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This paper describes an approach to economics that is inspired by quantum computing,
and is motivated by the need to develop a consistent quantummathematical framework for
economics. The traditional neoclassical approach assumes that rational utility-optimisers
drive market prices to a stable equilibrium, subject to external perturbations or market
failures. While this approach has been highly influential, it has come under increasing
criticism following the financial crisis of 2007/8. The quantum approach, in contrast, is
inherently probabilistic and dynamic. Decision-makers are described, not by a utility
function, but by a propensity function which specifies the probability of transacting. We
show how a number of cognitive phenomena such as preference reversal and the
disjunction effect can be modelled by using a simple quantum circuit to generate an
appropriate propensity function. Conversely, a general propensity function can be
quantized, via an entropic force, to incorporate effects such as interference and
entanglement that characterise human decision-making. Applications to some
common problems and topics in economics and finance, including the use of quantum
artificial intelligence, are discussed.
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INTRODUCTION

Theories of economics always rely on theories of value. In classical economics, it was assumed that
value is the product of labour (Smith, 1776). Neoclassical economists later substituted labour with the
energy-like concept of utility (Jevons, 1957). In their Theory of Games and Economic Behaviour
(1944), Von Neumann and Morgenstern (1944) developed a consistent set of axioms to describe
rational economic behaviour, and the assumption that people act rationally to optimise their own
expected utility became the basis for economics as it developed in the post-war era.

However while this model of rational economic behaviour remains the default approach in
economics, cognitive psychologists have shown that its assumptions are often violated. For example,
one of the key axioms of expected utility theory is that people have fixed preferences. Yet the widely-
demonstrated phenomenon of preference reversal shows that in fact people do not have stable
preferences and have a tendency to change their mind depending on things like context (Tversky and
Thaler, 1990).

The belief that rational utility-optimisers drive prices to a stable equilibrium was also sorely tested
by the financial crisis of 2007/8. In response to that crisis, economists began to adopt methods from
behavioural economics, in which so-called cognitive anomalies were accommodated by modifying
the utility function to account for effects such as loss aversion or herd behaviour (Kahneman, 2011).
As discussed below, though, a range of cognitive and financial phenomena continue to elude
behavioural approaches, because they do not conform to classical logic (Wendt, 2015). This has
motivated interest in adopting a mathematical framework based on quantum probability.
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Quantum probability is a set of mathematical rules to calculate
probabilities of events in quantum mechanics. Its properties
such as nonadditivity and noncommutativity make it well-
suited to model uncertainty in decision-making behavior in
social sciences, where it extends classical utility theory (Qadir,
1978; Segal and Segal, 1998; Baaquie, 2004; Derman, 2004;
Yukalov and Sornette, 2008; Busemeyer and Bruza, 2012;
Haven and Khrennikov, 2013; Khrennikov et al., 2018;
Zhang and Kjellström, 2021). It also applies particularly well
to the topic of money, whose function it is to collapse the fuzzy
concept of value down to a number, in a manner that can be
modelled as a form of wave function collapse (Orrell and
Chlupatý, 2016; Orrell, 2020b). The approach in this paper is
to generalize the quantum approach, by modelling economic
decision-making using a probabilistic propensity function that
can be expressed in quantum terms via the use of an entropic
force. In other words, we model the economy in a manner
consistent with, and inspired, by quantum computing (Nielsen
and Chuang, 2002; Nakahara and Ohmi, 2008).

The plan of the remainder of the paper is as follows. Quantum
Probability motivates the use of quantum probability to model
economic decisions. Quantum Circuits shows how a simple
quantum circuit, of a sort commonly used in quantum
algorithms, can simulate a variety of cognitive phenomena
which elude a classical approach. Propensity and Entropic
Force shows how a general propensity function can be
quantized to yield the quantum dynamics of financial
transactions. Finally Conclusion summarises the main results.

