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Though deep neural networks have achieved the state of the art performance in visual
classification, recent studies have shown that they are all vulnerable to the attack of
adversarial examples. In this paper, we develop improved techniques for defending against
adversarial examples. First, we propose an enhanced defense technique denoted
Attention and Adversarial Logit Pairing (AT + ALP), which encourages both
attention map and logit for the pairs of examples to be similar. When being applied to
clean examples and their adversarial counterparts, AT + ALP improves accuracy on
adversarial examples over adversarial training. We show that AT + ALP can effectively
increase the average activations of adversarial examples in the key area and demonstrate
that it focuses on discriminate features to improve the robustness of the model. Finally, we
conduct extensive experiments using a wide range of datasets and the experiment results
show that ourAT +ALP achieves the state of the art defense performance. For example,
on 17 Flower Category Database, under strong 200-iteration Projected Gradient
Descent (PGD) gray-box and black-box attacks where prior art has 34 and 39%
accuracy, our method achieves 50 and 51%. Compared with previous work, our work
is evaluated under highly challenging PGD attack: the maximum perturbation ϵ ∈ {0.25,
0.5} i.e. L∞ ∈ {0.25, 0.5} with 10–200 attack iterations. To the best of our knowledge, such
a strong attack has not been previously explored on a wide range of datasets.

Keywords: adversarial training, attention, adversarial robustness, adversarial example, deep learning, deep neural
network

1 INTRODUCTION

In recent years, deep neural networks have been extensively deployed for computer vision tasks,
particularly for visual classification problems, where new algorithms have been reported to achieve
even better performance than human beings Krizhevsky et al. (2012), He et al. (2015), Li et al.
(2019a). The success of deep neural networks has led to an explosion in demand. However, recent
studies have shown that they are all vulnerable to the attack of adversarial examples Szegedy et al.
(2013); Carlini and Wagner (2016); Moosavi-Dezfooli et al. (2016); Bose and Aarabi (2018). Small
and often imperceptible perturbations to the input images are sufficient to fool the most powerful
deep neural networks.

In Figure 1, we visualize the spatial attention map of a flower and its corresponding adversarial
image on ResNet-50 He et al. (2015) pretrained on ImageNet Russakovsky et al. (2015). The figure
suggests that adversarial perturbations, while small in the pixel space, lead to very substantial
“noise” in the attention map of the network. Whereas the features for the clean image appear to
focus primarily on semantically informative content in the image, the attention map for the
adversarial image are activated across semantically irrelevant regions as well. The state of the art
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adversarial training methods only encourage hard labels Madry
et al. (2017); Tramèr et al. (2017) or logit Kannan et al. (2018)
for pairs of clean examples and adversarial counterparts to be
similar. In our opinion, it is not enough to align the difference
between the clean examples and adversarial counterparts only at
the end part of the whole network, i.e., hard labels or logit, and
we need to align the attention maps for important parts of the
whole network. Motivated by this observation, we explore
Attention and Adversarial Logit Pairing(AT + ALP), a
method that encourages both attention map and logit for
pairs of examples to be similar. When being applied to clean
examples and their adversarial counterparts, AT + ALP
improves accuracy on adversarial examples over adversarial
training.

The contributions of this paper are summarized as follows:

• We introduce enhanced adversarial training using a
technique we call Attention and Adversarial Logit
Pairing(AT + ALP), which encourages both attention
map and logit for pairs of examples to be similar. When
being applied to clean examples and their adversarial
counterparts, AT + ALP improves accuracy on
adversarial examples over adversarial training.

• We show that our AT + ALP can effectively increase the
average activations of adversarial examples in the key area
and demonstrate that it focuses on more discriminate
features to improve the robustness of the model.

• We show that our AT + ALP achieves the state of the art
defense on a wide range of datasets against strong PGD
gray-box and black-box attacks. Compared with previous
work, our work is evaluated under highly challenging PGD

FIGURE 1 | (A) is original image and (B) is corresponding spatial attention map of ResNet-50 He et al. (2015) pretrained on ImageNet Russakovsky et al. (2015)
which shows where the network focuses in order to classify the given image. (C) is adversarial image of (A), (D) is corresponding spatial attention map.

