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This work investigates the efficacy of deep learning (DL) for classifying C100 superconducting
radio-frequency (SRF) cavity faults in the Continuous Electron Beam Accelerator Facility
(CEBAF) at Jefferson Lab. CEBAF is a large, high-power continuous wave recirculating
linac that utilizes 418 SRF cavities to accelerate electrons up to 12GeV. Recent upgrades to
CEBAF include installation of 11 new cryomodules (88 cavities) equipped with a low-level RF
system that records RF time-series data from each cavity at the onset of an RF failure.
Typically, subjectmatter experts (SME) analyze this data to determine the fault type and identify
the cavity of origin. This information is subsequently utilized to identify failure trends and to
implement correctivemeasures on the offending cavity. Manual inspection of large-scale, time-
series data, generated by frequent system failures is tedious and time consuming, and thereby
motivates the use ofmachine learning (ML) to automate the task. This study extendswork on a
previously developed system based on traditional ML methods (Tennant and Carpenter and
Powers and Shabalina Solopova and Vidyaratne and Iftekharuddin, Phys. Rev. Accel. Beams,
2020, 23, 114601), and investigates the effectiveness of deep learning approaches. The
transition to a DL model is driven by the goal of developing a system with sufficiently fast
inference that it could be used to predict a fault event and take actionable information before
the onset (on the order of a few hundred milliseconds). Because features are learned, rather
than explicitly computed, DL offers a potential advantage over traditional ML. Specifically, two
seminal DL architecture types are explored: deep recurrent neural networks (RNN) and deep
convolutional neural networks (CNN). We provide a detailed analysis on the performance of
individual models using an RF waveform dataset built from past operational runs of CEBAF. In
particular, the performance of RNNmodels incorporating long short-termmemory (LSTM) are
analyzed along with the CNN performance. Furthermore, comparing these DL models with a
state-of-the-art fault ML model shows that DL architectures obtain similar performance for
cavity identification, do not perform quite as well for fault classification, but provide an
advantage in inference speed.
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INTRODUCTION AND MOTIVATION

The Continuous Electron Beam Accelerator Facility (CEBAF) is a
high power, continuous wave recirculating linac capable of
servicing four different experimental nuclear physics end
stations simultaneously (Reece, 2016). Recently, CEBAF
underwent an energy upgrade program to reach a peak energy
of 12 GeV. The upgrade included the installation of 11 additional
cryomodules—each capable of 100 MV energy gain and denoted
as C100s. Each cryomodule is comprised of 8 superconducting
radio-frequency (SRF) cavities. Figure 1 shows a schematic of
CEBAF along with locations of the C100 cryomodules.
Additionally, a digital low-level radio frequency system (LLRF)
is developed to control the new cryomodules.

At high energy, when cavity gradients are being pushed to
their limits, CEBAF experiences frequent short machine
downtime trips (events that can be resolved within 5 min)
caused by numerous SRF system faults. Specifically, CEBAF
operational runs in 2019 observed an average of 4.1 RF
downtime trips per hour, culminating in approximately 1 h of
beam time lost each day. The primary means of reducing the RF
trip rate is to lower the accelerating gradient of problematic
cavities, which in turn hinders CEBAF’s ability to reach 12 GeV.

Approximately 25% of these RF faults originated from the
newly deployed C100 cryomodules. However, each C100 fault
takes significantly longer to recover than their older counterparts.
Determining which C100 cavity is associated with a fault and the
underlying cause of the fault is not trivial. Typically, this work
requires subject matter expertise, is time consuming, and is
performed days or weeks after the events. In the interim,
accelerator operators do their best to reduce trip rates through
gradient reduction. However, incorrectly identifying the fault

type makes it impossible to address the root cause, while
incorrect cavity identification can lead to unnecessary
reductions in cavity accelerating gradients.

In order to study the nature of these faults, we have
implemented a new data acquisition system (DAQ), leveraging
the digital LLRF system of the C100 cryomodules. The DAQ
system is configured to capture 17 RF waveforms originating
from each cavity in the 11 C100 cryomodules. The system is
triggered at the onset of an RF failure, and a 1.64 s synchronized
segment of the waveforms is retained for analysis (8,192 samples
at 5 kHz). The system is configured such that 94% represents pre-
fault data, while the remaining 6% is post-fault. This is illustrated
in Figure 2.

