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Artificial Intelligence and its subdomain, Machine Learning (ML), have shown the potential
to make an unprecedented impact in healthcare. Federated Learning (FL) has been
introduced to alleviate some of the limitations of ML, particularly the capability to train
on larger datasets for improved performance, which is usually cumbersome for an inter-
institutional collaboration due to existing patient protection laws and regulations.
Moreover, FL may also play a crucial role in circumventing ML’s exigent bias problem
by accessing underrepresented groups’ data spanning geographically distributed
locations. In this paper, we have discussed three FL challenges, namely: privacy of the
model exchange, ethical perspectives, and legal considerations. Lastly, we have proposed
a model that could aide in assessing data contributions of a FL implementation. In light of
the expediency and adaptability of using the Sørensen–Dice Coefficient over the more
limited (e.g., horizontal FL) and computationally expensive Shapley Values, we sought to
demonstrate a new paradigm that we hope, will become invaluable for sharing any profit
and responsibilities that may accompany a FL endeavor.
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INTRODUCTION

Machine Learning (ML) has shown promise to revolutionize the healthcare industry (Topol,
2019; Griffin et al., 2020). From image classification and understanding to natural language
processing, ML approaches have had many advancements and, in some cases, surpassed human
performance (Esteva et al., 2017; Haenssle et al., 2018). However, data availability and
underrepresentation of minorities in healthcare datasets are well-known impediments to ML
research (Obermeyer et al., 2019) and lead to relatively low performance for disproportionately
represented ethnic groups (Gao and Cui, 2020). Furthermore, distribution discrepancies in
training data from these populations result in biases that are one of the major hindrances before
generalizing ML approaches. Given the large volume and diverse data needed for model training,
Federated Learning (FL) approaches may provide a novel opportunity for the future of ML
applications (Rajendran et al., 2021; Sarma et al., 2021). FL is a collaborative ML training
approach in which training data is not centralized and stays within organizational boundaries
(Figure 1).

FL has been in use for years in other domains (e.g., cellular phones, etc.) and recently has
drawn attention in healthcare. One of the early implementations of FL in biomedicine is the
“privacy-preserving distributed algorithm to perform logistic regression (ODAL) across
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multiple clinical sites” that has achieved low bias and high
statistical efficiency (Duan et al., 2020). The models tested the
data on association between medication and fetal loss with the
random sampling-based simulation considering privacy and
model bias reduction.

The Friedman Curve indicates technological advancement
has overtaken present human governing capacity, the only way
to bridge the gap is via the introduction of rapid problem
identification and prudent regulation of FL (Friedman, 2016).
Axiomatically, there are several structural issues that need to
be addressed for wider utilization of FL.

Protected Health Information (PHI) defines the 18
identifiers that can be tied to an individual and is
regulated under the Health Insurance Portability and
Accountability Act (HIPAA). Nicholas Carlini et al.
(2019) provide evidence that it is possible to reveal
sensitive personally identifiable information (PII) as a
result of unintended “memorization” by neural networks.
Due to the nature of the data that could be memorized by the
FL model, it would be appropriate to classify the model
under the definition of PHI since there is a risk of the model

itself containing the PHI of patients. Doing so would be
essential for compliance with the HIPAA Security Rule,
which provides specific guidelines for the utilization,
employment, and protection of the data containing PHI
(i.e., the models in FL). In essence, treating the partially
or fully trained model as PHI could limit malicious actors
from accessing the potentially memorized portions of neural
networks.

Among the issues, training data variations due to data types
and their capture quality make data preparation salient to the
success of the endeavor. Some of the most relevant clinical
information may not be accessible or be recorded incorrectly
in a way that is not representative of the studied population or
missing. Moreover, data quality challenges in healthcare are an
acknowledged barrier to research in general andML in particular.
Having to decide between lacking the ability to investigate the
data or possible privacy issues is a difficult dilemma. Despite the
perceived and studied benefits, there are some challenges for
wider implementation and acceptance of FL that can be
categorized under a tripartite division: privacy, ethical, and
legal considerations.

