, the labels y1 . . . yn that maximizes the

conditional probability need to be found through training and

validation. P
(
y1 . . . yn|ŷ1 . . . ŷn

)
, which by Bayes rule equals

P
(
ŷ1 . . . ŷn|y1 . . . yn

)
P
(
y1 . . . yn

)

D
(16)

where D is a constant normalization factor. The class hierarchy

shown on the left in Figure 8 is reconstructed into a Bayesian

network by adding additional nodes that correspond to

the observed classifier outputs. The h nodes are probability

dependent on their parent classes and the ŷ-nodes are

probability dependent on their corresponding labels h. The

edges encode the conditional dependencies P
(
yi|Eyparents(i)

)
,

where Eyparents(i) is used to denote all parent y-nodes of node yi.

The true path P(yi|Eyparents(i) = 1) is obtained from the training

pairs. If the parent node of one label is irrelevant to the query,

the label must also be irrelevant.

P
(
y1 . . . yn

)
=

n∏

i=1

P
(
yi|Eyparents(i)

)
(17)

Since the CHOP has a tree structure in terms of code

organization, the connection between y and ŷ represents the

observation for a concrete encoding example on the CHOP path.

Different from the reformulation proposed by DeCoro et al.

(2007) under the independent conditions, our prediction result

ŷi is conditionally dependent on all other prediction ŷi and

labels yj given true outcome yi. Then, we can reformulate the

conditional probability as:

P
(
ŷ1 . . . ŷn|y1 . . . yn

)
=

n∏

i=1

P
(
ŷi|yi

)
(18)

The distribution of prediction P
(
ŷi|yi

)
generated by base

classifiers includes two variants that correspond to the binary

classes of code matching [P(ŷi|yi = 1) and P(ŷi|yi = 0)]. The

parameters can be estimated through cross-validation during

the evaluation phase. By prediction, the query of the CHOP

encoding will firstly be classified in a top-down manner using

the base classifier. Finally, the trained Bayesian network can

subsequently find the hidden y labels for the given ŷ predictions

and fill the result to the decision set encodei(x).

7. Evaluation results

Different classification strategies were tested in the

evaluation phase. The selection of base classifiers and

trainable nodes is crucial for the performance of hierarchical

classification. In general, the hierarchical prediction depends

on the results of base classifiers. To determine the type of

base classifier, we have performed experiments for both multi-

class non-terminal nodes classification and per-node binary

classification (one vs. rest) for 2,793 most frequently used

procedure codes. After the comparison between multi-class

non-terminal and per-node binary, we have extended the

evaluation of per-node binary to 3,545 nodes based on queries

from CHOP and OPS. The 2,793 (3,545 for OPS+CHOP)

most frequent categories were obtained through the required

number of positive samples with 21. A training set for each

CHOP node with more than 21 positive examples ensures the

minimal data requirement of the data balancing algorithm in

the n-fold validation.

Subsequently, the 289 newly emerging queries (out of a

sample set with 217 CHOP codes level 1 to level 6) are used to

test the performance of code prediction. Different configurations

with stacked denoising autoencoder, self-attentive autoencoder,

and two threshold adaptions (average bottom-up and Bayesian

aggregation) are evaluated.

7.1. Comparison of base classifier for
non-terminal classifier and per-node
classifier

To evaluate the performance of the base classifier, we have

conducted a base classification on the 2,793 nodes. The data

set has been separated into 60% (2,947,308) training set, 40%

(1,964,872) validation set for a 5-fold validation. We compared

two strategies for base classifier training: non-terminal based

classification (multiple classes output) and per node base

classification (one vs. all classification). The performances for

each of the six CHOP hierarchical levels were compared. It

can be seen in Figure 9, the per node classifier has apparently

outperformed the non-terminal classifier at each level, while the

non-terminal classification achieves an F1 micro value between

39 and 46%. The per node classification results in an F1 micro

value between 92 and 94%. Since we need to provide a product

level implementation for the daily clinical usage to supplement

the current system, we have only applied the random forest
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FIGURE 9

Micro F1 measure of multi-class non-terminal (NT) classifiers and per node (PN) ensembled binary classifier using random forest, Adabooster,

and feedforward neural networks (DNN).

TABLE 2 Trainable models regarding CHOP and performance of true

code recognition based on pre-separated CHOP goldstandard test

data.

Level Trainable nodes

with CHOP corpus

Avg

precision

Avg

recall

Avg F1

1 17 94.42% 90.89% 94.74%

2 104 93.12% 91.3% 92.20%

3 748 89.44% 85.36% 87.35%

4 958 91.3% 88.42% 89.84%

5 362 95.42% 89.23% 92.22%

6 45 93.52% 84.47% 88.76%

classifier with per node classification to conduct the follow-up

hierarchical prediction.

7.2. Comparison between CHOP corpus
and OPS training set

Based on the data in Table 1, the total training pairs have

increased from 4,912,186 to 12,818,997, while the vocabularies

have been augmented from 46,169 to 53,120. The trainable nodes

in CHOP have therefore been increased from 2,793 to 3,545.