Parameters such as sampling frequency and the ratio of pre-
fault to post-fault data in the captured waveforms are established
by subject matter experts (SMEs) such that the data contain
sufficient information to determine the nature of an RF failure
event (Tennant et al., 2020). Supplementary Appendix Table
SA1 in Appendix A describes the 17 recorded RF signals.
Typically, a subset of waveforms from each cavity in a
cryomodule is inspected manually by SMEs to determine: 1)
the identity of the cavity which faulted first, and 2) the type of
fault. A typical operational run of CEBAF spans several weeks,
and with the current RF downtime trip rate of 4.1/hr, our DAQ
system collects data from several thousand events. The sheer
number of waveforms and the subtlety of how certain faults
manifest themselves make this manual inspection process
laborious. Moreover, inspecting the data is usually conducted
post-run due to the time-consuming nature of the process.
Therefore, corrective measures can only be applied in the
subsequent operational run. A fast RF cavity fault classification
system (e.g. results reported seconds after a fault) enables CEBAF
operators to apply corrective measures within the same
operational run, thereby reducing unnecessary downtime.

A state-of-the-art ML based fault classifier model is currently
deployed for use in CEBAF (Tennant et al., 2020). Many classical
machine learning (ML) methods have been developed and
utilized for time-series analysis in a variety of domains such as
economics (Beveridge and Nelson, 1981; Caiado et al., 2006), the

FIGURE 1 | A schematic of CEBAF with the experimental halls (A, B, C,
and D), indicating the locations of the C100 cryomodules used for this study.

FIGURE 2 | An example waveform segment captured by the DAQ
system. The total duration of the captured waveform is 1.64 s.
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social sciences (Meidinger, 1980; Shumway et al., 2000), and
healthcare (Chua et al., 2010; Shoeb and Guttag, 2010). While
the present ML solution is adequate for our current “human-in-
the-loop” paradigm, there is a desire to move toward an
autonomous, fault prediction system where preventative action is
taken before the fault occurs. Initial work suggests that thewindowof
opportunity to predict an impending fault and effect a change to the
system is a few hundred milliseconds (Vidyaratne et al., 2021).
Therefore, to meet the stringent time constraints model inference
times should be as fast as possible. Typical ML modeling for time-
series analysis requires developing a pipeline of appropriate feature
engineering, selection, and classification schemes (see
Supplementary Appendix SAB). Consequently, such classical
ML pipelines are inherently limited by the use of human
expertise and intuition at each step of the learning process and
by the need to explicitly compute features—which represents a
potential bottleneck. To mitigate such limitations, this work
investigates the performance of deep learning (DL) based methods.

Data of this paper provides details of the dataset and the
preprocessing steps applied. Deep Learning Models discusses the
deep recurrent learning (DRL) and convolutional neural network
(CNN) architectures used in our study, while Results and
Discussion describes the training methods and results for each,
as well as a comparison to the performance of the ML model.
Summary and Conclusion provides a summary of the work.

DATA

The dataset used in this study is curated using samples retrieved
from CEBAF operational runs between the spring of 2019 and the
fall of 2020. Each data sample consists of 17 time-series
waveforms from each cavity of a given cryomodule. The data
samples are inspected and annotated by an SME with labels
corresponding to the identity of the cavity that faulted first and
the type of fault. Note that the data collection for this project
spanned several years over many CEBAF operational runs. The
SME has routinely inspected the data, and over time has
converged on 8 distinct RF fault types that can occur in the
CEBAF system. The data used for this study is specifically selected
from the latest operational runs.

The dataset utilized for training, validation and testing of the
deep learning models consists of 6,027 events. The class-wise
itemization of the dataset are shown in Figure 3. In addition to
using all 17 waveforms per cavity, we also experiment using just 4
waveforms (GMES, GASK, CRFP, DETA2), identified by SMEs as
having the greatest predictive power.

Note from Figure 3 that the fault class named “Multi cavity
Turn Off” is directly correlated with the “All cavities” class in the
cavity identification task. Nevertheless, we treat cavity
identification and fault classification as separate tasks at this
stage of the study in an effort to build independent and
generalized models.