FIGURE 2 | Schematic representation of Attention and Adversarial Logit Pairing (AT + ALP): a baseline model is trained so as, not only to make similar logits,
but to also have similar spatial attention maps to those of original image and adversarial image.
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attack: the maximum perturbation ϵ ∈ {0.25, 0.5}, i.e., L∞ ∈
{0.25, 0.5} with 10–200 attack iterations. To the best of our
knowledge, such a strong attack has not been previously
explored on a wide range of datasets.

The rest of the paper is organized as follows: in Section 2, we
present the related works; in Section 3, we introduce definitions
and threat models; in Section 4 we propose our Attention and

Adversarial Logit Pairing(AT + ALP) method; in Section 5, we
show extensive experimental results; and Section 6 concludes.

2 RELATED WORK

Athalye et al. (2018) evaluate the robustness of nine papers Buckman
et al. (2018); Ma et al. (2018); Guo et al. (2017); Dhillon et al. (2018);

TABLE 1 | Defense against white-box attack on CIFAR-10. The adversarial perturbations were produced using Fast Gradient Sign (FGS) Goodfellow et al. (2015), Projected
Gradient Descent (PGD) Madry et al. (2017), AutoAttack (AA) Croce and Hein (2020) and RayS Chen and Gu (2020). The perturbation magnitude is ϵ � 8/255 under
L∞ norm.

Defense on
CIFAR-10 database

Clean FGS PGD AA RayS Time (hours)

No Defence 95.3 < 1 <1 <1 <1 0.4
PAT Madry et al. (2017) 83.2 55.7 51.6 46.1 57.3 2.6
ALP Kannan, Kurakin, and Goodfellow (2018) 82.7 56.4 52.7 46.8 59.4 2.6
Our AT 83.5 56.9 53.0 48.4 59.2 2.6

TRADES Zhang et al. (2019) 82.1 58.1 54.6 49.0 58.9 3.7

FIGURE 3 | Defense against gray-box and black-box attacks on 17 Flower Category Database. (A,C) shows results against a gray-box PGD attacker with 10–200
attack iterations. (B,D) shows results against a black-box PGD attacker with 10–200 attack iterations. The maximum perturbation is ϵ ∈ {0.25, 0.5}, i.e., L∞ ∈ {0.25,
0.5}.Our AT + ALP (purple line) outperform the state-of-the-art in adversarial robustness against highly challenging gray-box and black-box PGD attacks.
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Xie et al. (2017); Song et al. (2017); Samangouei et al. (2018); Madry
et al. (2017); Na et al. (2017) accepted by ICLR 2018 as non-certified
white-box-secure defenses to adversarial examples. They find that
seven of the nine defenses use obfuscated gradients, a kind of gradient
masking, as a phenomenon that leads to a false sense of security in
defenses against adversarial examples. Obfuscated gradients provide a
limited increase in robustness and can be broken by improved attack
techniques they develop. The only defense they observe that
significantly increases robustness to adversarial examples within
the threatmodel proposed is adversarial trainingMadry et al. (2017).

Adversarial training Goodfellow et al. (2015); Madry et al. (2017);
Kannan et al. (2018); Tramèr et al. (2017); Pang et al. (2019) defends
against adversarial perturbations by training networks on adversarial

images that are generated on-the-fly during training. For adversarial
training, the most relevant work to our study is Kannan et al. (2018),
which introduce a technique they call Adversarial Logit Pairing
(ALP). This method encourages logits for pairs of examples to be
similar. Our AT + ALP encourages both attention map and logit for
pairs of examples to be similar.When being applied to clean examples
and their adversarial counterparts, AT + ALP improves accuracy on
adversarial examples over adversarial training. Araujo et al. (2019)
adds random noise at training and inference time, Xie et al. (2018)
adds denoising blocks to themodel to increase adversarial robustness,
while neither of the above approaches focuses on the attention map.

In terms of methodologies, our work is also related to deep
transfer learning and knowledge distillation problems, and the
most relevant work to our study is Zagoruyko and Komodakis
(2016); Li et al. (2019b), which constrain the L2-norm of the
difference between their behaviors (i.e., the feature maps of outer
layer outputs in the source/target networks). Our AT + ALP
constrains attentionmap and logit for pairs of clean examples and
their adversarial counterparts to be similar.