Most of the logs that have been added are obtained from bug

TABLE 3 Trainable models regarding CHOP plus OPS DE and

performance of true code recognition on pre-separated CHOP

goldstandard test data.

Level Trainable nodes with

CHOP+OPS corpus

Avg

precision

Avg

recall

Avg F1

1 17 90.34% 94.66% 92.45%

2 104 85.34% 89.44% 87.34%

3 793 89.57% 91.53% 90.54%

4 1,416 85.55% 87.43% 86.48%

5 1,030 81.43% 85.09% 83.22%

6 185 84.96% 90.47% 87.63%

trackers and search logs from OPS DE (data obtained from the

logging system for OPS DE code retrieval by ID MACS). As can

be seen in Tables 2, 3, transferring OPS data to extend the CHOP

corpus led to a decrease in the in-sample performance. The recall

and precision were reduced by 2–9%.

7.3. Evaluation of the hierarchical
catalogs of CHOP classification

The evaluation of hierarchical classification depends not

only on the aforementioned in sample precision, recall, and
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F1 measure but also on out-of-sample performance using

hierarchical metrics. The hierarchical features within CHOP

will also be considered in our further evaluation so that the

nature of CHOP encoding can be reflected. More specifically,

the hierarchical precision represents the percentage of correct

steps in the prediction. It punishes the incorrect steps. A match

should not only be determined between one query and a single

node but also the entire true path ranging from the retrieved root

node to down-stream nodes. The hierarchical precision indicates

the percentage of correctly predicted nodes along the true path,

which punishes the missed nodes, while the hierarchical recall

can be considered as the percentage of correctly predicted nodes,

the missed corrected true paths (series of nodes) are punished.

As can be seen in Table 4, the hierarchical prediction based

on the transferred data set (CHOP+OPS) has outperformed

the prediction with the only CHOP data set. The recall has

been particularly augmented through learning data transferring.

The self-attentive autoencoder is one further optimization of

the aforementioned stacked denoising autoencoder (Deng et al.,

2018). The out-of-sample performances have been improved by

self-attention for 6%, whereas the Bayesian aggregation offered

another enhancement of 2% for average F1 in contrast to

the adaption with average bottom-up. With both hierarchical

self-attentive autoencoder and Bayesian aggregation, we have

achieved the best F1 measure of 83.57%. In addition, we have

visualized the average F1 measure of the prediction based

on bottom-up adaption and Bayesian aggregation using 20

selected CHOP codes in our out-of-sample test set. The average

improvements of the F1 measure for each code through both

adaption methods have been illustrated through scattered points

within the graph (refer to Figure 10). We selected the 20 codes

with at least three positive query examples since we want to

focus on the evaluation of average improvement on those codes

with different query inputs instead of the codes with only

one positive example or only negative examples. The Bayesian

aggregation achieved a better average F1 measure than the

average bottom-up adaption. The F1 values (scattered points

in the graph) of Bayesian aggregation have generally located

above the diagonal line in the graph, which presents better F1

performance in contrast to average bottom-up adaption. One

further experiment presented in Table 5 has been performed

based on the reorganization of the data set, the entire CHOP

plus OPS DE data has been split into training 60/40%. In

comparison with the previous setting of 70/30% splitting, the

new split with 40% for the validation set has guaranteed that each

node along the vertical path can get at least one test example.

We have employed the success configuration with Bayesian

aggregation (last line in Table 4 HA+CHOP+OPS+BAA), as

is shown in Table 5, not all the trained nodes can be triggered

except the top-level category. After the BAA and aggregation,

the accuracy can be improved directly, particularly the last level

(level 6), the BAA has yielded 40% of enhancement, whereas

nearly 77% of the classifiers required a threshold adaption so

that the CHOP codes can be generated in the corresponding

level. One obvious trend is that the low level nodes (level 4

to level 6) require more threshold adaption in comparison

with high level nodes (level 1 to level 3), which means the

models for nodes at the lower level experiencedmore over-fitting

and training bias due to lacks of data. However, the threshold

adaption can be used to let the classification reach the low

level nodes.

8. Discussion

The results clearly show that the per-node binary

classification outperforms the non-terminal multiclass

classification with an F1-micro measure between 92.6 and 94%.

The hierarchical prediction based on per-node binary classifiers

achieved a high exact match by the single code assignment on

the 5-fold cross-validation.

With the purpose of data balancing as well as the increase

of trainable nodes, we have transferred the German OPS data

(similar medical procedure encoding used in Germany) as

our input data. The number of positive training samples has

therefore been supplemented. The data merging leads to a

definite increase in the number of trainable nodes (3,545).

However, the performance of the flat-classification decreased to

86–92% after the data merging. As the last step, the performance

of models on a newly emerged data set has been increased from

80% (CHOP) to 87% (CHOP-OPS-merged), which indicates

improved generalizability.