FIGURE 1 | Federated Learning Overview and two different approaches; 1-6 model exchange via a centralizedmodel store, A-D direct model exchange among the
participating sites.
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SECURITY AND PRIVACY OF THE MODEL
EXCHANGE CHALLENGES

Federated Learning was originally proposed as a method of
training machine learning models while preserving the privacy
of individual contributors. By design, the FL participants send
model updates rather than the entire dataset, but these updatesmay
reveal sensitive information. Therefore, the security and privacy of
the FL approaches have been studied extensively (Hitaj et al., 2017;
Beaulieu-Jones et al., 2018; Li et al., 2019). The primary goal is to
prevent malicious intended nodes of a FL implementation from
attacking the model to regenerate the training data of a contributor
to the model. Additionally, model updates from various
institutions must not carry patterns that reveal patients’ PHI.

The transmission of the bare-minimum information required
by the model should be set at the discretion of the FL developers
in order to limit the potential of PHI being intercepted by a
malicious actor (Gad, 2020). Exercising caution is a proactive
measure that is not computationally intensive. It would be
prudent to synchronize updated information, and disseminate
informal standards to proliferate throughout the FL community.
Correspondingly, harmonizing the updates so that they are sent
simultaneously will limit identification of an update with the
respective institution’s information (Rieke et al., 2020).

Fundamental privacy control in FL requires that data never
leave the local environment, and that the global model server
should receive updates of a local model. However, these local
updates are vulnerable to privacy attacks without adequate
protection. The main methods of protecting this information
in the FL process are global differential privacy, model
encryption, and secure multi-party computation (SMC).

Global differential privacy (GDP) is defined as a framework in
which an algorithm is considered differentially private only when
adding a singular instance into the training set does not cause a
statistically significant change to the algorithm’s output. With GDP,
one cannot conclude if any given singular data sample was used in
the model training process (Truex et al., 2019). GDP is the most
prevalent method of privacy protection due to its simple algorithmic
convenience, information guarantee, and relatively small overhead
cost (Li et al., 2020). GDP is accomplished by randomly perturbing
the parameters of the local model before aggregation and
incorporation into the global model. Including noise is the most
frequent type of perturbation, of which Gaussian Noise, Laplacian
Noise, and Binomial Noise are among the most popular candidates.

Another useful method of protecting participant information
in FL is model encryption. In this method, the parameters of the
global model are encrypted before being distributed to
participating institutions for local training. After local models
receive encrypted parameters, they return encrypted local
gradients. In some cases, local gradients are further perturbed.
The global model then aggregates all local gradients and decrypts
them to update the universal model (Xue et al., 2021).

Lastly, secure multi-party computation is a type of privacy
preservation method which requires that only a trusted number
of parties are permitted to obtain the output of a function using the
input of their own private data and are prevented from knowing
anything about the model other than this output (Truex et al., 2019).

One way to achieve such privacy is with homomorphic encryption,
where local model updates are masked and not decrypted for
aggregation. Trusted parties perform computations while the
model is encrypted, revealing no information about the global
model (Phong et al., 2018; Sav et al., 2020; Zhang et al., 2020).
Privacy-preserving platforms have been proposed that use a hashing
framework to represent patients across institutions with hash codes
rather than revealing information. Thismodel applies homomorphic
encryption to patient similarity searches (Lee et al., 2018). Despite its
potential benefit, the additional computational burden and having
insufficient supporting frameworks and libraries make
homomorphic encryption not easily implementable (Kim et al.,
2018).