3 DEFINITIONS AND THREAT MODELS

In this paper, we always assume the attacker is capable of forming
attacks that consist of perturbations of limited L∞-norm. This is a
simplified task chosen because it is more amenable to benchmark
evaluations. We consider two different threat models
characterizing amounts of information the adversary can have:

• Gray-box Attack We focus on defense against gray-box
attacks in this paper. In a gray-back attack, the attacker
knows both the original network and the defense algorithm.
Only the parameters of the defense model are hidden from the
attacker. This is also a standard setting assumed in many
security systems and applications Pfleeger and Pfleeger (2004).

• Black-box Attack The attacker has no information about
the model’s architecture or parameters, and no ability to
send queries to the model to gather more information.

4 METHODS

4.1 Architecture
Figure 2 represents architecture of Attention and Adversarial
Logit Pairing (AT + ALP): a baselinemodel is adversarial trained so
as, not only to make similar logits, but to also have similar spatial
attention maps to those of original image and adversarial image.

4.2 Adversarial Training
Weuse adversarial training withProjectedGradientDescent (PGD)
Madry et al. (2017) as the underlying basis for our methods:

arg min
θ

E(x,y)∈p̂ data
max
δ∈S

L(θ, x + δ, y)( ) (1)

where p̂ data is the underlying training data distribution, L (θ, x +
δ, y) is a loss function at data point x which has true class y for a

TABLE 2 | Defense against gray-box and black-box attacks on 17 Flower
Category Database, Part of ImageNet Database and Dogs-vs.-Cats
Database. The adversarial perturbation were produced using PGDwith step size α
� 1.0/256 � 0.0039 and 200 attack iterations. As shown in this table, AT + ALP
got the highest Top-1 Accuracy on all these database.

17 flower category database Gray-box Black-box

ε = L‘ 0.25 0.5 0.25 0.5

No Defence 0 0 15 10

IGR Ross and Doshi-Velez (2017) 10 3 17 10
PAT Madry et al. (2017) 55 34 57 39
RAT Araujo et al. (2019) 54 30 57 32
Randomization Xie et al. (2017) 12 6 27 16
ALP Kannan et al. (2018) 47 23 49 25
FD Xie et al. (2018) 33 10 33 10
ADP Pang et al. (2019) 22 8 23 8
Our AT 41 24 45 29

Our AT + ALP 68 50 70 51

Part of ImageNet database Gray-box Black-box

ε = L‘ 0.25 0.5 0.25 0.5

No Defence 2 3 52 50

IGR Ross and Doshi-Velez (2017) 32 32 34 34
PAT Madry et al. (2017) 76 76 77 77
RAT Araujo et al. (2019) 76 76 77 76
Randomization Xie et al. (2017) 40 41 62 59
ALP Kannan et al. (2018) 54 54 55 55
FD Xie et al. (2018) 60 61 61 61
ADP Pang et al. (2019) 42 44 43 44
Our AT 76 76 77 76

Our AT + ALP 82 82 82 82

Dogs-vs.-Cats Database Gray-box Black-box

ε = L‘ 0.25 0.5 0.25 0.5

No Defence 1 1 52 53

IGR Ross and Doshi-Velez (2017) 57 60 51 52
PAT Madry et al. (2017) 51 51 52 52
RAT Araujo et al. (2019) 49 49 50 50
Randomization Xie et al. (2017) 10 8 55 54
ALP Kannan et al. (2018) 57 56 57 57
FD Xie et al. (2018) 57 57 57 57
ADP Pang et al. (2019) 50 50 50 50
Our AT 50 50 50 50

Our AT + ALP 67 67 71 71
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model with parameters θ, and the maximization with respect to δ
is approximated using PGD. In this paper, the loss is defined as:

L � LCE + αLALP + βLAT, (2)

where LCE is cross entropy, α and β are hyperparameters.

4.3 Adversarial Logit Pairing
We also use Adversarial Logit Pairing (ALP) to encourage the
logits from clean examples and their adversarial counterparts to
be similar to each other. For a model that takes inputs x and
computes a vector of logit z � f(x), logit pairing adds a loss:

LALP � La(f(x), f(x + δ)) (3)

In this paper we use L2 loss for La.