QUANTUM PROBABILITY

The key difference between quantum computers and classical
computers is that, instead of storing information in binary bits
which can take on the value 0 and 1, quantum computers use
qubits, which randomly collapse to a particular state when
measured. Quantum computers are therefore inherently
probabilistic rather than deterministic, so a quantum circuit
may have to be run and measured many times in order to
build up a statistical estimate to a solution.

In order to motivate, from first principles, the use of quantum
probability in an economic context, suppose that we wish to
model the state of a person who is going to make a binary choice
between two options. If the person is equally likely to choose
either, then the situation is the same as for a random coin toss. In
general, the state could be modelled by the diagonal ray in
Figure 1A, where two dimensions are required because we
want to capture the possibility of either outcome. If the ray
has length 1, and we associate the probabilities of obtaining heads
or tails by taking the square, i.e. the 2-norm, of the projections
onto the respective axis, then the probabilities add to 1 as
expected.

The state can therefore be interpreted as a propensity to give
different outcomes, in this case heads or tails. Because the 2-norm
of a probability depends on the square, one can also imagine cases
where the projections are negative (Haug, 2004; Aaronson, 2013).
For example, in Figure 1B the projection on the heads axis is
negative, but the 2-norm of the probability is unchanged. The fact
that projections can have opposite signs allows for the possibility
of interference, where probabilities cancel out instead of adding in
the usual way. Since negative numbers are allowed, the need for
mathematical closure suggests that complex numbers should be
as well, for example to accommodate situations where we need to
calculate square roots (Aaronson, 2013).

We can also consider unitary transformations which act on the
state while preserving its norm. An example is the Hadamard
transformation, which here rotates S1 by 45 degrees clockwise. A
coin in the superposed state of Figure 1A will then be rotated so
that it aligns with the H axis, as in Figure 1C, which means that
when measured it will be heads for sure. The vertical component
of the rays H3 and T3 have canceled out, which is an example of
interference, and the indeterminate system has become
deterministic.

Finally, we can also ask what happens when we have a more
complicated system, for example two coins instead of one. The
possible final outcomes are then HH, HT, TH, and TT, where HT
is heads for the first coin and tails for the second, and so on. But if
say the system is in a balanced superposition of HH and
TT—i.e., there is an equal probability of getting either both
heads, or both tails, and those are the only possibilities—then

FIGURE 1 | (A) A coin toss for a balanced coin can be expressed as a superposition of two states, heads and tails. (B) because the 2-norm of a probability is its
square, we can also consider negative projections. (C) Applying the Hadamard transformation rotates S1 by 45 degrees clockwise which aligns with the H axis (S3).
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we can say that the coins are entangled. Entanglement can
therefore be viewed as a particular kind of superposed state,
which leads to correlation in measurement probabilities of
subsystems.

The adoption of the 2-norm as a probabilistic measure
therefore incorporates the related phenomena of superposition,
interference, and entanglement, which are characteristic of
quantum systems, and are exploited in quantum computers to
give significant computational advantages over classical
computers (Aaronson, 2013). In a quantum computer, the
coin toss would be modelled using the wave function |ψ of a
single qubit, which is in a superposition of two basis states |0〉 �
( 1
0
) and |1〉 � ( 0

1
), with the first representing heads and the

second representing tails. We can then write

|ψ〉 � a0|0〉 + a1|1〉 � ( a0
a1

)
where a0 and a1 are complex numbers with |a0|2 + |a1|2 � 1.
When measured in the computational basis, the possible
outcomes are |0〉 with a probability |a0|2 and |1〉 with a
probability |a1|2. Quantum gates which produce
transformations are represented by unitary matrices, and two
or more qubits are represented by tensor products, as seen below.

To summarise, classical probability is the simplest kind of
probability, which is based on the 1-norm and involves positive
numbers. The next-simplest kind of probability uses the 2-norm,
and includes complex numbers. The reason this kind of
probability is called quantum probability, is for the historical

reason that it turns out to be the right framework for quantum
physics, and is the basis of quantum computing; however there is
no reason we can’t apply it to other areas, such as economics.

