
Behaviour Recognition with
Kinodynamic Planning Over
Continuous Domains
Grady Fitzpatrick1*, Nir Lipovetzky1, Michael Papasimeon2, Miquel Ramirez1 andMor Vered3

1The University of Melbourne, Parkville, VIC, Australia, 2Defence Science and Technology Group (DSTG), Edinburgh, SA,
Australia, 3Monash University, Melbourne, VIC, Australia

We investigate the application of state-of-the-art goal recognition techniques for behaviour
recognition over complex continuous domains using model predictive control (MPC) for
trajectory generation. We formally define the problem of kinodynamic behaviour
recognition and establish a set of baseline behaviours and performance measures in
the complex domain of unmanned aerial maneuvers. We evaluate how well our approach
performs over a range of standard aerial maneuvers and representative initial
configurations of varying complexity. The work also highlights future research
directions in compound model-based behaviour recognition and team behaviour
recognition where multiple agents may be acting simultaneously.
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1 INTRODUCTION

Behavior recognition is the problem of recognizing the behaviour of an agent from an incomplete
trace of observations. This problem is closely related to plan and/or goal recognition (Sukthankar
et al., 2014). While plan recognition involves highly complex reasoning to infer which plan best
explains a sequence of observations, and goal recognition reasons about which goal best explains a
sequence of observations, the problem of behaviour recognition is far more general. In behaviour
recognition we reason about which behaviour explains a sequence of observations, behaviours being
more loosely connected with specific domain instances. The same behaviour could be executed in
different initial conditions and different instances of the environment, generating a range of different
sequences of observations. Behaviours can be understood as generalized plans, which can be
expressed as policies, algorithmic programs, or logical specifications (Srivastava et al., 2011;
Jiménez et al., 2019).

Behaviour recognition is a widely researched problem with a wide array of implementations
relevant for both adversarial opponent behaviour recognition (Kabanza et al., 2010) and behaviour
recognition within a team of coordinated agents (Oh et al., 2014). Within the context of a team,
behaviour recognition is core to realizing multi-agent coordinated behaviour. This is owing to the
fact that in many instances inter-agent interaction via direct communication could be limited due to
faulty devices, network capacity, time limitation, or security concerns (Heinze et al., 1999; Ilachinski,
2004; Oh et al., 2014). The identification and characterization of behaviours in complex, real-time
continuous environments is a challenging problem which has to account for an unknown sequence
of incoming observations and an infinite number of state possibilities.

Leading approaches to behaviour recognition leverage different means to discretize the states of
continuous environments. These include using linear temporal logic (LTL) formulas (Calvanese
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et al., 2002; Pereira et al., 2021), using behaviour trees
(Colledanchise et al., 2019; Sitanskiy et al., 2020) and Fuzzy
Finite State Machine (FFSM) models (Mohmed et al., 2020)
among others. However, these means of discretization imply
that there is no notion of progress between two consecutive
states. An agent can either be in one state or in the
consecutive one, but not in between.

To address this challenge we develop and implement a novel
behaviour recognition model which is able to differentiate between
a range of complex multi-agent behaviours over continuous
domains using model predictive control (MPC) for trajectory
generation. We begin by providing a new, formal definition for
the kinodynamic behaviour recognition problem in continuous
domains whereby behaviours are characterized through stage and
terminal costs. In this manner our model is uniquely able to cast
the problem of recognising behaviours to that of seeking which cost
functions, composing stage and terminal cost terms, are the best
explanations for a given sequence of observations. We follow by
empirically evaluating our approach on the real-time, continuous
environment of aerial combat whereby we define and are able to
differentiate between a range of five challenging aerial maneuvers.

Aerial combat is a highly complex, continuous domain: for
each agent, its position, orientation, linear velocity and acceleration
(thrust) need to be be tracked and trajectories span large periods of
time covering long, continuous distances. Planning and
recognition in these real world domains often calls for rapid
responses to changing conditions and frequently requires
planning in the absence of reliable data (Borck et al., 2015a).