Preprocessing
Time-series data is a sequence of values obtained through
observations over time. The sequence of observations are

usually evenly spaced temporally and commonly represented
(Malhotra et al., 2015) as a vector, X � {x(1), x(2), . . . , x(n)}
where each element x(t) ∈ Rm of X is a vector of m values
such that x(t) � {x(t)

1 , x(t)
2 , . . . , x(t)

m }. The size of m is
determined by the dimensionality of input at time t, and may
have an impact on the processing speed based on the algorithm
used. The dimensionality of each individual cavity RF waveform
is singular, i.e. m � 1.

The values within the raw signal waveforms feature large
variations (orders of magnitude) between cavities and among
signal types within individual cavities. Even the same waveform
from the same cavity may be at different absolute values from
fault to fault, as parameters like the gradient set point change
between faults. However, fault behavior as exhibited by waveform
is qualitatively similar relative to each other within a fault
example. Accordingly, we apply time-series standardization
using the z-score technique on each individual waveform from
an individual fault example based on its own mean and standard
deviation. No population-level standardization is applied. The
z-score function applied to each time-series waveform X is given
in Eq. (1)

Xnorm � X − μ

σ
(1)

where μ and σ are the mean and the standard deviation values of
X, respectively. This standardization is applied to each waveform
individually as an initial preprocessing step common to all
models. Additionally, we apply periodical down sampling to
each signal in order to obtain a shorter signal length with a
manageable number of time steps. We experiment with down
sampling factors of 16 and 32 for deep recurrent learning models
(see Deep Recurrent Learning) and factors of 8, 16, and 32 for
convolutional neural network models (see Convolutional Neural
Network).

DEEP LEARNING MODELS

Deep learning models are essentially large-scale artificial neural
networks that have the ability to learn complex tasks through
examples. Hence, DL models effectively mitigate the limitations
of ML pipelines by simultaneously learning the feature extraction,
feature selection and classification steps through neural layers
without human intervention.

This work investigates the efficacy of models based on two
prominent DL architectures: deep recurrent learning and a
convolutional neural network. Deep recurrent learning is
based on long short-term memory (LSTM) layers which have
the ability to learn both long-term and short-term temporal
features. Additionally, the bi-directional functionality allows
the LSTM to process time-series in the forward and backward
directions simultaneously. This further enhances the ability of
LSTM to retain patterns encountered at different locations of the
time-series signal using both past and future contexts (Schuster
and Paliwal, 1997). Convolutional neural networks, on the other
hand, are adept at learning spatial dependencies in an image
through the use of multiple trainable filters while maintaining
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efficiency with weight sharing. While CNNs have achieved state-
of-the-art performance in many image processing and computer
vision applications (LeCun et al., 1998; Krizhevsky et al., 2012;
Simonyan and Zisserman, 2014), the data in this study consists of
multiple RF signals that have high temporal, but little spatial,
relevance. Therefore, it is necessary to apply a transformation to
represent time-series data in a 2 dimensional image suitable for
input to a CNN. A straightforward approach is to reconstruct
waveforms directly in a one dimensional (Ullah et al., 2018; Eren
et al., 2019) or multi-dimensional (Wei et al., 2018; Zhao et al.,
2019; Cho and Hwang, 2020) array, which we refer to as direct
signal conversion (DSC) and which is discussed more fully in
Convolutional Neural Network.

Deep Recurrent Learning
A schematic of the DRL model architecture is shown in Figure 4.
The first LSTM layer is configured to accept either 136 (17 signals
per cavity × 8 cavities) or 32 (4 signals per cavity × 8 cavities)
time-series signals. The model contains three bi-directional
LSTM layers, each with 64 feature dimensionality at the front
end for feature learning. The back end of the model is a branched
architecture with multiple feed-forward neural layers to enable
simultaneous learning of both cavity and fault identification tasks.
That is, the features learned by LSTMs are shared among the two
paths to perform both tasks in a computationally efficient end-to-
end trainable manner. The deep LSTM classification model is
fully implemented in Python utilizing the PyTorch deep learning
library (Paszke, 2019).