Vulnerabilities of the Proposed Solutions
Although GDP and model encryption have made significant
progress in keeping patient data safe, utilizing either method
will not make FL models immune to privacy breaches. Figure 2
depicts the two main types of data leaks and privacy breaches in
federated learning, which are: inference during the learning process
and inference over the output (Truex et al., 2019). Inference during
the learning process is accomplished when a member of the
federation infers information about a participant of the local
model when the local model’s parameters are transferred to the
global model. In other words, this attack requires white-box access.
Hitaj et al. (2017) have used a Generative Adversarial Network
(GAN) to generate samples of participant data that are
indifferentiable to a discriminative model from the original
participant data used in model training including reconstructing
images. Such an attack might be used to de-identify patient data in
a medical application of FL (Hitaj et al., 2017).

Inference over the output takes place when a user has black-box
access to the predictive model. In this attack, a user compares
input and model output in order to infer if a particular sample
was used in the model training. Shokri et al. (2017) demonstrated
a Membership Inference Attack against a FL model with white-
box access by building an attack model that recognizes the
difference between output from data the model was trained on
versus data the model encountered for the first time. Such an
attack could expose information about patients used to train a
local or global FL model.

The underlying trend among FL models that suffer
inference over output privacy attacks is that the more
overfitted a model is, the more vulnerable it is.
Consequently, the more diverse the training set is, the
better it generalizes and subsequently is less likely an
inference over output will succeed (Shokri et al., 2017).

Research in preventative measures for security attacks focuses
on combining GDP, model encryption, and additional privacy
control features. GDP is used to combat inference over output
attacks, while model encryption prevents inference during the
learning process attacks by keeping model parameters
confidential. Enhancements to these main methods include:

1. Local differential privacy (LDP), a type of differential privacy,
where each data-supplying client perturbs information locally
and sends a randomized version to the global server,
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protecting both the client and server side from information
leakage (Wei et al., 2020)

2. Gradient-based learningmethods, in which gradient responses
are clipped to limit the influence of each on the overall update
(Li et al., 2020)

3. Selective parameter sharing, in which a fraction of an
asynchronous local update is communicated to the global
server (Shokri and Shmatikov, 2015)

4. Secure aggregation where only the weighted averages of the
update vectors from a random collection of one or more
contributors are used to update the global model–another
realization of SMC (Bonawitz et al., 2017; Bell et al., 2020).

5. Sparse vector technique, where a clipped and noisy component
of an update must fulfill a noisy threshold in order to be
included in the local update (Li et al., 2019)

6. Cyclical weight transfer, in which models are trained at one
institution at a time for a predetermined number of epochs
before being transferred to the subsequent institution
(eventually cycling back to the first institution) in order to
quantify and minimize the amount of information an
individual contributes (Beaulieu-Jones et al., 2018)

7. K-random sampling of clients to participate in each model
aggregation (Wei et al., 2020)

It is important to note that there exists an inherent trade-off
between data perturbation and model accuracy. Adding more noise
with GDP results in greater confidentiality, but may significantly
compromise the model’s predictive accuracy (Truex et al., 2019).

Researchers have used combinations of the methods above in order
to reduce the amount of noise necessary to satisfy the definition of
GDP. For instance, Truex et al. (2019) combined SMC with GDP to
reduce noise and improve model efficiency and accuracy by
requiring each trusted party to add noise to encrypted responses
before communicating them to the aggregator.

Securing complete privacy in FL remains questionable, as
researchers have been able to develop successful attack models
that leak PII (Hitaj et al., 2017; Shokri et al., 2017). In the case of
healthcare data, it is essential to eliminate the potential of privacy
breaches as such data is especially sensitive.

ETHICAL PERSPECTIVES

Ethical behavior has long been an integral aspect of the practice of
medicine, with Hippocrates enshrining the notion of medical ethics
in his seminal works (Bujalkova, 2001). The numerous technical
challenges of FL discussed oftentimes have multiple solutions, and
part of the decision-making calculus necessitates the inclusion of
ethics in order to respect the humanity of the patients that healthcare
workers seek to heal. Consistent conversation about the ethical
foundation will enable a culture of respect that prioritizes the
patient and their human rights (Markose et al., 2016).