To perform real-time behaviour recognition, we solve the
problem as online behavior recognition in continuous
domains. We tested the proposed approach over a benchmark
consisting of many partial trajectories implementing a range of
five complex aerial maneuvers, inherently hard to distinguish and
unique to the challenging unmanned aerial maneuvers domain;
flying straight, pure pursuit, lead pursuit, stern conversion and
offensive flight. We were able to achieve a True Positive rate of
100% recognition and a False Negative rate of 2% while also
evaluating the Single True Positive rates whereby the correct
behaviour was recognized alone. Our results enable us to provide
more insight as to the similarities of the behaviours and the
challenges of the aerial maneuver domain.

The rest of the paper is constructed as follows; Section 2
discusses existing behaviour recognition research with particular
focus on the aerial maneuvering domain. Section 3 provides a
formal definition of the problem of behaviour recognition with
online kinodynamic planning. Section 4 discusses the domain of
aerial maneuvering and its modelling within the context of the
ACE0 multi-agent-based-simulation environment. Section 5
describes the experimental setup used in this study and
Section 6 presents and analyses the results and concludes the
paper by briefly describing potential future work directions.

2 RELATED WORK

The problem of behaviour recognition is closely linked to that of
goal and/or plan recognition; recognizing a goal or intention

without complete knowledge about any actions taken to achieve
or further the former (Schmidt et al., 1978; Sukthankar et al.,
2014; Van-Horenbeke and Peer, 2021). One approach towards
solving the problem of goal recognition relies on the use of a
dedicated plan library as the basis for the recognition process
(Heinze et al., 1999). The plan library efficiently represents all
known plans to achieve known goals. In this manner observations
are matched against existing plans within the library to determine
the most likely plan candidate. This approach is also prevalent
among behaviour recognition research. Heinze (2004)
investigated a range of software design patterns for
implementing intention recognition in multi-agent systems
including plan-library based approaches; Menager et al. (2017)
focused on goal recognition of a team member’s goals and
Azarewicz et al. (1986) focuses on plan recognition in the
tactical air domain using a blackboard based cognitive
architecture.

When it comes to behaviour recognition, the recognition of
aircraft behaviour via the analysis of an aircraft’s trajectory is
important in both civil and military aviation. In civil aviation,
determining an aircraft’s behaviour is especially important in
times where communication with the aircrew has been disrupted
due to an emergency that is either accidental or explicitly
malicious. In this case, an aircraft’s trajectory relative to
known landmarks such as airports, way-points and known
flight paths can be used to see if an aircraft is behaving in an
anomalous manner. In military aviation, where uncertainty and
the fog of war are ever present, behaviour recognition via radar
surveillance (or other sensors) is important, not only for the
purposes of early warning but also for enhancing situational
awareness to determine the next course of action. This is of
particular concern in the domain of air combat where an
opponent is by definition non-cooperative and adversarial. In
order to select a viable course of action, predicting the behaviour
of an opponent aircraft (or team of aircraft) becomes critical to
the success of a mission.

In the air combat domain, a behaviour could refer to an
aircraft trajectory, a stand-alone maneuver, a maneuver
relative to another aircraft or an individual or team tactic.
Second, the type of agent reasoning model being used in a
constructive simulation has the potential to influence if we are
recognising an opponent’s behaviour, goals or intentions. For
example, a number of air combat constructive simulations have
been built using the beliefs-desires-intention (BDI) model (Rao
and Georgeff, 1991) of agent reasoning. Since the BDI model
explicitly models mental states such as beliefs, desires, plans and
intentions onemight consider the recognition of the mental states
of other agents (in particular those of opponents or adversaries).
(Rao et al., 1994) specifically discuss BDI mental state recognition
in the air combat domain. These BDI models are often used in
constructive multi agent simulations, with no human
participants.

In contrast, human-in-the-loop flight simulators are often
used to train both civil and military pilots augmenting and
complementing real flight hours. A constructive simulation
environment however, is typically used in the field of military
operations research to study questions pertaining to aircraft
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procurement and acquisition, tactics and concept of operations
development. Constructive simulation environments are often
implemented as multi-agent-based simulations (Heinze et al.,
2002) where agents represent the decision making processes of
pilots or other aircrew (Heinze et al., 2008). In this work, unlike
most state-of-the-art simulators, the behaviour recognition
process has been explicitly modelled. This allows a single pilot
agent (or a team of agents) to recognise what the opponent is
doing and to ultimately select the appropriate course of action.

