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The human-agent team, which is a problem in which humans and autonomous agents
collaborate to achieve one task, is typical in human-AI collaboration. For effective
collaboration, humans want to have an effective plan, but in realistic situations, they
might have difficulty calculating the best plan due to cognitive limitations. In this case,
guidance from an agent that hasmany computational resourcesmay be useful. However, if
an agent guides the human behavior explicitly, the human may feel that they have lost
autonomy and are being controlled by the agent. We therefore investigated implicit
guidance offered by means of an agent’s behavior. With this type of guidance, the
agent acts in a way that makes it easy for the human to find an effective plan for a
collaborative task, and the human can then improve the plan. Since the human improves
their plan voluntarily, he or she maintains autonomy. We modeled a collaborative agent
with implicit guidance by integrating the Bayesian Theory of Mind into existing
collaborative-planning algorithms and demonstrated through a behavioral experiment
that implicit guidance is effective for enabling humans to maintain a balance between
improving their plans and retaining autonomy.

Keywords: human-agent interaction, collaborative agent, human autonomy, theory of mind, POMDP

1 INTRODUCTION

When humans work in collaboration with others, they can accomplish things that would be difficult
to do alone and will often achieve their goals more efficiently. With the recent development of
artificial intelligence technology, the human-agent team, in which humans and AI agents work
together, has become an increasingly important topic. The role of agents in this problem is to
collaborate with humans to achieve a set task.

One type of intuitive collaborative agent is the supportive agent, which helps a human by
predicting the human’s objective and planning an action that would best help achieve it. In recent
years, there have been agents that can plan effectively by inferring human subgoals for a partitioned
problem based on the Bayesian Theory of Mind (Wu et al., 2021). Other agents perform biased
behavior for generic cooperation, such as communicating or hiding their intentions (Strouse et al.,
2018), maximizing the human’s controllability (Du et al., 2020), and so on. However, these agents
cannot actually modify the human’s plan, which means the ultimate success or failure of the
collaborative task depends on the human’s ability to plan. In other words, if the human sets the
wrong plan, the performance will suffer.

In general, humans cannot plan optimal actions for difficult problems due to limitations in their
cognitive and computational abilities. Figure 1 shows an example of a misleading human-agent team
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task as one such difficult problem. The task is a kind of pursuit-
evasion problem. The human and the agent aim to capture one of
the characters (shown as a face) by cooperating together and
approaching the character from both sides. In Figure 1A, there
are two characters, 1) and (2), on the upper and lower roads,
respectively. Since 1) is farther away, 2) seems to be a more
appropriate target. However, 2) cannot be captured because it can
escape via the lower bypath. On the other side, in Figure 1B, the
agent and the human can successfully capture 2) because it is
slightly farther to the left than in Figure 1A. Thus, the best target
might change due to a small difference in a task, and this can be
difficult for humans to judge.

One naive approach to solving such a problem is for the agent
to guide the human action toward the optimal plan. Since agents
generally do not have cognitive or computational limitations,
they can make an optimal plan more easily than humans. After
an agent makes an optimal plan, it can explicitly guide the
human behavior to aim for a target. For example, there is an
agent that performs extra actions to convey information to
others with additional cost (Kamar et al., 2009), where it first
judges whether it should help others by paying that cost. As such
guidance is explicitly observable by humans, we call it explicit
guidance in this paper. However, if an agent abuses explicit
guidance, the human may lose their sense of control regarding
their decision-making in achieving a collaborative task—in
other words, their autonomy. As a result, the human may
feel they are being controlled by the agent. For example, in
Human-Robot Teaming, if the robot decides who will perform
each task, the situational awareness of the human will decrease.
(Gombolay et al., 2017).

To reduce that risk, agents should guide humans while
enabling them to maintain autonomy. We focus on implicit
guidance offered through behavior. Implicit guidance is based
on the cognitive knowledge that humans can infer the intentions
of others on the basis of their behaviors (Baker et al., 2009) (Baker
et al., 2017). The agent will expect the human to infer its
intentions and to discard any plans that do not match what
they infer the agent to be planning. Under this expectation, the
agent acts in a way that makes it easy for the human to find the
best (or at least better) plan for optimum performance on a
collaborative task. Implicit guidance of this nature should help
humans maintain autonomy, since the discarding of plans is a
proactive action taken by the human.