Professional societies such as the American College of
Radiology (ACR), along with several other U.S. and
international radiology organizations, have released an
exemplary consensus and guidance document on the

FIGURE 2 | Privacy vulnerabilities in federated learning processes.
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importance of developing ethical standards for ML (Geis et al.,
2019). Toolkits such as the ACR’s AI-LAB that promote a
vendor-neutral framework to develop algorithms based on
patient populations may also allow extensibility of algorithms
(Allen et al., 2019). Even supranational organizations such as the
United Nations have begun discussing the intersection of AI,
ethics, and health, striving to establish a “Global Dialogue” for
these newly recognized concerns (Azoulay, 2019). The WHO has
recently released a guideline from various industry experts,
academics, and public sector officials with an emphasis on the
protection of human autonomy, equity, transparency, and
sustainability which is indicative of a greater trend by the UN
to encourage mindfulness in regard to ML (WHO, 2021).

Potential biases that may arise due to disproportionate
representation of minority groups is one of the endemic
problems that arise from current ML, commonly referred to as
“Algorithmic Discrimination” (Köchling andWehner, 2020). For
example, Google’s facial recognition algorithm was widely
criticized for its appalling identification of Black people as
apes in 2015; they promptly “fixed” the issue by preventing
the algorithm from classifying gorillas (Mulshine, 2015). Even
6 years later, ML still presents problems in healthcare, with
melanoma detection algorithms being primarily trained on
light-skinned individuals; Black people, while less likely to
develop melanoma, are more likely to die from it (Noor, 2020).

LEGAL CONSIDERATIONS

Due to variations in legal definitions and corresponding regulatory
frameworks, the clinically focused applications [e.g., Clinical Decision
Support (Guidance, 2019), diagnostic tools] have additional
requirements set forth by the Food and Drug Administration
(FDA). The United States presently lacks the requisite federal
legislation to prudently govern the use of PII in relation to
Artificial Intelligence, and consequently, FL. While there is an
initiative on the part of private corporations towards establishing
guidelines, ML and FL are not thoroughly regulated. This is partially
due to the relative novelty of modern ML as well as the difficulty of
establishing efficacious legislation on a rapidly developing technology.

The two prior administrations in the United States, (the
Obama and Trump Administrations) saw, for the first time in
2016, the executive branch provide insight into the burgeoning
field of administering artificial intelligence (Technology
NSaTCCo, 2016; Policy TWHOoSaT, 2018). While the two
administrations inevitably differ on their objectives in regard
to policy, these directives are indicative of a greater trend towards
legislating AI with greater frequency. Congress has also passed
legislation involving AI, however, the lion’s share was directed
towards autonomous vehicles or the Department of Defense and
not AI in the healthcare sector (Caribbean RoAITAat, 2021).

HIPAA, which was initially enacted in 1996, and the Health
Information Technology for Economic and Clinical Health Act
(HITECT) of 2009 have permeated every aspect of healthcare.
While comprehensive for the time, AI and FL as a subset pose sui
generis concerns, which necessitate an update to factor in the
proliferation of ML in healthcare (Cohen Healthcare, 2021). A

myriad of entities such as the Center for Open Data Enterprise
and the Department of Health and Human Services have
published roundtable reports, which proposed numerous
recommendations of action in regards to the intersection of
PHI and AI (Enterprise TCfOD, 2019). Leveraging expertise
and the experience gained from the incorporation of ML into
healthcare as well as inspiration from the European Union’s (EU)
laws will be critical in updating HIPAA after 25 years.

Other issues that are inherent in ML currently are: lack of
transparency for algorithms, lack of contestability for non-
optimal results, the legal status of AI with questions of
“personhood,” and correspondingly, a lack of accountability
for damage that may arise from the algorithm (Rodrigues,
2020). Matters of liability for damages form an ancient pillar
of the law and are continuously contested. AI is no exception. In
the case of ML algorithms, the damage is not directly attributable
to the algorithm itself as it is not considered a “person” and thus
provides complications for a claimant seeking to extract
compensation from a liable party. In the case of FL, if, as a
result of the model revealing some form of PHI through reverse
engineering, it would be considerably more difficult to establish
the culpable party amongst multiple institutions. A potential
solution, as Hallevy would suggest, would be to hold AI
accountable in a similar vein to corporations and propose
different punishments for these entities (Hallevy, 2015).