Within the context of complex, continuous domains, such as
aerial combat, the earlier plan-library-based approaches fall short,
as there are an infinite number of ways to achieve each behaviour,
resulting in a potentially infinite number of plan representations.
Each approach currently used for behaviour recognition deals
differently with the problem of continuous domains. One
approach characterizes behaviours through the use of linear
temporal logic (LTL) formulas which aim to encode paths
over time by using a finite set of propositional variables and
logical and temporal mode operators (Calvanese et al., 2002;
Pereira et al., 2021). Another approach uses behaviour trees as a
modular representation describing switching between a finite set
of tasks in a representation widely adopted to express expert
knowledge (Colledanchise et al., 2019; Sitanskiy et al., 2020). A
more recent approach uses a combination of Fuzzy Finite State
Machine (FFSM) models and neural networks to represent
behaviours, aiming to recognize the parameters used for
generating the fuzzy logic that governs the transitions between
the system’s states (Mohmed et al., 2020).

In order to define the transition between different states of a
problem with continuous dynamics, all of these approaches adopt
some means, either implicit or explicit, of discretization of states.
This discretization implies that there is no notion of progress in
between two consecutive states. An agent can either be in one state
or in the consecutive state, but not in between. Figure 1, left,
shows an intuitive, 2D, continuous, goal recognition problem that
underwent a discretization process of dividing the world into a
grid. The problem involves an initial state, I, and two potential
goal states, A and B. As proven in (Kaminka et al., 2018), “given

any cell size there exists a goal recognition problem such that
goals may be indistinguishable in the discrete domain yet
distinguishable in the continuous domain.” In the example,
the trajectory of the agent clearly favors goal A (under the
assumption of rationality) and could potentially lead to early
recognition. However the discretized observation sequence of
grid cells, does not convey this information. Figure 1, right,
shows the same example illustrated as a state diagram of a 3-state
FSM. The circles represent states and the arrows represent
transitions between the states. In order for the agent to
transition from the initial state, I to either state A or state B
the agent would actually have to reach the state, making earlier
recognition impossible. Therefore these representations of
behaviours are not useful for capturing the progress between
states.

A different approach to plan recognition, and one that has
evolved to work well on continuous domains, involves utilizing a
domain theory as part of the recognition process (Aineto et al.,
2019; Pereira et al., 2019; Masters and Vered, 2021; Meneguzzi
and Pereira, 2021). Plan recognition based on domain-theories
assumes that any valid sequence of actions is a possible plan and
using the domain description in the recognition process to
generate possible plan hypotheses, thereby removing the
reliance on a plan-library. Lesh and Etzioni (Lesh and Etzioni,
1995) and Martin et al. (Martin et al., 2015) compute specialized
representations for goal recognition, constructed from a domain
theory and incoming observations. Baker et al. use policies to
calculate goal likelihoods by marginalizing over possible actions
and generating state transitions, using only limited replanning
(Baker et al., 2005). Pereira et al. use the domain theory to
compute planning landmarks, and then use them to rank goal
hypotheses and speed up the recognition process (Pereira and
Meneguzzi, 2016; Pereira et al., 2017; Vered et al., 2018).
However, all of these approaches work with discrete domain
theories, and do not directly translate to continuous domains.

We are inspired by Mirroring (Vered et al., 2016; Vered and
Kaminka, 2017), a goal recognition approach, especially suited
towards continuous domains and most closely related to plan

FIGURE 1 | (Left) Discretized goal recognition problem replicated with permission from Kaminka et al. (2018). (Right) Same goal recognition problem extended as
a Finite State Machine (FSM).
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recognition as planning (PRP) which was first presented by
Ramırez and Geffner (2010, 2009) and further developed by
Sohrabi et al. (2016), and Masters and Sardina (2019). In PRP,
the recognizer uses an unmodified planner as a black box to
generate recognition hypotheses that match the observations. A
heuristic comparison between the generated plans and an optimal
plan that ignores the observations is used to probabilistically rank
the hypotheses. Inspired by these investigations,Mirroring uses a
planner (as a black box) to generate plan and goal hypotheses on-
the-fly over continuous domains. While this approach is
adequately suited towards complex, continuous domains, it
has only been used in the context of goal recognition and
needs to be uniquely adapted to be able to recognize behaviours.