Figure 2A is an example of explicit guidance for the problem
in Figure 1. The agent guides the human to the best target directly
and expects the human to follow. Figure 2B is an example of
implicit guidance.When the agent moves upward, the human can
infer that the agent is aiming for the upper target by observing the
agent’s movement. Although this is technically the same thing as
the agent showing the target character explicitly, we feel that in
this case humans would feel as though they were able to maintain
autonomy by inferring the agent’s target voluntarily.

In this work, we investigate the advantages of implicit
guidance. First, we model three types of collaborative agent: a
supportive agent, an explicit guidance agent, and an implicit
guidance agent. Our approach for planning the agents is based on
partially observable Markov decision process (POMDP)
planning, where the unobservable state is the target that the
human should aim for and a human’s behavior model is included
in the transition environment. Our approach is simple, in

FIGURE 1 | Example of complex human-agent team task.

FIGURE 2 | Example of agent with guidance.
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contrast to the more complex approaches such as interactive
POMDP (I-POMDP) (Gmytrasiewicz and Doshi, 2005), which
can model bi-directional recursive intention inference infinitely.
However, as there are studies indicating that humans have
cognitive limitations (De Weerd et al., 2013) (de Weerd et al.,
2017) regarding recursive intention inference, such a model
might be too complex for the representation and not intuitive
enough.

For our implicit guidance agent, we add to the POMDP
formulation the factor that the human infers the agent’s target
and changes their own target. This function is based on a cognitive
science concept known as the Theory of Mind. Integrating a
human’s cognitive model into the state transition function is
not uncommon: it has been seen in assertive robots (Taha et al.,
2011) and in sidekicks for games (Macindoe et al., 2012). Examples
that are closer to our approach include a study on collaborative
planning (Dragan, 2017) using legible action (Dragan et al., 2013)
and another on human-aware planning (Chakraborti et al., 2018).
These are similar to our concept in that an agent expects a human
to infer its intentions or behavioral model. However, these
approaches assume that a human does not change their goal
and they do not guide the human’s goal to something more
preferable. In terms of more practical behavior models, there
have been studies on integrating a model learned from a
human behavior log(Jaques et al., 2018; Carroll et al., 2019).
However, this approach requires a huge number of interaction
logs for the human who is the partner in the collaborative task. Our
approach has the advantage of “ad-hoc” collaboration (Stone et al.,
2010), which is collaboration without opponent information held
in advance. We also adopt the Bayesian Theory of Mind. In the
field of cognitive science, several studies have investigated how
humans teach others their knowledge, and the Bayesian approach
is often used for this purpose. For example, researchers have used a
Bayesian approach to model how humans teach the concept of an
item by showing the item to learners (Shafto et al., 2014). In
another study, a Bayesian approach was used to model how
humans teach their own behavioral preferences by giving a
demonstration (Ho et al., 2016). Extensive evidence of this sort
has led to many variations of the human cognitive model based on
the Bayesian Theory of Mind, such as those for ego-centric agents
(Nakahashi and Yamada, 2018; Pöppel and Kopp, 2019) and
irrational agents (Zhi-Xuan et al., 2020), and we can use it too,
for extending our algorithm. Of course, there are other theories of
the Theory of Mind. For example, the Analogical Theory of Mind
(Rabkina and Forbus, 2019) tries to model the Theory of Mind
through the learning of structural knowledge. One advantage of the
Bayesian Theory ofMind is that it is easy to calculate behaviors that
people can guess simply by developing a straightforward Bayesian
formula. That works to our advantage when it comes to efficient
“ad-hoc” collaboration.

To evaluate the advantages of implicit guidance, we designed a
simple task for a human-agent team and used it to carry out a
participant experiment. The task is a pursuit-evasion problem
similar to the example in Figure 1. There are objects that move
around in a maze to avoid capture, and the participant tries to
capture one of the objects through collaboration with an
autonomous agent. We implemented the three types of

collaborative agent discussed above for the problem, and
participants executed small tasks through collaboration with
these agents. The results demonstrated that the implicit guidance
agent was able to guide the participants to capture the best object
while allowing them to feel as though they maintained autonomy.

2 METHODS

2.1 Computational Model
2.1.1 Collaborative Task
We model the collaborative task as a decentralized partially
observable Markov decision process (Dec-POMDP) (Goldman
and Zilberstein, 2004). This is an extension of the partially
observable Markov decision process (POMDP) framework for
multi-agent setups that deals with a specific case in which all
agents share the same reward function of a partially observable
stochastic game (POSG) (Kuhn and Tucker, 1953).