End-to-end training for both tasks is achieved using two
different cost functions simultaneously. Note that cavity and
fault recognition tasks for this model are posed as a 9-class

and 8-class classification problem, respectively (see Figure 3).
Consequently, we use categorical cross-entropy (Géron, 2019) as
our cost function for both tasks. The final cost to be optimized is a
linear combination of individual costs as follows:

Finalcost � cavitycost + faultcost (2)

Note that we do not explicitly weight the individual costs as
preliminary experiments found no gain in overall performance by
doing so. We utilize the Adam optimization algorithm (Kingma
and Ba, 2014) as the weight update scheme for the entire network,
with a learning rate of 0.01 and a weight decay rate (for weight
regularization) of 0.99. The network is trained for 50 epochs.

Convolutional Neural Network
The time-series data we use for this study needs to be suitably
represented in a multidimensional tensor format compatible for a
typical CNN input. A straightforward representation of the
signals as a 2-dimensional image is achieved simply by
considering time as the second dimension. The total number

FIGURE 3 | Dataset representation cavity identification, and fault classification tasks.

FIGURE 4 | Deep LSTM branched classification model.
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of RF signals for each data sample (17 signals/cavity × 8 cavities �
136 ) are arranged as rows in the representation, and the
columns correspond to time in the signals after
standardization and down sampling to obtain a more
amenable rectangular 2D array. Note that the SRF cavities
in cryomodules are arranged sequentially. The direct
conversion representation is designed to preserve this
relative physical locality of cavities by arranging signals
from cavities in the same sequence. Additionally, we
maintain the same arrangement of signal types (signals 1
through 17) for each cavity and apply filters of stride 1 for
all convolutional layers assuming that significant correlated
activity in waveforms extend across neighboring cavities.
Consequently, this arrangement preserves potential
correlations across signals within a cavity, as well as some
signals of neighboring cavities. We experiment with down
sampling factors of 8, 16, and 32 to obtain 2D arrays of size
136 × 1,024, 136 × 512, and 136 × 256. An example
representation obtained by this method is displayed in
Figure 5. While down sampling factors 16 and 32 yield
input sizes that directly match that of the DRL model, the
computational efficiency of CNN permits an even larger input
size with a lower down sampling factor of 8. We utilize this
capability to analyze the performance for input with more time
samples.

The CNN is developed to process the input arrays and
simultaneously classify the cavity and the fault type. This is
achieved using a fully connected, branched architecture at the
back end. The front end of the model consists of 5 convolutional
layers, each followed by batch normalization, and dropout (rate �
0.5). Each layer is activated using the leaky ReLU function. The
detailed architecture shown in Figure 6.

Note that the architecture in Figure 6 contains 2D filters of
size 17 × 17 in the first layer. This filter size is deliberately set to
ensure that the layer’s receptive field overlaps all 17 signals
coming from each cavity at certain convolutional intervals,
corresponding to the signal arrangement process of the direct
conversion method. Consequently, the 2D filters enable the CNN

to capture potential correlation patterns across signals within a
cavity, and also across neighboring cavities.

Similar to the DRL, the CNN model architecture enables end-
to-end training for both tasks using two different cost functions
simultaneously. We utilize the same cost as defined in Eq. 2.
Additionally, we utilize the Adam optimization algorithm as the
weight update scheme for the entire network, with a learning rate
of 0.001 and a weight decay rate (for weight regularization) of
0.99. The network is trained for 400 epochs.

RESULTS AND DISCUSSION

We report quantitative performance figures for each DL system,
and a performance comparison with the currently deployed ML
pipeline (Tennant et al., 2020). Following the typical DL
workflow, the training and testing of the DL models are
carried out using a data split of 60% (3,616 events) for
training, 20% (1,205 events) for validation, and 20% (1,206
events) for testing (stratified). Note that the same 1,206 testing
events are used to evaluate all models to conduct a fair testing data
performance comparison.

Deep Recurrent Learning
The training is performed for 50 epochs with batch-wise gradient
updates. We obtain validation results at each epoch to verify
proper training. Testing is only performed once the network is
fully trained. We report training, validation, and testing
accuracies for each experiment. Figure 7 shows loss and
accuracy (number of correct classifications/total number of
classifications) curves for DRL training and validation with
input size: 32 signals × 256 time steps.