4.4 Attention Map
We use Attention Map (AT) to encourage the attention map
from clean examples and their adversarial counterparts to be
similar to each other. Let I denote the indices of all activation

layer pairs, for which we want to pay attention. Then, we can
define the following total loss:

LAT � ∑
j∈I

Qj
ADV

Qj
ADV

���� ����2
− Qj

O

Qj
O

���� ����2

���������
���������
p

(4)

Let O, ADV denote clean examples and their adversarial
counterparts, where Qj

O � vec(F(Aj
O)) and Qj

ADV �
vec(F(Aj

ADV)) are respectively the jth pair of clean examples
and their adversarial counterparts attention maps in vectorized
form, and p refers to norm type (in the experiments we use p � 2).

4.5 Experiments: White-Box Settings
White-box attack is the most challenging task for evaluating a
model’s adversarial robustness. In white-box settings, attackers
are assumed to know all details about the model, including its
architecture and parameters. We conduct white-box experiments
following common practices Madry et al. (2017); Kannan et al.
(2018). Specifically, we use ResNet-18 He et al. (2015) trained
with CIFAR-10 Krizhevsky and Hinton (2009).

FIGURE 4 | Activation attention maps for defense against gray-box PGD attacks (ϵ � 0.25) on 17 Flower Category Database. (A) is original image and (B) is
corresponding adversarial image. (C) and (D) are activation attention maps of baseline model for original image and adversarial image, (E,F,G) are activation attention
maps of ALP, AT and AT + ALP for adversarial image. Group-0 to group-3 represent the activation attention maps of four groups of convolutional structures in the
baseline model, group-0 extracts of low-level features, group-1 and group-2 extract of mid-level features, group-3 extracts of high-level features Zagoruyko and
Komodakis (2016). It can be clearly found that group-0 of AT + ALP can extract the outline and texture of flowers more accurately, and group-3 has a higher level of
activation on the whole flower, compared with other defense methods, only it makes accurate prediction.
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We use Fast Gradient Sign (FGS) Goodfellow et al. (2015),
Projected Gradient Descent (PGD) Madry et al. (2017),
AutoAttack Croce and Hein (2020) and RayS Chen and Gu
(2020) to perform white-box attacks towards evaluated models.
We consider untargeted attack, which is more challenging for
defense than targeted attack. Adversarial perturbations are
measured by L∞ norm (i.e., maximum perturbation for each
pixel), with an allowed maximum value of ϵ � 8/255.

4.6 Image Database
The CIFAR-10 Krizhevsky and Hinton (2009) dataset contains
50,000 training samples and 10,000 test samples, uniformly
distributed across 10 classes. Each sample is a 32 × 32 color
image. Though with a low image resolution, CIFAR-10 is a
popular benchmark to evaluate the adversarial robustness of amodel.

4.7 Experimental Setup
For white-box settings, we use ResNet-18 He et al. (2015) as the
model architecture. Models are first trained on CIFAR-10 with
different adversarial training methods, including PAT Madry et al.
(2017), ALP Kannan et al. (2018), TRADES Zhang et al. (2019) and
our proposed Attention Map (AT). We train all models with 100
epochs following practices suggested by TRADES Zhang et al. (2019).
For adversarial attacks, we adopt 1-step FSG attack Goodfellow et al.
(2015), 7-iteration PGD attack Madry et al. (2017) and AutoAttack
Croce and Hein (2020) with the common used perturbation
magnitude of ϵ � 8/255 under L∞ norm. We also evaluate them
with RayS Chen and Gu (2020), which is a gradient-free adversarial
attack requiring only the target model’s hard-label output. We run
each experiments three times and report the average top-1 accuracy.
We also report the training time of each method for a more
comprehensive comparison. Our experiments are run on Nvidia
Tesla V100-SXM2 GPUs.

5 RESULTS AND DISCUSSION

We present results of the white-box experiment in Table 1. We
compare the proposed Attention adversarial training (AT) against
relevant methods including PAT Madry et al. (2017), ALP Kannan
et al. (2018) and TRADES Zhang et al. (2019). As seen in Table 1, all
of these methods show certain degree of robustness, even under the

advanced adversarial attacks such as AutoAttack. Specifically, ourAT
is superior to baseline methods PAT and ALP, with higher clean
accuracy, robust accuracy under FSG, PGD and AutoAttack.
TRADES Zhang et al. (2019) improves ALP by involving an inner
maximization to generate a most different counterpart for the clean
example. Therefore, TRADES achieves higher adversarial accuracy
than other methods. However, the drawback lies in its efficiency, i.e.
TRADES is slower than other adversarial training methods by about
%46. This is because TRADES needs 10 adversarial steps per batch to
achieve good performance, while seven steps are enough for ALP and
AT. Moreover, the proposed AT achieves the highest clean accuracy
among all these adversarial training methods.