Dec-POMDP is defined in the format < I ,S,A,Ω, T, R, O> ,
where I is a set of agents, S is a set of states, A is a set of actions,
and Ω is a set of observations. T: S ×A→S is a transition
function. R: S ×A→R is a reward function. O: S ×A ×
Ω→ [0, 1] is observation emission probabilities.

In our setting, I consists of an agent and a human {iA, iH}, soA
consists of a human action and an agent action; thus, it can be
represented as AA ×AH. Inspired by MOMDP (Ong et al., 2010),
we factorize S into observable factor O as the position of the agent
and the human, and the unobservable factor is the target, which
formally defines the human’s goal for the task as S � O × Θ. As a
result, observations become equal to the observable factors of states,
formally, Ω � O, and T can be factorized into observable state part
TO: O ×Ah ×Aa →O and unobservable state part TΘ: S→Θ.

2.1.2 Agent Planning
We formalize the planning problem to calculate the actions of an
agent for the collaborative task problem described above. In this
formalization, the action space focuses only on the agent’s action,
and the target can be changed only by the human through the
observation of the actions of the agent. Furthermore, we integrate
a human policy for deciding human action into the transition
function. As a result, the agent planning problem is reduced to
POMDP (Kaelbling et al., 1998), which is defined in the format
<S,A,Ω, T, R, O> . Here, we set A � AA and
TΘ � TΘ: S ×AA →Θ. In addition, we define the human
policy function πH: O ×AA × Θ→AH. We assume that
humans will change their target by observing the actions of
agents and then decide their own actions. Thus, the policy
function requires agent actions as input.

We assume that the human policy is based on Boltzmann
rationality:

p(aH|o, aA; θ) � exp(β1Q(o, aA, aH; θ))
∑θ′∈Θ exp(β1Q(o, aA, aH; θ′))

(1)

where β1 is a rational parameter and Q (o, aA, aH; θ) is the action
value function of the problem given θ. Θ is the only unobservable
factor for the states, so the problem reduces into MDP given Θ.
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Thus, we can calculate Q (o, aA, aH; θ) by general MDP planning
such as value iteration.

On the basis of this formulation, we formulate a planning
algorithm for the three collaborative agents. The difference is the
human policy function, which represents an agent’s assumption
toward human behavior. This difference is what makes the
difference in the collaborative strategy.

2.1.2.1 Supportive Agent
The supportive agent assumes that humans do not change their
target regardless of the agent’s action. That is,
TΘ: p(θ′|o, θ, aA) � I(θ � θ′). I is an indicator function.

2.1.2.2 Explicit Guidance Agent
The explicit guidance agent guides the human toward the best
target; thus, it assumes that the human knows what the best target
is. We represent the best target as θ*, that is, TΘ: p (θ′|o, θ, aA) �
θ*. The best target is calculated as θ* � argmaxθ′∈ΘV (o0; θ), where
o0 is the initial observable state and V (o; θ) is the state value
function of the problem given θ.

2.1.2.3 Implicit Guidance Agent
The implicit guidance agent assumes that humans change their
target by observing the agent’s actions. We assume that humans
infer the target of the agent on the basis of Boltzmann rationality,
as suggested in earlier Theory of Mind studies (Baker et al., 2009)
(Baker et al., 2017).

P(θ′|o, θ, aA)∝P(θ)P(aA|o, θ) (2)

P (aA|o, θ) is also based on Boltzmann rationality:

p(aA|o; θ) � exp(β2V(TO(aA); θ))
∑aA′∈AA

exp(β2V(TO(aA′); θ)) (3)

where β2 is a rational parameter and V(TO(aA′ ); θ) is the state
value function of the problem regarding the state after aA given θ.

2.1.3 Decide Agent Actions
By solving POMDP as shown in 2.1.2 using a general POMDP
planning algorithm, we can obtain an alpha-vector set
conditioned with the observable factor of the current state
regarding each action. We represent this as Γa(o), and the
agent takes the most valuable action a*A. Formally,

apA � argmaxaA∈AA max(b · Γa(o)) (4)

where b is the current belief of an unobservable factor. b is
updated on each action of a human and an agent as follows for
each unobservable factor of belief b(θ):

b(θ)∝ b(θ)p(aH|o, aA; θ) (5)

The initial belief is Uniform(Θ) for the supportive and implicit
guidance agents and I(θ � θ*) for the explicit guidance agent.