Behaviour recognition in beyond visual range (BVR) air
combat has also been much researched. Borck et al. (2015b)
used case based behaviour recognition. The set of actions the
agent attempts to recognize are: pursuit, whereby an agent flies
directly at another agent, drag, whereby an agent tries to
kinematically avoid a missile by flying away from it, and
crank, whereby an agent flies at the maximum offset but tries
to keep its target in radar. In this work, they also assume full
knowledge of the capabilities of each observed aircraft rather than
obtaining that information through observations. Additionally,
the adaption to continuous domains happens by discretizing the
position and heading of each agent into the features of their
evaluated cases. As shown by Kaminka et al. (2018), discretization
could lead to reduced recognition accuracy because for every
possible grid cell-size there exists a goal recognition problem that
is indistinguishable in the discrete domain, yet distinguishable in
the continuous domain.

Borck et al. (2015a) also address the multi agent behaviour
recognition problem in beyond visual range or BVR air combat by
incorporating a planner to assist with the recognition process. A
participating UAV performs simultaneous online behaviour
recognition and planning to assist observation gathering tasks.
However the main focus of this work was to study the relations
between acting to influence the generated observation and the
recognition inference. Their recognition process is very expensive
as it requires a decomposition of tasks, Mk candidate models for
the planner, M being independent models for individual agents
and k being the number of agents.

To address this we provide a formal definition to the problem
of kinodynamic behaviour recognition which now enables us to
perform multi agent behaviour recognition in BVR air combat
scenarios through the use of an updated and adapted recognition
algorithm, inspired by Mirroring, which leverages the power of the
ACE0 simulator. In our work we use continuous planners to
generate the possible behaviour hypotheses hence improving on
the efficiency of the recognition process. Within the context of
kinodynamic behaviour recognition this means that our approach
can potentially leverage existing work on kinodynamic motion
planning (Chen et al. (2020); Barbosa et al. (2021); Mohammed
et al. (2021)) to generate potential plan hypotheses.

Many domains are brought together in this work, an analysis
most similar to the goals of our work would be in the treatment of
beyond visual range combat by (Floyd et al., 2017a,b). Floyd et al.
(2017b) introduce the Tactical Battle Manager (TBM), which uses

several integrated techniques to control an UAV in simulated air
combat scenarios. The behaviour recognition component identifies
the target aircraft by measuring the angle of each potential target vs
the entity’s angle, again using a discretization process. The opponent
with the lowest standard deviation over time is classified as the
target, assuming the entity will keep its target within its field of
vision. Each aircraft can either be attacking or evading. In contrast to
their work, we focus primarily on combat within visual range using a
range of planner-based behaviour recognition. We apply some of
the techniques explored by Vered and Kaminka (2017) to a
continuous flight behaviour recognition problem, successfully
recognizing a range of behaviours simulated through the ACE0
multi-agent-based-simulation environment (Papasimeon and
Benke, 2021) (described in further detail in Section 4).

3 BEHAVIOUR RECOGNITION WITH
ONLINE KINODYNAMIC PLANNING

3.1 Online Kinodynamic Planning
We define the problem of online kinodynamic planning as the
following optimization problem.
Definition 1 (Online Kinodynamic Planning Problem). Given
an initial state xstart ∈ X , and a planning horizon T, the task is to
find a policy π � u0, . . ., ut, . . ., uT, where ut ∈ U(xt) for t � 1, . . .,
T − 1 and disturbance wt ∈ D(xt, ut), that maximizes the cost

max
u0 ,...,uT−1

E ∑T−1
t�0

q xt, ut, wt( ) + p xT( )[ ]
s.t. xt+1 � f xt, ut, wt( ), t � 0, . . . , T − 1

x0 � xstart

(1)