QUANTUM CIRCUITS

Quantum probability has been adopted in areas such as quantum
cognition and quantum game theory because it naturally
accounts for effects such as interference and entanglement
(Busemeyer and Bruza, 2012; Wendt, 2015). Well-known
examples from the quantum cognition literature include the
order effect, where responses to questions in a survey depend
on the order in which they are asked; the disjunction effect, where
extra information seems to interfere with decision-making in a
manner that eludes classical logic; preference reversal, where a
decision changes depending on context; or games such as the
prisoner’s dilemma, where experiments show that people behave
not as individual utility-optimisers, but as people who are
entangled through things like a social contract.

For the order effect, the usual way to think about this is in terms
of a sequence of projections, as illustrated in Figure 2. If question A
is followed by question B, and we assume that the questions have
yes/no responses, then the first response is modelled by collapsing
the state, shown by the diagonal grey line, onto one of the two axes
labelled “A yes” or “A no”. That state is then used as the starting
point for a projection onto the B axes. Similar calculations can be
made with the order reversed to reveal the order effect, which has
been demonstrated in a broad range of empirical studies (Wang
et al., 2014). The probability of outcomes when question A is
followed by question B and vice versa are shown in Table 1.

An equivalent representation of this sequence, based on the
methods of quantum computing, is the quantum circuit shown in
Figure 3. The input on the left is two qubits, each of which is
initialised to |0〉. The joint initial state is written

ψ0� |00〉 � ( 1
0
) ⊗ ( 1

0
) � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

The top qubit is acted on by the gate A, which is a rotation
matrix of the form

A � Rθ � ( cos θ −sin θ
sin θ cos θ

).
The lower qubit is acted on by the similar rotation matrix B � Rφ

where φ represents the difference in the frameworks used to
answer the two questions. The two qubits are then entangled
through a C-NOT gate, which is represented by the matrix

Xc �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

The operation ψf � Xc(A ⊗ B)ψ0 depicted in Figure 3 then
yields the output probabilities for the possible states shown in

FIGURE 2 | The order effect for two questions labelled A and B. The
state vector (grey line) is at an angle θ to the axes for A. The axes for B are
rotated by an angle φ to those for A.
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Table 2. Note that the total probabilities of obtaining B yes or no
are the same as in Table 1 for the case where question A is
followed by B. Similar calculations can be made with the order of
questions reversed, by inverting the C-NOT gate so that the
second qubit acts as the control and updating A as Rφ and B as
R(θ−φ).

As seen in the Appendix, this relationship holds when gates A
and B are arbitrary unitary matrices, so the circuit is quite flexible
and can be used to simulate any problem that can be described
either by a sequence of projections, as in quantum cognition, or
by an entangled system as in the approach known as quantum
decision theory (Yukalov and Sornette, 2014; 2017). For the
disjunction effect (Blutner and Graben, 2016), gate A
represents a context or a piece of information, while gate B
represents a decision. For preference reversal (Yukalov and
Sornette, 2015), gate A represents a subjective context, while
gate B represents an objective utility such as a monetary award.
The circuit can also be used to simulate a version of the prisoner’s
dilemma (Khan et al., 2018), where gate B represents one player’s
strategy, and gate A represents their subjective ideas about the
other player’s strategy (Orrell, 2021c).

A particularly strong, and economically relevant, example of a
quantum social phenomenon is the existence of threshold effects
(Orrell, 2021b). For the case of preference reversal, if the context-
dependent subjective factors represented by gateA are assumed to
be random, then they can be expected to have a roughly equal
effect as the objective factors (such as the prize in a lottery)
represented by gate B. Because changes in context often have a
switch-like nature (for example, a person may or may not have a

particular piece of information or experience a particular event)
the result is a threshold effect, where objective costs must
change by a set amout to overcome subjective factors.
According to the preference reversal criterion (Yukalov and
Sornette, 2018), if the more attractive option has an associated
cost x1 and the less attractive option has a cost x2, then a switch
from the more attractive to the less attractive option will only
occur if x1/x2 > 3.