2.2 Experiment
We conducted a participant experiment to investigate the
advantages of the implicit guidance agent. This experiment

was approved by the ethics committee of the National
Institute of Informatics.

2.2.1 Collaborative Task Setting
The collaborative task setting for our experiment was a pursuit-
evasion problem (Schenato et al., 2005), which is a typical type of
problem used for human-agent collaboration (Vidal et al., 2002;
Sincák, 2009; Gupta et al., 2017). This problem covers the basic
factors of collaborative problems, that is, that the human and
agent move in parallel and need to communicate to achieve the
task. This is why we felt it would be a good base for understanding
human cognition.

Figure 3 shows an example of our experimental scenario.
There are multiple types of object in a maze. The yellow square
object labeled “P” is an object that the participant can move, the
red square object labeled “A” is an object that the agent can move,
and the blue circle objects are target objects that the participant
has to capture. When participants move their object, the target
objects move, and the agent moves. Target objects move to avoid
being captured, and the participant and the agent know that.
However, the specific algorithm of the target objects is known
only by the agent. Since both the participants and the target
objects have the same opportunities for movement, participants
cannot capture any target objects by themselves. This means they
have to approach the target objects from both sides through
collaboration with the agent, and the participant and the agent
cannot move to points through which they have already passed.
For this collaboration, the human and the agent should share with
each other early on which object they want to capture. In the
experiment, there are two target objects located in different
passages. The number of steps needed to capture each object
is different, but this is hard for humans to judge. Thus, the task
will be more successful if the agent shows the participant which
target object is the best. In the example in the figure, the lower
passage is shorter than the upper one, but it has a path for escape.
Whether the lower object can reach the path before the agent can
capture it is the key information for judging which object should
be aimed for. This is difficult for humans to determine instantly
but easy for agents. There are three potential paths to take from
the start point of the agent. The center one is the shortest for each
object, and the others are detours for implicit guidance. Also, to

FIGURE 3 | Example of experiment.
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enhance the effect of the guidance, participants and agents are
prohibited from going backward.

2.2.1.1 Model
We modeled the task as a collaborative task formulation. The
action space corresponds to an action for the agent, and the
observable state corresponds to the positions of the participant,
agent, and target objects. The reward parameter is conditioned on
the target object that the human aims for. The space of the
parameter corresponds to the number of target objects, that is, |Θ|
� 2. The reward for capturing a correct/wrong object for θ is 100,
–100, and the cost of a one-step action is –1. Since a go-back
action is forbidden, we can compress multiple steps into one
action for a human or an agent to reach any junction. Thus, the
final action space is the compressed action sequence and the cost
is –1 × the number of compressed steps. Furthermore, to prohibit
invalid actions such as head to a wall, we assign such action a
–1,000 reward. We modeled three types of collaborative agent, as
discussed above: a supportive agent, an explicit guidance agent,
and an implicit guidance agent. We set the rational parameters as
β1 � 1.0, β2 � 5.0, and discount rate is 0.99.

2.2.1.2 Hypothesis
The purpose of this experiment was to determine whether
implicit guidance can guide humans while allowing them to
maintain autonomy. Thus, we tested the following two
hypotheses.

• (H1) Implicit guidance can guide humans’ decisions toward
better collaboration.

• (H2) Implicit guidance can help humans maintain
autonomy more than explicit guidance can.

2.2.1.3 Tasks
We prepared five tasks. Two of these tasks, as listed below, were
tricks to make it hard for humans to judge which would be the
best target. All tasks are shown in the Supplementary Material.

• (A) There were two winding passages with different but
similar lengths. There were three tasks for this type.

• (B) As shown in Figure 3, there was a long passage and a
short one with a path to escape. There were two tasks for
this type.

2.2.1.4 Participants
We recruited participants for this study from Yahoo!
Crowdsourcing. The participants were 100 adults located in
Japan (70 male, 24 female, 6 unknown). The mean age of
participants who answered the questionnaire we administered
was 45 years.