Different configurations have boosted the performance of

the code prediction. The self-attentive autoencoder with all

queries as input have outperformed the stacked autoencoder

by 3%, while the input with selected queries on the true

path has brought another 4% of improvement. The selection

of input queries based on the CHOP hierarchy has clearly

improved the precision of the task of code prediction and also

offered a moderate improvement in recall. We believe that

the query selection based on the true path has reduced the

confounder between queries from sibling nodes and increased

the connection among the features along with parent and child

relations. The threshold adaption based on average bottom-up

has slightly increased the F1 by 0.4%. The Bayesian aggregation

has explicitly augmented the F1 for nearly 4%. The Bayesian

aggregation has outperformed since the average bottom-up

has only reflected the relation between two levels of node

connection, whereas the Bayesian method has covered the entire

true path in CHOP.

9. Conclusion and outlooks

In this paper, we conducted a hierarchical code assignment

in the CHOP based on query text from server logs of an existing

code retrieval system.
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TABLE 4 Hierarchical performance comparison based on 289 newly

emerging queries (out of a sample with 217 CHOP codes level 1 to

level 6).

Configuration Avg

precision

Avg

recall

Avg F1

Hierarchical prediction with

SDA+CHOP

81.96% 60.33% 69.50%

Hierarchical prediction with

SDA+CHOP+OPS

77.96% 69.43% 73.45%

Hierarchical prediction with

ASA+CHOP+OPS

75.42% 74.23% 74.82%

Hierarchical prediction with

HA+CHOP+OPS

80.96% 77.43% 79.16%

Hierarchical prediction with

HA+CHOP+OPS+BUA

85.34% 74.53% 79.57%

Hierarchical prediction with

HA+CHOP+OPS+BAA

86.96% 80.43% 83.57%

By default, top-down hierarchical prediction without thresholds adaption is applied.

Stacked denoising autoencoder (SDA), All nodes self-attentive autoencoder (ASA),

Hierarchical (true path selected), self-attentive autoencoder (HA), average bottom-up

adaption (BUA), and Bayesian aggregation (BAA).

The stacked autoencoder with denoising function provided

first a vectorized representation based on a unified vocabulary

space for the query and CHOP catalog entries. Subsequently,

an extension of the representation learning based on a self-

attentive autoencoder has been applied to obtain a hierarchical

representation with the same dimensional vector, which brings

the hierarchical context into the compact representation. Using

per-node training of classifier (random forest) and aggregation

of training examples, we achieved high in-sample performance

of code classification (94% micro avg F1).

The hierarchical prediction has been evaluated on the task

of a single code assignment. More specifically, we simulated

the path search with an adapted threshold of positive recall

and average F1 of the base classifier. Based on the 289 newly

emerging queries (out of sample), the proposed model has

been tested. An F1 measure of 83.57% has been achieved with

the configuration of a self-attentive autoencoder and Bayesian

aggregation with both CHOP and OPS input data.

Through experiments, we can summarize the following

answers to our research questions in Section 2. In general, the

hierarchical context from the CHOP encoding can be employed

FIGURE 10

Comparison of performance average hierarchical F1 between bottom-up average threshold adaption vs. the threshold adaption with Bayesian

aggregation based on 20 selected CHOP code from out of sample test sets.
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TABLE 5 Vertical reachability in CHOP plus OPS DE, triggerable

classifiers before and after Bayesian aggregation and threshold

adaption.

Level Classifier triggerable

before/after adaption

Avg F1

before/after

adaption

Percentage

threshold

adaption

1 17/17 92.2/95.2% 0%

2 76/104 87.34/93.12% 21.4%

3 459/793 69.35/89.44% 35.36%

4 897/1,416 77.66/89.3% 67.42%

5 689/1,030 65.34/87.42% 89.23%

6 54/185 45.23/85.52% 77.47%

The validation set (40% of the data) was used to verify whether the trained classifier can

be triggered correctly along the vertical path.

by both classifier training and representation learning. The

hierarchical features have all shown improvement in the

classification performances under different configurations,

respectively: the stacked autoencoder and training examples

aggregation using true path rules as well as the unified

vocabulary space have largely increased the utility of

hierarchical features. By the hierarchical prediction, the

possible solutions are bottom-up adaption and Bayesian

aggregation. The bottom-up threshold adaption has increased

the precision by 5% and the average F1 by 0.4%, while the

Bayesian aggregation has even improved the average F1

measure by 4%.

Beyond that, the transfer learning using a training set from

German OPS for training the CHOP classifier has increased

positive examples and extended the number of trainable

categories. The transfer of German OPS data led to an increase

in accuracy of 4–5% in the task of prediction. As a next step,

errors will be analyzed in more detail and the integration

of the methods into the existing encoding system will be

considered. The deployment of the model and selection of

parameters set by the model application will be evaluated.

Furthermore, the hierarchical labeling embedding (Wang et al.,

2018) (vocabulary harmonization between query text and CHOP

category) as well as threshold adaption with fuzzy matching

(Lee et al., 2021) and the holistic optimization method can

be evaluated.
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