This criterion has been empirically tested in a range of
experiments, and appears to be quite robust (Yukalov and
Sornette, 2015; 2018). A related phenomenon is the
endowment effect, where people assign a higher value to an
object that they own than to one that they do not, and the
switch in context from selling to buying results in a similar price
gap (Kahneman et al., 1990). We return to the question of
threshold effects below.

PROPENSITY AND ENTROPIC FORCE

The above examples show that the quantum approach, native to
quantum computers, is well-suited to studying a variety of
problems that involve interference and entanglement, and are
therefore not easily addressed using classical logic or behavioural
approaches, which is why quantummethods are seeing increasing
use in the social sciences (Wendt, 2015; Der Derian and Wendt,
2020). For the case of economics the quantum approach, with its
change from utility to propensity, leads to a shift in our
understanding of how decisions are made, and how financial
transactions are modelled. One thing that distinguishes
economics from the other social sciences is that it involves
financial transactions, so price can be used as a measure of
position. We can therefore build models that use price as an
independent variable. Instead of assuming that supply and
demand determine price, as in neoclassical economics, we
assume that price determines propensity. The fact that price is
just a number, as opposed to something real and immutable, is
exactly what introduces the probabilistic uncertainty that makes
the quantum approach suitable.

Smith (1776) argued that the “propensity to truck, barter, and
exchange” was inherent in human nature—and while we can’t

TABLE 1 | Probabilities of the possible outcomes in the order effect model.

Question order A Yes A No B Yes B No

A then B cos2 θ sin2 θ cos2 θ cos2 φ + sin2 θ sin2 φ cos2 θ sin2 φ + sin2 θ cos2 φ
B then A cos2(θ − φ)cos2 φ + sin2(θ − φ)sin2 φ cos2(θ − φ)sin2 φ + sin2(θ − φ)cos2 φ cos2(θ − φ) sin2(θ − φ)

FIGURE 3 | Quantum circuit for a decision B influenced by a context A.

TABLE 2 | Probabilistic outcomes from the quantum circuit for a sequence of two queries A and then B.

Measured state Response A Probability Response B Conditional Probability Joint Probability

|00〉 Yes cos2 θ Yes cos2 φ cos2 θ cos2 φ
|01〉 Yes cos2 θ No sin2 φ cos2 θ sin2 φ
|10〉 No sin2 θ Yes sin2 φ sin2 θ sin2 φ
|11〉 No sin2 θ No cos2 φ sin2 θ cos2 φ
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directly observe utility, we can certainly observe people buying
and selling. We can therefore define a propensity function as a
kind of schedule which describes the probability that a person will
take a certain decision. Similar propensity curves are used in
marketing, where the technique known as “propensity modelling”
is used to simulate how a customer’s willingness to buy is affected
by attributes including price (Wilcox, 2021). Since as we have
seen quantum probability can be used to derive a propensity
function for the discrete case, a natural question to ask is whether
it is possible to go the other way, and use a given propensity
function to derive a quantum model.

As an example, suppose that we made a probabilistic estimate
of the price of a house. The result could resemble a normal
distribution, as in Figure 4, where the center of the distribution
would be our best estimate, while the standard deviation would be
a measure of our uncertainty. In quantum terms, this can be
interpreted as a superposition state, where the chance of selecting
a particular price depends on the squared amplitude of an
underlying wave function. The situation is therefore similar to
the coin toss, except that instead of only heads or tails there is now
a continuous range of possible outcomes.