X ∈ Rn represents the set of possible states of the world in
continuous spaces, in line with standard motion planning notation
(LaValle, 2006).U(xt) are applicable actions or control inputs,D(xt,
ut) is the random disturbance characterised by either an
independent probability distribution or a distribution dependent
only on the current state and control inputs, q is the stage cost and p
is the terminal cost. Stage costs allow us to specify limits over the
trajectory followed by the agent to ensure trajectories are smooth
and velocities are not too high, ensuring trajectories impose less
stress on the airframe. Terminal costs are used to favour trajectories
that end up in states which are deemed to be useful for future
trajectories.We note that we do not solve the problem inDefinition
1 optimally, but rather we aim at finding policies π̂ with costs that
are less than or equal to that of π*, the maximizer or optimal
solution, through the use of an off-the-shelf planner. flushleft

3.2 Kinodynamic Behaviour Recognition
We build on the plan recognition problem definition in (Kaminka
et al., 2018) and update it to address behaviour recognition. We
define the behaviour recognition problem R as:

Rd〈X , O, xstart, B〉 (2)

X ∈ Rn represents the set of possible states of the world. O is
defined as an ordered sequence of observations [o1, . . ., o|O|],
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where each observation ox ∈ O is also a state ox ∈ X . xstart ∈ X is
the initial state and each behavior β � 〈q, p〉, β ∈ B is defined by
the stage and terminal cost functions q and p. Each behavior is
associated with a prior probability P(β). We refer to actions or
control inputs as u ∈ U, and plans or policies as π ∈UT, where T is
the horizon of the kinodynamic problem.

We define the kinodynamic behavior recognition problem as
the task to determine β*, the behavior hypothesis with maximal
probability, given the observation sequence.
Definition 2 (Kinodynamic Behaviour Recognition). Given an
observation sequence O � [o0, . . ., oj, . . ., o|O|], where j � max(|O|
− T, 0), and T is the horizon of the kinodynamic planning problem,
the initial state xstart � oj is set to the observed state T steps before
the last observation, or the initial observation in the sequence if
T ≥|O|. The online kinodynamic behavior recognition problem is
defined as β* � argmaxβ∈BEπβ

X
[P(πβ

X | [oj, . . . , o|O|])], where

πβ
X � [f(xt, ut, wt) | t � 0, . . . , T − 1, ut ∈ πβ] is the sequence

of states induced by the policy πβ of the kinodynamic planning
problem whose stage and cost functions are defined by β.

Each policy πβ is computed using Approximate Dynamic
Programming (Bertsekas, 2017). The planner computes a
T-step lookahead using Iterative Width (Lipovetzky and
Geffner, 2012) to efficiently approximate the optimal
policy (Ramirez et al., 2018). The available observations OT �
[omax(|O|−T,0), . . ., o|O|] are matched against πβ

X by taking their
Euclidean distance or L2 norm:

d OT, π
B
X( ) � ∑|OT |

i�0
‖oi − xi‖2 (3)

Where xi ∈ πβ
X and oi ∈ OT. If |OT| < T, i.e., the sequence of states

generated by πβ
X is longer than the observation sequence, then the

euclidean distance is computed only for the first |OT|
observations. The likelihood of observing O given a behavior β
is then defined with a Boltzmann distribution as follows:

P O | πβ
X( ) � e−d O,πβX( )

∑β′∈Be
−d O,πβ

′
X( ) (4)

Behaviors that minimize the Euclidean distance with respect to
the observations O are considered more likely, assuming agents
are perfectly rational (Dennett, 2009) - as they approximate the
optimal policy π*. The most likely behavior is then defined as
P(πβ

X | O) � α P(O | πβX) P(β), where α is a normalization factor,
and P(β) is the prior probability of each behavior. In the
experiments below, we assume a uniform prior distribution.