In Vitro Diagnostic and Clinical Decision
Support
It is critical to have rigorous change protocols and data
provenance for algorithm modifications to ensure safety and
provide transparency to users during updates to algorithms in
real-world clinical settings. However, these may not be routinely
implemented.While ML-based CDS tools can assist in automated
detection, classification, or reporting, safeguards are essential to
support decision-making and to proactively mitigate potential
errors that may arise from these complex systems. Model updates
should be kept minimal for the ML models for CDS or similar
clinical use. For instance, the “black-box” nature of many ML
algorithms makes interpretation and benchmarking performance
difficult. To improve algorithm transparency, Price et al.
proposed a three-step framework for validating “black-box”
algorithms, which involves: 1) having high quality training
data and development procedures, 2) testing algorithm
performance against independent test data, and 3) evaluating
performance continuously (Price, 2018).

The FDA has released several policies to ensure safe and
effective use of ML-based software for medical purposes,
including regulatory frameworks for software as a medical
device (SaMD, 2019), clinical decision support (Guidance,
2019), and a pre-certification program (FDA, 2021).

CONTRIBUTION EQUITY

When two institutions are training a singleMLmodel, there exists
a tradeoff between the privacy of the data and the joint effort of
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model development (Rieke et al., 2020). Because the training data
will be decentralized it would be beneficial to have them
coordinate on tasks such as harmonizing data. A potential
solution towards the matter of privacy that arises from having
a decentralized set of data is to limit the number of coordinators
or to decline consuming data not explicitly related to the model.

Machine learning algorithms may be profitable once validated
and implemented such as CDS. Within a FL framework, the unique
nature of having the data separated entails concern about an
equitable distribution of profit. Shapley values are a well-
established method for determination of equitable payoff, yet in
FL they pose a computationally prohibitive and horizontally limited
applicability due in part to its lack of ability to be extrapolated
(Huang et al., 2020; Wang et al., 2020). Yet, the nature of FL does
warrant an evaluation of the utility it poses as well as any derivative
models that can be created such as FedCoin (Liu et al., 2020).
Essentially, in the case of two entities, if one of them supplies data
that is less desirable (such as incomplete or plentiful data) and the
other entity provides more heterogenous and usable data, deciding
the value of each contribution is vital. Due to the critical nature of
data within the healthcare sector, vigilance regarding efficacious
incentivization of data is invaluable. Predetermined measurements
should be agreed upon in a contractual arrangement by the parties
that will take part in a FL project to mitigate any disputes or issues
thatmay arise from this situation. To avoid difficulty thatmay occur,
it could prove beneficial for a standard to be agreed upon for
proportionally dividing up the profit depending on prospective
criteria, namely the completeness, heterogeneity, quantity,
conformance, and provenance of data. (Rieke et al., 2020).

Conceptual Considerations for Assessing
Data Contribution
We propose a conceptual model and the below equation that, we
believe, can be employed to gauge levels of involvement in a FL
framework. Due to the unique and distributed nature of FL, it
would be advantageous to have a standard evaluation strategy for

purposes such as determining remuneration for the decisively
engaging factor of data. This model was partially inspired by the
Gini Coefficient [Gini Index (2008). The Co, 2008], which
determines income inequality; with influence from the
Sørensen–Dice Coefficient as a way to determine the relative
value of the data from its’ similarity (Figure 3). The least
similarity would be viewed favorably and incentivized
accordingly. Even though the Information Gain Function
could be considered as an alternative, Raileanu et al. have
proved that the Gini Coefficient only disagrees by 2% with
Information Gain in all cases (Raileanu and Stoffel, 2004).
Through establishment of a model in which the data is
evaluated for its’ heterogeneity, the greatest differences will be
incentivized and prioritized as opposed to data with a more
uniform quality. In a similar vein, we advocate the determination
of the level of participation via data contribution. Prioritizing
timeliness while emphasizing the importance of data is a
philosophy which enables institutions to be ethical stewards
while not sacrificing speed to have the participants focus on
the main effort of research as opposed to extensive contractual
negotiation and timely calculations.