While it is traditional in economics to talk about the forces of
supply and demand, these forces are assumed to cancel at
equilibrium, and there is no consistent concept of economic
mass. The dynamics of economic transactions are therefore
not usually considered in detail, other than to assume the
system is at balance. In contrast, an advantage of the
propensity framework is that it leads to the concept of
entropic force, which reflects the tendency of a system to
achieve maximum entropy (Sokolov, 2010; Caticha, 2019). In
statistical physics, an entropic force for a probability distribution
P(x) is given by

f(x) � c
P′(x)
P(x) � kBT

P′(x)
P(x)

where T is temperature and kB is the Boltzmann constant. In
economics, the propensity can similarly be viewed as the product
of an entropic force acting on the mental state of the buyer/seller;
and c can be interpreted as a kind of energy which is related to
information (Orrell, 2020a).

In the case that the propensity function P(x) is normal with
mean μ and standard deviation σ, where price x is a logarithmic
variable, then the corresponding entropic force is

F(x) � c
P′(x)
P(x) � −k(x − μ)

where k � c/σ2 is a force constant. The linear force therefore
represents the mental desire for a buyer or seller to adjust the
price to their own preferred level.

While the entropic force allows us to interpret the system in
terms of dynamics, it doesn’t tell us anything about the relevant
mass that the force acts on; and as already seen we want to be able
to account for effects such as interference and entanglement. We
can address these issues by again moving to a quantum
framework, and viewing the propensity function as being the
product of an underlying wave function. The quantum version of
a linear spring system is of course the quantum harmonic
oscillator, whose ground state is a normal distribution with
mean μ and standard deviation σ. The associated mass is

m � Z

2ωσ2

so mass varies inversely with variance. Referring to Figure 4, the
narrow propensity curve on the left has a higher associated mass
than does the wider curve on the right. The scaling factor c is
given by c � Zω/2 which has units of energy.

In statistical physics, a frequency ω is related to the inverse of
the Boltzmann time τB � Z/(kBT) which is the theoretical order
of time needed for an arbitrary nonstationary state to reach

FIGURE 4 | The curves show propensity as a function of price, measured inmillions of dollars. Both are centered at p � 1, but the panel on the right has a higher level
of price flexibility. The arrows indicate the strength and direction of the associated entropic forces (discussed later).
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thermal equilibrium (Goldstein, Hara, and Tasaki, 2015). In the
social version, the frequency can therefore be thought of as
representing a linearised resistance to change. For something
like a stock market, the frequency can be used to represent the
speed of mean reversion of returns (Ahn et al., 2017), while the
constant Z can be intepreted as a scaling factor.

In an economic transaction, the buyer propensity function will
normally have a higher mean price than that of the seller, so the
only parts of these curves which will be active are near the mid-
price. It is easily checked that the joint propensity function, which
is the product of the buyer and seller propensities, is a scaled
normal curve and has an entropic force which is just the sum of
the buyer and seller forces (Orrell, 2020a). The case where the
supplier fixes the price and refuses to negotiate is handled by
assuming an infinitely thin propensity curve located at the
sale price.

Because the oscillator model is inherently probabilistic, it can
be used to model market phenomena such as the pricing and
volume of financial options (Orrell, 2021a; Anonymous, 2021)
for which empirical data is readily available. Another
difference between quantum and classical oscillators is that
the former features discrete energy levels. The ground state,
which again can be viewed as representing the potential for a
transaction to occur, corresponds to the normal distribution,
while the other states show more complicated distributions,
and contribute the non-normal behavior also seen with
markets (Ahn et al., 2017).