RayS Chen and Gu (2020) performs adversarial attack from a
different perspective. As RayS is gradient-free and independent of
certain adversarial losses, it can be used to detect possible falsely
robust models, especially those may overfit to specific types of
gradient-based attacks and adversarial losses. As seen in Table 1,
all advanced adversarial training methods including AL, AT and
TRADES, show higher robustness under RayS attack. Our results
are consistent with those reported in RayS Chen and Gu (2020)
that, when evaluated on really robust models, the robust accuracy
of RayS is usually higher than that of standard PGD.

FIGURE 5 | (A) is original image and (B) is corresponding discriminative parts. 17 Flower Category Database defined discriminative parts of flowers. So for each
image, we got several key regions which are very important to discriminate its category.

TABLE 3 | Comparing average activations on discriminate parts of 17 Flower
Category Database for different defense methods. In addition, we included
new statistical results of activations on part locations of 17 Flower Category
Database supporting the above qualitative cases. The 17 Flower Category
Database defined discriminative parts of flowers. So for each image, we got
several key regions which are very important to discriminate its category.
Using all testing examples of 17 Flower Category Database, we calculated
normalized activations on these key regions of these different defense
methods. As shown in this table,AT +ALP got the highest average activations
on those key regions, demonstrating that AT + ALP focused on more
discriminate features for flowers recognition.

Defense Black-box Gray-box

ε = L‘ 0.25 0.5 0.25 0.5

No Defense 0.41 0.41 0.21 0.21

ALP Kannan et al. (2018) 0.16 0.16 0.15 0.15
IGR Ross and Doshi-Velez (2017) 0.37 0.37 0.33 0.33
PAT Madry et al. (2017) 0.42 0.42 0.44 0.44
RAT Araujo et al. (2019) 0.40 0.40 0.41 0.41
Our AT 0.55 0.54 0.56 0.56

Our AT + ALP 0.98 0.98 0.96 0.96
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5.1 Experiments: Gray and Black-Box
Settings
To evaluate the effectiveness of our defense strategy, we performed a
series of image-classification experiments on 17 Flower Category
Database Nilsback and Zisserman (2006), Part of ImageNet
Database and Dogs-vs.-Cats Database. Following Athalye et al.
(2018); Xie et al. (2018), we assume an adversary that uses the
state of the art PGD adversarial attack method.

We consider untargeted attacks when evaluating under the
gray and black-box settings; untargeted attacks are also used in
our adversarial training.We evaluate top-1 classification accuracy
on validation images that are adversarially perturbed by the
attacker. In this paper, adversarial perturbation is considered
under L∞ norm. The value of ϵ is relative to the pixel intensity
scale of 256, we use ϵ � 64/256 � 0.25 and ϵ � 128/256 � 0.5. PGD

attacker with 10–200 attack iterations and step size α � 1.0/256 �
0.0039. Our baselines are ResNet-101/152. There are four groups
of convolutional structures in the baseline model, group-0
extracts of low-level features, group-1 and group-2 extract of
mid-level features, group-3 extracts of high-level features
Zagoruyko and Komodakis (2016), which are described as
conv2_x, conv3_x, conv4_x and conv5_x in He et al. (2015).

5.2 Image Database
We performed a series of image-classification experiments on a
wide range of datasets.

• 17 Flower Category Database Nilsback and Zisserman (2006)
contains images of flowers belonging to 17 different categories.
The images were acquired by searching the web and taking
pictures. There are 80 images for each category.

FIGURE 6 | Comparison of loss landscapes generated by No defence (A), ALP (B), AT (C) and AT+ALP (D). We see that ALP and AT sometimes induces
decreased loss near the input locally, and gives a “bumpier” optimization landscape, ourAT +ALP has better robustness. The z axis represents the loss. If x is the original
input, thenwe plot the loss varying along the space determined by two vectors: r1 � sign(▽x f(x)) and r2 ∼Rademacher (0.5). We thus plot the following function: z � loss
(x · r1 + y · r2).
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• Part of ImageNet Database contains images of four objects.
These four objects are randomly selected from the ImageNet
Database Russakovsky et al. (2015). In this experiment, they
are tench, goldfish, white shark and dog. Each object
contains 1,300 training images and 50 test images.