2.2.1.5 Procedure of Experiment
Our experiment was based on a within-subject design and
conducted on the Web using a browser application we created.
Participants were instructed on the rules of the agent behavior
and then underwent a confirmation test to determine their degree
of understanding. Participants who were judged to not have

understood the rules were given the instructions again. After
passing this test, participants entered the actual experiment
phase. In this phase, participants were shown the environment
and asked “Where do you want to go?” After inputting their
desired action, both the agent and the target objects moved
forward one step. This process was continued until the
participants either reached a target object or input a certain
number of steps. When each task was finished, participants
moved on to the next one. In total, participants were shown
17 tasks, which consisted of 15 regular tasks and two dummy
tasks to check whether they understood the instructions. Regular
tasks consisted of three task sets (corresponding to the three
collaborative agents) that included five tasks each (corresponding
to the variations of tasks). The order of the sets and the order of
the tasks within each set were randomized for each participant.
After participants finished each set, we gave them a survey on
perceived interaction with the agent (algorithm) using a 7-point
Likert scale.

The survey consisted of the questions listed below.

1. Was it easy to collaborate with this agent?
2. Did you feel that you had the initiative when working with this

agent?
3. Could you find the target object of this agent easily?
4. Did you feel that this agent inferred your intention?

Item two is the main question, as it relates to the perceived
autonomy we want to confirm. The additional items are to prevent
biased answers and relate to other important variables for human-
agent (robot) interaction. Item one relates to perceived ease of
collaboration, namely, the fluency of the collaboration, which has
become an important qualitative variable in the research on
Human–Robot Interaction in recent years (Hoffman, 2019).
Item three relates to the perceived inference of the agent’s
intentions by the human. It is one of the variables focused on
the transparency of the agent, which plays a key role in
constructing human trust in an agent (Lewis et al., 2021). From
the concrete algorithm perspective, a higher score is expected for
guidance agents (especially explicit guidance agents) than for
supportive agents. Item four relates to the perceived inference
of the human’s intentions by the agent. This is a key element of the
perceived working alliance (Hoffman, 2019), and when it is
functioning smoothly, it increases the perceived adaptivity in
human-agent interaction. Perceived adaptivity has a positive
effect on perceived usefulness and perceived enjoyment (Shin
and Choo, 2011). From the concrete algorithm perspective, a
higher score is expected for agents without implicit guidance
(especially supportive agents) than for implicit guidance agents.

3 RESULTS

Before analyzing the results, we excluded any data of participants
who were invalidated. We used dummy tasks for this purpose,
which were simple tasks that had only one valid target object. We
then filtered out the results of participants (a total of three) who
failed these dummy tasks.
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3.1 Results of Collaborative Task
Figure 4 shows the rate at which participants captured the best
object that the agent knew. In other words, it is the success rate of
the guidance of the agent based on any of the given guidance. We
tested the data according to the standard process for paired
testing. The results of repeated measures analysis of variance
(ANOVA) showed that there was a statistically significant
difference between the agent types for the overall tasks (F (2,
968) � 79.9, p � 7.4e − 33), task type (A) (F (2, 580) � 55.9, p �
5.9e − 23), and task type (B) (F (2, 386) � 24.7, p � 7.5e − 11). We
then performed repeated measures t-tests with a Bonferroni
correction to determine which two agents had a statistically
significant difference. “**” in the figure means there were
significant differences between the two scores (p ≪ 0.01). The
results show the average rate for the overall tasks, task type (A),
and task type (B). All of the results were similar, which
demonstrates that the performances were independent of the
task type. The collaboration task with the supportive agent clearly
had a low rate. This indicates that the task was difficult enough
that participants found it hard to judge which object was best, and
the guidance from the agent was valuable for improving the
performance on this task. These results are strong evidence in
support of hypothesis H1. As another interesting point, there was
no significant difference in the rate between implicit guidance and
explicit guidance. Although we did not explain implicit guidance
to the participants, they inferred the agent’s intention anyway and
used it as guidance. Of course, the probable reason for this is that
the task was so simple participants could easily infer the agent’s
intentions. However, the fact that implicit guidance is almost as
effective as explicit guidance in such simple tasks is quite
impressive.