4 SIMULATING AERIAL MANEUVERS

4.1 Simulation Environment
To evaluate our behaviour recognition approach we utilize the
state-of-the-art ACEmulti-agent-based-simulation environment,
which models multiple aircraft flying around a virtual
environment. ACE includes computational representations of
an aircraft’s flight dynamics, flight control systems and
sensors. A number of agent-based models are used to

represent the decision making models which control the
aircraft, implementing higher level maneuvers and tactics. The
agent-based decision making models can represent the reasoning
processes of a human pilot or an autonomous system as part of an
Unmanned Aerial Vehicle (UAV). For the purposes of this work,
a light-weight version of ACE, known as ACE0 was employed.
Further details on the architecture of ACE0 can be found in the
paper by (Papasimeon and Benke, 2021). ACE0 is a minimal
subset of ACE representing only two aircraft (or UAV) in 1v1
adversarial scenarios.

By default ACE0 implements both Finite State Machine (FSM)
and Behaviour Tree (BT) based agent reasoningmodels to control
the virtual aircraft in the simulation. More detail on behaviour
trees can be found in the works of Martzinotto et al. (2014) and
Colledanchise and Ögren (2017). However, ACE0 was specifically
designed to accommodate different types of agent reasoning
models. It has been used with a range of agent reasoning
technologies, including automated planning (Ramirez et al.,
2017, 2018), evolutionary algorithms (Masek et al., 2018; Lam
et al., 2019; Masek et al., 2021), reinforcement learning
(Kurniawan et al., 2019, 2020) and Generative Adversarial
Networks (Hossam et al., 2020). In this work, we build upon
the work of (Ramirez et al., 2017, 2018) using an automated
hybrid planning approach combined with Model Predictive
Control (MPC) to define and generate the behaviours in ACE0.

In ACE0 the full state xt is defined by the state of each UAV i,
represented by its position (xi, yi, zi), velocity vector (vxi, vyi, vzi)
and orientation (ψi, θi, ϕi), which correspond to the Euler angles
representing the yaw, pitch and roll of the aircraft around the zi, yi
and xi axes respectively. While ACE0 can support many different
types of flight dynamics models of varying fidelity, in this study, a
simplified flight dynamics model was used, with no random
disturbance wt and the following kinematic equations.

_x � v(t)cosψ(t)cos θ(t) , _y � v(t)sinψ(t)cos θ(t) ,
_z � v(t)sin θ(t) , _ψ � g

v(t) tanϕ(t)
(5)

Here v(t) is the speed of the aircraft calculated as the
magnitude of the velocity vector and g is the acceleration due
to gravity. We assume the velocity vector is aligned with the
aircraft’s nose and hence other aerodynamic effects such as the
angle of attack AOA or α, the slide-slip angle β and the wind
direction are not modelled.

Each UAV model in the simulation environment can be
controlled through a number of commanded parameters (ψc,
gloadc, θc, vc). These represent the commanded yaw angle ψc

which allows the aircraft to turn, the commanded g-load factor
gloadc which affects the aircraft turn rate, the commanded pitch
angle θc which allows the aircraft to climb and descend and the
commanded speed vc which allows the aircraft to speed up and
slow down.

Hence, to turn to a desired heading ψc the pilot agent in the
simulator can request a commanded yaw angle ψc together with a
desired gloadc factor which will affect how fast the aircraft turns
and as a result affects the roll angle ϕ. The pilot agent can also
request the aircraft to climb or descend by requesting a
commanded pitch angle θc or to speed up or slow down by
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requesting a desired speed vc. A simple flight control model
within ACE0 interfaces with the flight dynamics model to
control the UAV dynamics. The state of the system is hence
defined by a state vector for each aircraft in the simulation. If we
denote the blue and red aircraft as aircraft i and j we can present
the state of the system sij(t) at any given simulation time t as
follows.

sij(t) � xi, yi, zi, ψi, θi, ϕi, vxi, vyi, vzi
xj, yj, zj, ψj, θj, ϕj, vxj, vyj, vzj

( ) (6)

Similarly, we can define the action vector ai(t), for aircraft i at
simulation time t as follows;

ai(t) � ψci,( gloadci, θci, vci) (7)

Where the subscript c denotes a commanded or desired value. An
overview of the UAV flight dynamics state variables and agent
actions available in the simulator are shown in Table 1.