• Dogs-vs.-Cats Database1 contains 8,000 images of dogs and
cats in the train dataset and 2,000 in the test val dataset.

5.3 Experimental Setup
To perform image classification, we use ResNet-101/152 that were
trained on the 17 Flower Category Database, Part of ImageNet
Database andDogs-vs.-Cats Database training set.We consider two
different attack settings: 1) a gray-box attack setting in which the model
used to generate the adversarial images is the same as the image-
classification model, viz. the ResNet-101; and 2) a black-box attack
setting in which the adversarial images are generated using the ResNet-
152model; The backend predictionmodel of gray-box and black-box is
ResNet-101with different implementations of the state of the art defense
methods, such as IGR Ross and Doshi-Velez (2017), PATMadry et al.
(2017), RAT Araujo et al. (2019),Randomization Xie et al. (2017), ALP
Kannan et al. (2018), FD Xie et al. (2018) and ADP Pang et al. (2019).

5.4 Results and Discussion
Here, we first present results with AT + ALP on 17 Flower
Category Database. Compared with previous work, Kannan et al.
(2018) was evaluated under 10-iteration PGD attack and ϵ �
0.0625, our work are evaluated under highly challenging PGD
attack:the maximum perturbation ϵ ∈ {0.25, 0.5}, i.e., L∞ ∈ {0.25,
0.5} with 10–200 attack iterations. The bigger the value of ϵ, the
bigger the disturbance, the more significant the adversarial image
effect is. To the best of our knowledge, such a strong attack has
not been previously explored on a wide range of datasets. As
shown in Figure 3 that our AT + ALP outperform the state-of-
the-art in adversarial robustness against highly challenging
gray-box and black-box PGD attacks. For example, under strong
200-iteration PGD gray-box and black-box attacks where prior
art has 34 and 39% accuracy, our method achieves 50 and 51%.

Table 2 shows Main Result of our work: under strong 200-
iteration PGD gray-box and black-box attacks, our AT + ALP
outperform the state-of-the-art in adversarial robustness on all
these databases.

We visualized activation attention maps for defense against PGD
attacks. Baseline model is ResNet-101 He et al. (2015), which is pre-
trained on ImageNet Russakovsky et al. (2015) and fine-tuned on 17
Flower Category DatabaseNilsback and Zisserman (2006), group-0
to group-3 represent the activation attention maps of four groups of
convolutional structures in the baseline model, i.e., conv2_x, conv3_x,
conv4_x and conv5_x of ResNet-101, group-0 extracts of low-level
features, group-1 and group-2 extract of mid-level features, group-3

extracts of high-level features Zagoruyko andKomodakis (2016);.We
found from Figure 4 that group-0 of AT + ALP can extract the
outline and texture of flowers more accurately, and group-3 has a
higher level of activation on the whole flower, compared with other
defense methods, only AT + ALP makes accurate prediction.

We compared average activations on discriminate parts of 17
Flower Category Database for different defense methods. 17 Flower
Category Database defined discriminative parts of flowers. See
Figure 5 for an illustrative example. These discriminative parts
are annotated by humans, according to their contributions to
recognize a target. In other words, they are crucial features for the
classification. For example, the head and feather should be
discriminative parts to recognize a species of bird. Using all
testing examples of 17 Flower Category Database, we calculated
normalized activations on these key regions of these different defense
methods. As shown in Table 3, AT + ALP got the highest average
activations on those key regions, demonstrating that AT + ALP
focused on more discriminate features for flowers recognition. We
also demonstrate in Figure 6 that AT + ALP shows smoother loss
landscapes, which further verifies its effectiveness.

6 CONCLUSION

In this paper, we introduced enhanced defense using a technique
we called Attention and Adversarial Logit Pairing (AT + ALP),
a method that encouraged both attention map and logit for pairs
of examples to be similar. When being applied to clean examples
and their adversarial counterparts, AT + ALP improved accuracy
on adversarial examples over adversarial training. Our AT + ALP
achieves the state of the art defense on a wide range of datasets
against PGD gray-box and black-box attacks. Compared with
other defense methods, our AT + ALP is simple and effective,
without modifying the model structure, and without adding
additional image preprocessing steps.
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