Mi � Model development contribution level of ith site: Mi ε
R � [0,1]
Di � Data contribution level of ith site: Di ε R � [0,1]
N� Number of data records in a FL framework

Model Contribution of ith node � Mi

∑
n
i�0Mi

. (1)

DataContribution of ith node � Di

N
. (2)

Our test case employed the Breast Cancer Wisconsin
Dataset1, which consists of 569 records and the 30 features
include radius, worst concave points etc. We randomly split
the dataset into two institutions to simulate a FL cooperation;
institution 1 possesses 227 records and institution 2 has 342 to
mimic a horizontal FL operation. Initially, we have calculated
the Sørensen–Dice Coefficient: institution 1: 0.712854305 and
institution 2: 0.728524045 and computation took 0.007 and
0.004 s respectively. Table 1 shows normalized Sørensen–Dice
Coefficients and percentage of record/patient population by
each institution. The Sørensen–Dice model provides a far
simpler and computationally inexpensive approach for
evaluation of both datasets with regards to a horizontal
FL model.

FIGURE 3 | Gini representation based on model contribution and data
population.

TABLE 1 | Sørensen–Dice Coefficient calculated model contribution percentage
and percent population contribution.

Population Model contribution

Institution 1 0.49456432 0.39894552
Institution 2 0.50543568 0.60105448

1https://scikit-learn.org/stable/datasets/toy_dataset.html
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Additionally, we have run Logistic Regression (LR) across the
“institutions” and feature importance for the LR Coefficients
(Figure 4A) and Shapley Values for the same LR model

(Figure 4B). It should be noted that features have varying
levels and orders of importance for both approaches.
Furthermore, it took 1.401 s per record (i.e., 797.169 s) for the

FIGURE 4 | (A) Logistic Regression Feature Importance, (B) Shapley Values for the same dataset and ML model.
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computation in this relatively smaller dataset. The Shapley values,
while traditionally seen as an appealing method due in part to its
familiarity, faces limitations regarding the computational burden
that it places as well as the limited applicability to horizontal FL
operations which have been widely used within the healthcare
focused FL implementations (Molnar, 2019).

Data Contribution Considerations (Di)
The initial and possibly one of the most important steps after
identifying a realistic problem, is data collection. Although
nowadays healthcare systems collect more data than ever, data
capture and the way data are stored varies considerably,
presenting a non-trivial challenge. Virtuous management
and collection of data is a prerequisite for the ethical
responsibilities an institution possess towards its’ patients
with the WHO advocating for accountability and
mindfulness for integration of ML in healthcare (WHO,
2021). Similarly, without conscious adherence towards legal
obligations, a model trained may yield an algorithm which is
discriminatory and thus a violation of different laws such as
the Equal Protection Clause, however, more precise legislation
is needed to be more comprehensive and effective against
instances of discrimination (Li, 2021). The Shannon’s
Information Theory (Entropy) (Shannon, 1948) could be
one of the quantification models that may work for data
contribution assessment purposes. The components are:

Data Completeness: The completeness of data provides an analysis
of the data and for any absences within it, irrespective of the values
that are present. Functionally, Data Completeness is an important
measure for the conformity of the model (Kahn et al., 2016).

Data Heterogeneity: We sought to include Data Heterogeneity
as one of the principal components for determining Data
Contribution due to the significant legal and ethical issues of
Algorithmic Discrimination present in ML. In essence,
institutions with greater diversity in the data that they
contribute will be rewarded, with the hope that this will
encourage further inclusion of minority and marginalized
populations. The Sørensen–Dice Coefficient (Sørensen, 1948)
could be used here to determine the similitude of the data as
demonstrated by Table 1 and Figure 3.