The training and validation loss curves in Figure 7A (top plot)
show that the DRL converges to a minimum quickly, albeit with
signs of slight overfitting. However, the accuracy curves in
Figure 7B (bottom plot) show the validation accuracies are
quite stable for both tasks throughout the 50 epoch training
duration. We also observe that the DRL quickly obtains high

FIGURE 5 | Example raw time-series direct conversion as 2D images for a Quench 100 ms fault type. (A) image representation of size 136 × 1,024, (B) image
representation of size 136 × 512, (C) image representation of size 136 × 256.
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accuracy for the cavity classification task (roughly 80% after 5
epochs) while fault classification requires more training epochs to
obtain a stable accuracy (80% is reached after 30 epochs). This
indicates fault classification is a significantly more complex task
than cavity identification.

We report and analyze the performance of the DRL model
with three different input data combinations. In the first, denoted
as DRL1, we utilize an input comprised of all 136 signals (17
signals from each cavity × 8 cavities) per sample with signals
down sampled by a factor of 32 (input size: 136 × 256). In the
second (DRL2), we use an input combination of 32 signals (4
signals from each cavity × 8 cavities) per sample with signals
down sampled by the same factor of 32 (input size: 32 × 256).

Thirdly (DRL3), we use an input with the same 32 signals but
using a lower down sampling factor of 16 (input size: 32 × 512).
Table 1 summarizes the classification results of both cavity and
fault recognition tasks obtained using 3,616 training, 1,205
validation, and 1,206 testing events. Note that the testing
dataset is commonly used to evaluate all models in this study.

The testing accuracy for each model configuration is reported
with associated 95% confidence intervals (C.I.) accounting for the
limited testing dataset size. These confidence intervals were
calculated by treating the outcomes of individual classification
models as independent and identically distributed (I.I.D.)
Bernoulli random variables with probability p of making the
correct prediction (De Veaux et al., 2005). We observe from

FIGURE 6 | CNN architectures for RF signal direct converted input.

FIGURE 7 | Training and validation loss curves (A), and training and validation accuracy curves (B) as a function of the epochs for the DRL classifier processing
input data of 32 signal × 256 time steps.
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Table 1 that DRL models show consistent testing performance
for all three input combinations as evidenced by overlapping
confidence intervals, albeit with subtle changes in the training and
validation accuracies. Specifically, the large difference between
training and validation scores for all three model configurations
show signs of overfitting. Additionally, we observe that the down
sampling factor of 16 in DRL3 shows a slight reduction in the
point estimate for testing accuracy, possibly due to the recurrent
layers having to essentially process double the amount of time
steps compared to other inputs. However, note that the results of
each configuration are still well within the error margins of each
other and therefore requires further analysis with a larger testing
set to form conclusions. Overall, DRL classification models

exhibit better performance in cavity classification compared to
fault classification.

Convolutional Neural Network
We report and compare performance for different input sizes of
the CNN and discuss the impact of input representation on the
accuracy for cavity and fault recognition. CNN model analysis is
conducted following the same data split method outlined in Deep
Recurrent Learning. The training for CNN is performed for 400
epochs with batch-wise gradient updates. We obtain validation
results at each epoch to verify proper training. Figure 8 shows
training and validation loss/accuracy characteristics for the CNN
with the direct conversion method (input size: 136 × 256).

TABLE 1 | Results of deep recurrent classification model performance after 50 epochs.

Model Input combination DRL input
size

Cavity identification Fault classification

Train/Validation
Accuracy

Testing
Accuracy ±
95% C.I.

Train/Validation
Accuracy

Testing
Accuracy ±
95% C.I.