A main advantage of the quantum approach, when coupled
with the entropic approach, is therefore that it gives us a
consistent set of equations and units with which we can
describe the dynamics of the system; and is particularly well
adapted to the study of financial transactions, which involve the
flow of information rather than just physical objects. For
example, returning to the general case where the entropic
force is given by

f(x) � c
P′(x)
P(x)

we can look at a particular mental state where the log price is x1

and ask how much work—which again is linked to
information—must be done against the entropic force to move
to another state x2. This is simply

ΔE � ∫ x2

x1

F(x)dx � c log(P(x2)
P(x1))

which depends only on the ratio of the initial and final
propensities. The change in propensity required for preference
reversal, as mentioned above, is typically a factor 3, which is close
to Euler’s number e. It follows that what might be called the
energy required to change a person’s mind is

ΔE � Zω

2
log(3) � Zω

2
log(e) � Zω

2

which is the base energy of a quantum oscillator, thus
highlighting the connection between quantum cognition and
economic transactions (which occur of course as the result of
individual decisions). In a quantum computer, it is also the order
of energy needed to flip a qubit from one state to another.

CONCLUSION

To summarise, expressing economic decisions in terms of a
quantum circuit allows us to incorporate effects such as
interference and entanglement; and applying the concept of
entropic force, with price as an independent variable, allows us
to derive a quantum economic model, complete with versions of
force and energy. In early neoclassical economics, utility was
viewed as a kind of energy. In his 1892 book Mathematical
Investigations in the Theory of Value and Prices, Irving Fisher
for example expressed economic transactions in physical terms,
where utility had units of energy. The quantum framework returns
to this idea of energy, but associates it with a change in propensity
rather than a utility. Table 3 summarises some of the key
differences between the classical and quantum approaches.

Since the goal in artificial intelligence can be viewed as
minimizing entropy, it is obviously attractive to base the
modelling framework on entropy as well. It is interesting to
note for example that the basic entanglement circuit depicted
in Figure 3 is used as a building block in algorithms for things like
genetic machine learning algorithms (Kondratyev, 2020).

As already mentioned the field of quantum cognition is based
on empirical results such as the order effect and preference
reversal which falsify the classical expected utility theory, so
the focus in this paper has been on using these results to build
a theory that applies more generally to economic transactions.
The propensity approach allows us to view the economy as a
quantized probabilistic system, of the sort simulated in quantum
computing. Of course, many social scientists will argue that it is
inappropriate to quantify things like social power or mental
energy, since they cannot be reduced to exact equations, but
one consequence of the rational utility-optimizing picture is that
complex social topics such as power relationships were
downplayed or ignored (Ha€ring and Douglas, 2013; Orrell,
2017). Since economics is a quantitative discipline, we need a
suitable framework with which to describe the interplay between
objective and subjective forces that make up power.

While human motivations cannot be reduced to equations, it
seems reasonable to quantify the propensity for a person to make

TABLE 3 | Comparison of the quantum and classical approaches.

Classical Quantum

Utility Propensity
Probability measured using 1-norm Probability measured using 2-norm
Fixed preferences Superposition states
Additivity of causes Interference, threshold effects
Independent agents Entangled agents
Objectivity Objectivity plus subjectivity
Forces cancel at equilibrium Entropic forces lead to dynamics
No concept of inertial mass Mass scales with inverse variance
Determinism Uncertainty
Price measures value Price gives an eigenvalue
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a particular decision (indeed, this is the entire basis for fields such
as behavioural economics). The entropic force (along with its
associated energy) is merely another way of expressing a
propensity function. The approach can be used to simulate a
variety of economic phenomena, from cognitive interference in
the decision-making process, to the price and trading volume of
financial options. The affinity between finance and quantum
computing is particularly evident in the area of quantum
finance, where quantum algorithms are coming into their own
(Nogueiras et al., 2021; Anonymous, 2021).

To summarise, neoclassical economics was marked by a switch
from a labour theory of value, to one based on utility. Quantum
economicsmakes a similar switch, by expressing value in terms of a
propensity function. Adopting a quantum probabilistic framework
allows us to incorporate cognitive effects such as interference and
entanglement; express basic economic quantities such as forces of
supply and demand in consistent units; and consider both
subjective and objective factors on an equal footing.
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