3.2 Results for Perceived Interaction With
the Agent
Figure 5 shows the results of the survey on the effect of the agent
on cognition. The results of repeated measures ANOVA showed

that there was a statistically significant difference between the
agent types for perceived ease of collaboration (F (2, 192) � 29.8,
p � 5.4e − 12), perceived autonomy (F (2, 192) � 36.4, p � 4.1e −
14), and perceived inference of the human’s intentions (F (2, 192)
� 49.7, p � 4.0e − 18). In contrast, there was no statistically
significant difference for survey item perceived inference of
agent’s intentions (F (2, 192) � 1.8, p � 0.167). We then
performed repeated measures t-tests with a Bonferroni
correction to determine which two agents had a statistically
significant difference regarding variables that has a significant
difference. “**” in the figure means there were significant
differences between the two scores (p ≪ 0.01). The most
important result here is the score of perceived autonomy.
From this result, we can see that participants felt they had
more autonomy during the tasks when collaborating with the
implicit guidance agent than with the explicit guidance one.
These results are strong evidence in support of hypothesis H2.

Although the other results do not directly concern our
hypothesis, we discuss their analysis briefly. Regarding the
perceived inference of the human’s intentions, the results were
basically as expected, but for the perceived inference of the agent’s
intentions, the fact that there were no significant differences
among all agents was unexpected. One hypothesis that
explains this is that humans do not recognize the guidance
information as the agent’s intention. As for the perceived ease
of collaboration, the results showed that explicit guidance had
adverse effects on it. Implicit guidance agents and supportive
agents use exactly the same interface, though the algorithms are
different, but explicit guidance agents use a slightly different
interface to convey the guidance, which increases the amount of
information on the interface a little. We think that the burden to
understand such additional visible information might be
responsible for the negative effect on the perceived ease of
collaboration.

FIGURE 4 | Average rate of capturing best object.

FIGURE 5 | Average survey score about perceived interaction with the
agent.
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4 DISCUSSION

As far as we know, this is the first study to demonstrate that
implicit guidance has advantages in terms of both task
performance and the effect of the agent on the perceived
autonomy of a human in human-agent teams. In this section,
we discuss how our results relate to other studies, current
limitations, and future directions.

4.1 Discussion of for the Results
The results in 3.1 show that both implicit and explicit guidance
increase the success rate of a collaborative task. We feel one reason
for this is that the quality of information in the guidance is
appropriate. A previous study on the relationship between
information type and collaborative task performance Butchibabu
et al. (2016) showed that “implicit coordination” improves the
performance of a task more than “explicit coordination” in a
cooperative task. The word “implicit” refers to coordination that
“relies on anticipation of the information and resource needs of the
other team members”. This definition is different from ours, as
“implicit coordination” is included in explicit guidance in our
context. This study further divided “implicit coordination” into
“deliberative communication,” which involves communicating
objectives, and “reactive communication,” which involves
communicating situations, and argued that high-performance
teams are more likely to use the former type of communication
than the latter. We feel that quality of information in implicit
guidance in our context is the same as this deliberative
communication in that it conveys the desired target, which is
one of the reasons our guidance can deliver a good performance.

The main concern of human-agent teams is how to improve
the performance on tasks. However, as there have not been many
studies that focus on the effect of the agent on cognition, the
results in 3.2 should make a good contribution to the research on
human-agent teams. One of the few studies that have been done
investigated task performance and people’s preference for the task
assignment of a cooperative task involving a human and an AI
agent (Gombolay et al., 2015). In that study, the authors
mentioned the risk that a worker with a robot collaborator
may perform less well due to their loss of autonomy, which is
something we also examined in our work. They found that a
semi-autonomous setting, in which a human first decides which
tasks they want to perform and the agent then decides the rest of
the task assignments, is more satisfying than the manual control
and autonomous control settings in which the human and the
robot fully assign tasks. In cooperation with the implicit guidance
agent and the supportive agent in our study, the human selects the
desired character by him or herself. This can be regarded as a kind
of semi-autonomous setting. Thus, our results are consistent with
these ones in that the participants felt strongly that cooperation
was easier than with explicit guidance agents. Furthermore, that
study also mentioned that task efficiency has a positive effect on
human satisfaction, which is also consistent with our results.

4.2 Limitation and Future Direction
Our current work has limitations in that the experimental
environment was small and simple, the intention model was a

