AUTHOR=Schulte im Walde Sabine , Frassinelli Diego TITLE=Distributional Measures of Semantic Abstraction JOURNAL=Frontiers in Artificial Intelligence VOLUME=4 YEAR=2022 URL=https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2021.796756 DOI=10.3389/frai.2021.796756 ISSN=2624-8212 ABSTRACT=
This article provides an in-depth study of distributional measures for distinguishing between degrees of
In a series of experiments we identify reliable distributional measures for both instantiations of lexical-semantic abstraction and reach a precision higher than 0.7, but the measures clearly differ for the abstract–concrete vs. abstract–specific distinctions and for nouns vs. verbs. Overall, we identify two groups of measures, (i) frequency and word entropy when distinguishing between more and less abstract words in terms of the generality–specificity distinction, and (ii) neighbourhood density variants (especially target–context diversity) when distinguishing between more and less abstract words in terms of the abstract–concrete dichotomy. We conclude that more general words are used more often and are less surprising than more specific words, and that abstract words establish themselves empirically in semantically more diverse contexts than concrete words. Finally, our experiments once more point out that distributional models of conceptual categorisations need to take word classes and ambiguity into account: results for nouns vs. verbs differ in many respects, and ambiguity hinders fine-tuning empirical observations.