DRL1 17 waveforms + down sampled
by 32

136 × 256 98.7%/85.8% 86.1 ± 1.95% 98.3%/82.3% 82.1 ± 2.16%

DRL2 4 waveforms + down sampled
by 32

32 × 256 96.0%/85.3% 87.8 ± 1.85% 94.1%/81.2% 81.3 ± 2.20%

DRL3 4 waveforms + down sampled
by 16

32 × 512 95.3%/84.5% 85.9 ± 1.96% 93.8%/82.1% 80.0 ± 2.26%

FIGURE 8 | Training and validation loss curves (A), and training and validation accuracy curves (B) as a function of the epochs for the CNN with raw signal direct
conversion input method with input size (136 signals × 256 time steps).
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The training and validation loss curves show consistent
improvement over training epochs, though it requires a larger
number of epochs compared to DRL models. The CNN model
with DSC input exhibits slow but consistent convergence with no
visible overfitting. The validation accuracy curves show a similar
trend. Table 2 summarizes the results obtained through the CNN
model with the DSC technique for input. Note that the
computational efficiency of a CNN allows us to use larger
input with all 136 signals easily (17 signals/cavity × 8 cavities).
Therefore, we consider input combinations with down sampling
factors 8, 16, and 32 to construct input images of size 136 ×
(1,024, 512, 256) denoted as CNN1, CNN2, and CNN3,
respectively.

While the CNN with DSC inputs exhibits consistent
performance across different down sampling factors, the
largest input size of 136 × 1,024 seems to cause the model
to overfit slightly. As before, these confidence intervals are
generated by considering each outcome of a given model
architecture as an I.I.D. Bernoulli random variable with
probability p of making the correct prediction. This slight
overfitting is evident by the larger difference between training
and validation data accuracy compared to other, smaller input
configurations. However, all three input combinations show
consistent testing accuracies with highly overlapping
confidence intervals.

Performance Comparison
We conduct a performance comparison between the two DL
architectures in order to determine the feasibility for future
deployment in CEBAF for online inference. The comparison is
based on the model’s accuracy in identifying the C100 cavity that
failed, identifying the type of RF fault, and the speed of inference

for both tasks (i.e. the time taken for a raw example to be
processed by a trained model). Statistically speaking, none of
CNN models stands out as superior than the others. The same is
true for the DRL models. Nevertheless, for the sake of
comparison, we choose CNN2 and DRL2. Additionally, we
compare the performance of these selected DL models with
the current state-of-the-art ML models developed to perform
the same tasks, in terms of classification accuracy as well as
processing runtime.

We measure runtime performance across two operations, pre-
processing (down sampling/feature extraction) and model
inference (classification). As previously noted, the data
standardization is common for all classification methods, and
therefore excluded from runtime comparison. Pre-processing
steps are performed on the CPU for all models. Inference
occurs on the CPU for the ML model and GPU for the DL
models. All calculations are performed on the same high-end
mobile workstation (laptop), equipped with a hexa-core Intel
Xeon E-2276M CPU and NVIDIA Quadro RTX 4000 GPU so
that a reasonable baseline can be achieved for performance
comparisons across CPU and GPU configurations of similar
cost. More detailed timing studies are required to definitively
pick the fastest model given a specific operating environment.

The ML pipeline implements a feature extraction scheme
based on autoregressive analysis of each signal to obtain 192
features representing each event (Tennant et al., 2020). For the
purpose of comparison, we implement this feature extraction
scheme for each RF signal parallelized across a six-core CPU
using six workers. The ML model uses two independent random
forest classifiers (Breiman, 2001) (with CPU based parallelization
using 6 workers) for cavity identification and fault classification
tasks. (Appendix B provides a brief description of the

TABLE 2 | Results of CNN model applying to raw data direct representation input. Performance after 400 epochs.

Model Input combination CNN input
size

Cavity identification Fault classification

Train/Validation
Accuracy

Testing
Accuracy ±
95% C.I.

Train/Validation
Accuracy

Testing
Accuracy ±
95% C.I.

CNN1 17 waveforms + down sampled
by 8

136 × 1,024 92.6%/85.6% 85.8 ± 1.97% 89.1%/79.4% 78.6 ± 2.31%

CNN2 17 waveforms + down sampled
by 16

136 × 512 88.6%/86.8% 87.2 ± 1.89% 82.9%/81.8% 78.4 ± 2.32%

CNN3 17 waveforms + down sampled
by 32

136 × 256 87.1%/85.9% 86.8 ± 1.91% 78.7%/80.1% 76.5 ± 2.39%

TABLE 3 | Performance comparison between best performing DRL, CNN, and ML models. The runtime for the ML pipeline is performed using CPU-based parallelization
while the CNN and DRL models are performed on a GPU.