small discrete set of target objectives, and the action space of the
agent was a small discrete set. In a real-world environment, there
is a wide variety of human intentions, such as target priorities and
action preferences. The results in this paper do not show whether
our approach is sufficiently scalable for problems with such a
complex intention structure. In addition, the agent’s action space
was a small discrete set that can be distinguished by humans,
which made it easier for the human to infer the agent’s intention.
This strengthens the advantage of implicit guidance, so our
results do not necessarily guarantee the same advantage for
environments with continuous action spaces. Extending the
intention model to a more flexible structure would be the
most important direction for our future study. One of the
most promising approaches is integration with studies on
inverse reinforcement learning (Ng and Russell, 2000). Inverse
reinforcement learning is the problem of estimating the reward
function, which is the basis of behavior, from the behavior of
others. Intention and purpose estimation based on the Bayesian
Theory of Mind can also be regarded as a kind of inverse
reinforcement learning (Jara-Ettinger, 2019). Inverse
reinforcement learning has been investigated for various
reward models (Abbeel and Ng, 2004; Levine et al., 2011; Choi
and Kim, 2014; Wulfmeier et al., 2015) and has also been
proposed to handle uncertainty in information on a particular
reward (Hadfield-Menell et al., 2017). Finally, regarding the
simplicity of our experimental environment, using
environments that are designed according to an objective
complexity factor (Wood, 1986) and then analyzing the
relationship between the effectiveness of implicit guidance and
the complexity of the environment would be an interesting
direction for future work.

Another limitation is the assumption that all humans have the
same fixed cognitive model. As mentioned earlier, a fixed
cognitive model is beneficial for ad-hoc collaboration, but for
more accurate collaboration, fitting to individual cognitive
models is important. The first approach would be to
parameterize human cognition with respect to specific
cognitive abilities (rationality, K-level reasoning (Nagel, 1995),
working memory capacity (Daneman and Carpenter, 1980), etc.)
and to fit the parameters online. This would enable the
personalization of cognitive models with a small number of
samples. One such approach is human-robot mutual
adaptation for “shared autonomy,” in which control of a robot
is shared between the human and the robot (Nikolaidis et al.,
2017). In that approach, the robot learns “adaptability,” which is
the degree to which humans change their policies to
accommodate a robot’s control.

Finally, the survey items we used to determine the effect of the
agent on perceived autonomy were general and subjective. For a
more specific and consistent analysis of the effect on perceived
autonomy, we need to develop more sophisticated survey items
and additional objective variables. Consistent multiple questions
to determine human autonomy in shared autonomy have been
used before (Du et al., 2020). As for measuring an objective
variable, analysis of the trajectories in the collaborative task would
be the first choice. A good clue for the perceived autonomy in the
trajectories is “shuffles”. Originally, shuffles referred to any action
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that negates the previous action, such as moving left and then
right, and it can also be an objective variable for human
confusion. If we combine shuffles with goal estimation, we can
design a “shuffles for goal” variable. A larger number of variables
means that a human’s goal is not consistent, which would thus
imply that he or she is affected by others and has low autonomy.
In addition, reaction time and biometric information such as gaze
might also be good candidates for objective variables.

Another limitation of this study is that we assumed humans
regard the agent rationally and act only to achieve their own goals.
The former is problematic because, in reality, humans may not
trust the agent. One approach to solving this is to use the Bayesian
Theory of Mindmodel for irrational agents (Zhi-Xuan et al., 2020).
As for the latter, in a more practical situation, humans may take an
action to give the agent information, similar to implicit guidance.
Assistance game/cooperative inverse reinforcement learning
(CIRL) (Hadfield-Menell et al., 2016) has been proposed as a
planning problem for this kind of human behavior. In this
problem, only the human knows the reward function, and the
agent assumes that the human expects it to infer this function and
take action to maximize the reward. The agent implicitly assumes
that the human will give information for effective cooperative
planning. Generally, CIRL is computationally expensive, but it can
be solved by slightly modifying the POMDP algorithm (Malik
et al., 2018), which means we could combine it with our approach.
This would also enable us to consider a more realistic and ideal
human-agent team in which humans and agents provide each
other with implicit guidance.

CONCLUSION

In this work, we demonstrated that a collaborative agent based on
“implicit guidance” is effective at providing a balance between
improving a human’s plans and maintaining the human’s
autonomy. Implicit guidance can guide human behavior
toward better strategies and improve the performance in
collaborative tasks. Furthermore, our approach makes humans
feel as though they have autonomy during tasks, more so than

when an agent guides them explicitly. We implemented agents
based on implicit guidance by integrating the Bayesian Theory of
Mind model into the existing POMDP planning and ran a
behavioral experiment in which humans performed simple
tasks with autonomous agents. Our results demonstrated that
there were many limitations, such as a poor agent information
model and trivial experimental environment. Even so, we believe
our findings could lead to better research on more practical and
human-friendly human-agent collaboration.
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