Data Quantity: The amount of data to be used in the model
training and validation (e.g., number of records or number of
patients etc.).

Data Conformance to the Model: Conformance in conjunction
with Completeness will ensure that the data will comply with the
standards required by the model to ensure the usability of the data.
The three subcategories are value conformance, relational
conformance, and computational conformance all of which are
invaluable in reliable and successful utilization of the model.

Data Provenance: Provenance in this framework refers to the
lineage of data. The data possessing proper documentation is
conducive to many institutions’ commitment to transparency in
the healthcare field. Data provenance is particularly important for
those MLmodels that will seek FDA approval/certification. The FDA
would like to ensure that the source and provenance information
around each ML result are properly captured, recorded, and carried
along with the associated data.

Other Factors
There are numerous other considerations that we did not include in
themodel due to the extreme variability of the following factors: Data
Extraction and Preparation Cost. Additionally, model development
cost which refers to the labor and efforts behind the creation of the
algorithm is an important yet highly fluid factor which demands
extensive exploration in its own right. Notwithstanding, the
aforementioned are all dependent upon the specific circumstances
of the institution and will contribute to volatility in determining
equity. For example, Data Extraction Costs for one institutionmay be
extensive whereas another institution may be able to have data for
free. We do not want to penalize institutions for similarly volatile
scenarios and will thus omit them.

CONCLUSION

Establishing an agreed upondefinition of data privacy between each of
the collaborating parties is critical in order to standardize potentially
incongruous definitions or privacy expectations. Reducing the risk of
conflict with this synchronization will benefit the FL project as a
whole. An alternative could also be to have each of the n institutions
officially accept and agree upon their respective institutions’
definitions instead of working to establish a wholly new one for
the purposes of this temporary FL project.

Additionally, it would prove beneficial to share the details of the
collaboration with the Data Privacy Officer as well as informing them
of their respective institutions’ responsibilities within the FL
framework so that they may be better able to judge the specific
circumstances of the project. The Chief Privacy Officer should be
consulted even in institutions when the only contribution will be
computational resources or the model. Furthermore, establishing a
dialogue between the Institutional Review Board (IRB) of respective
entities as well as researchers planning to conduct a FL project is
critical to the efficacy of the project and the fulfilment of the hospital’s
responsibility for their data. FL is a novel application of ML with
significant advantages, while posing justifiable concerns for IRBs.
Unfortunately, there is oftentimes a disconnect between the
researchers and the IRBs that can be remedied through
communication and mutual understanding. In the case of a FL
proposal, it would behoove the researchers to demonstrate that
their study will align with the aims of the IRB in protecting the
PHI of their patients (Lee et al., 2016).

We have chosen to emphasize the data aspect of the FL process as
it presents a crucial component of research due to it involving the PII
or PHI of patients and being a focal point for legal and ethical risks.
Novel and synergetic implementations of FL and contribution equity
evaluations -such as the popularization of blockchain technology-in
the future may see the paradigm shift towards enabling further
adherence to Shapley, yet the simplicity and relative speed of the
Gini-influenced Sørensen–Dice Coefficient can be beneficial for
potential preliminary proposals or in situations where the
rapidity of the system is an acceptable tradeoff for a less detailed
system. Shapley values as they stand are not feasible to implement
due to being far too computationally expensive.

The proposed model enables participants in a FL collaboration
to transparently ascertain contribution in terms of providing data
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and corresponding feature importance. Quantifying the
cooperation between distinct entities provides a noteworthy
approach to ease friction that may otherwise occur regarding
proper division of financial gain and accountability. However, the
model does not account for highly variable computing and data
acquisition costs, as the insertion of these considerations would
merit further study. Notwithstanding, measuring contribution
will prove invaluable and greatly aid the growth of this technology
as it reduces a contentious barrier to entry.
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