Model Input size Cavity
identification

Fault classification Runtime CPU: Intel XEON hexa-core CPU @ 2.8 GHz
(laptop) GPU: NVIDIA Quadro RTX 4000 (laptop) (For 1

example in seconds)

Raw Model Testing Accuracy ±
95% C.I.

Testing Accuracy ±
95% C.I.

Down sampling/feature
extraction

Classification Total

ML pipeline 32 × 8,192 1 × 192 88.0 ± 1.83% 86.7 ± 1.92% NA/0.063 0.078 0.141
DRL2 32 × 8,192 32 × 256 87.8 ± 1.85% 81.3 ± 2.20% 0.008/NA 0.031 0.039
CNN2 136 × 8,192 136 × 512 87.2 ± 1.89% 78.4 ± 2.32% 0.020/NA 0.016 0.036
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ML pipeline). The signal down sampling routine for DLmodels is
also optimized similarly for the given CPU. Table 3 summarizes
the testing classification accuracies and runtime for each model.

The classification accuracy comparison in Table 3 shows that
while all three models perform cavity classification with similar
accuracy, the ML pipeline achieves higher fault classification

accuracy than the DL models. A more in-depth look into the
classification outputs of each model can be obtained by
inspecting the corresponding confusion matrices for cavity
identification and fault classification as shown in Figure 9. The
fault classification confusionmatrices of DLmodels in Figures 9A,B
show that significant misclassifications have occurred between

FIGURE 9 | The cavity identification and fault classification confusion matrices for the (A) ML pipeline, (B) DRL model, and (C) CNN with direct conversion input
model for testing data.
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“Controls Fault”, “Single Cavity Turn Off”, and “Multi-Cavity Turn
Off” fault types. This indicates that further analysis into the
characteristics of these fault types is required to understand the
causes that inhibits DL performance. ML models perform
comparatively well in the presence of limited data and noise,
owing to the human engineered feature extraction and a choice
of classification algorithms that are more robust against overfitting.
Even though the fault identification confusion matrix of the ML
model (Figure 9A) show that a certain confusion between “Controls
Fault”, “Single Cavity Turn Off”, and “Multi-Cavity Turn Off” still
exist, it is significantly less pronounced compared to DL models.
Supplementary Appendix Tables SAC1, C2 in Appendix C further
summarizes the DL and ML models fault class specific performance
in terms of precision, recall rate, and F1-score.

The DL models show an advantage over the ML pipeline in
terms of runtime. While DL models process raw RF signals as
input and produce cavity and fault classifications simultaneously,
the ML pipeline is slowed by the autoregressive (AR) feature
extraction step with a computational cost of 0.063 s per example.
And in fact, the computation cost of the classification with theML
model is 0.047 s slower compared to the slowest inference with
DL. These results are suggestive that the DL models would result
in significantly faster runtimes, however the final operating
environment would heavily influence relative runtimes.

SUMMARY AND CONCLUSION

This work investigates the ability of DL models to automate the
process of cavity and fault classification using RF signals as an
alternative to a conventional ML pipeline. We have developed
custom DL models based on recurrent neural network and
convolutional neural network architectures. The proposed DRL
model draws from the ability to process RF time-series directly
through its bi-directional LSTM layers to identify the faulty cavity
and to classify the fault type simultaneously. The CNN-based
architecture is typically used in computer vision applications.
Consequently, this work utilizes a direct conversion method to
provide a straightforward representation by arranging the raw RF
signals from an example in a 2D array. This results in a lossless
conversion yielding an input with a width and height corresponding
to the length, and the number of RF signals, respectively.

Models that were developed on the DRL and CNN architectures
and explored different data input sizes exhibit similar testing
accuracies across both the cavity identification and fault
classification tasks. In comparison to the ML pipeline—which is
currently deployed and in use at CEBAF—the fault classification
accuracy of the DL models suffer. We posit that this is due to the

limitations in the number of examples, and representation of certain
fault types in the current dataset, along with possible labeling noise.
We continue to collect more data and will revisit this hypothesis in
future studies. Nevertheless, the DLmodels achieve a sufficiently high
accuracy so as tomake thema beneficial tool, with the added benefit of
having faster runtimes compared to ML. They, therefore, are a viable
alternative to the conventional ML system for future autonomous
tasks where runtime represents a key performance metric.
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