These aircraft commands can be grouped together to construct
higher level individual maneuvers, either stand alone or relative to
another aircraft. These can include maneuvers to fly a particular
search pattern and maneuvers relative to other aircraft such as
intercepts and evasions. Subsequently these maneuvers can be
used in Finite State Machines (FSM) or Behaviour Trees (BT) to
implement more sophisticated tactical behaviour. However, as
stated previously, in this work the behaviours are generated as

sequences of actions in the form of plans generated by an
automated planner.

When considering maneuvers relative to another aircraft a
number of additional parameters must be considered, which can
be seen in Figure 2. In this figure, the blue UAV has a sensor lock
on the red UAV. The right image shows the relative orientation of
the blue and red UAVs, which is defined through a number of
attributes; From the perspective of the blue UAV, these are: R, the
range between the two aircraft; ATA, the antenna train angle 1,
the angle of the red aircraft relative to the blue aircraft’s nose; and
AA, the aspect angle, the angle from the tail of the red aircraft
relative to the blue aircraft. These angular conventions come from
the domain of air combat defined by Shaw (1985) and Burgin and
Sidor (1988) and can be used to define relative maneuvers and
behaviours between aircraft.2 By definition (and as shown in
Figure 2) these angles satisfy the following relationship.

AABR + ATABR � AARB + ATARB � π (8)

From the perspective of the blue aircraft it is then possible to
represent the simulation state at time using a set of derived state
variables. We can describe this derived state as sBR′(t) where

sBR′ (t) � ATABR, AABR, RBR,ΔvBR( ) (9)

The distance or range between the blue and red aircraft is
specified as RBR and the velocity differential between blue and red

TABLE 1 | An overview of the input state variables (left) and the commands available to control the simulated UAV in ACE0.

State Variables Description Agent Command Parameters

x, y, z Position SetFlyLevelCmd —

ψ, θ, ϕ Orientation SetPitchAngleCmd θc
vx, vy, vz Velocity SetAltitudeCmd zc, θc
gload G-Load Factor SetSpeedCmd vc
xc, yc, zc Commanded/Desired Position SetHeadingCmd ψc

ψc, θc, ϕc Commanded/Desired Orientation SetHeadingGLoadCmd ψc, gloadc
vc Commanded/Desired Speed SetWaypointCmd xc, yc
gloadc Commanded/Desired G-load

FIGURE 2 | (Left) 3D visualisation of a two UAVs (blue and red) from a run generated by the ACE0 simulation environment. (Right) Relative angle conventions
between the two UAV as implemented in ACE0.
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isΔvBR. This application of feature engineering to reduce to size of
the state space to derived or domain relevant variables is common
in machine learning applications. For example, this reduced
feature set shown in Eq. 9 was used as the input to a
reinforcement learning algorithm to discover agent policies for
ACE0 in the work of Kurniawan et al. (2019, 2020).

The ATA and AA angles are important, because in many
military aircraft missions it is important to know how far off the
nose an opponent aircraft is as well as if we are approaching it
head-on (nose-to-nose) or approaching it from the rear sector.
This is shown in Figure 3 which shows the trajectories two UAV,
Viper (Blue) and Cobra (Red) in the 2D plane (left) and in
orientation-space (right).

In this scenario, the red UAV (Cobra) flies through a series of way-
points while the blue UAV (Viper) attempt to pursue Cobra. The
angular situation diagram allows us to specify the tactical situation at
any given time-step in the simulation run. According to common
convention we plot the absolute values of the ATA and AA angles
(Park et al., 2016). Also by convention, each of the quadrants is
labelled according to the tactical posture the current aircraft (labelled
in grey text in the figure), with the bottom two quadrants labelled as
Offensive and the top two quadrants labelled as Neutral and
Defensive. They are defined as follows:

• Offensive (Bottom-Right Quadrant) π
2#|AA|#π and

0#|ATA|#π
2 corresponding to the forward sectors of each

aircraft being approximately aligned. If we further constrain the
angular conditions to π

4#|AA|#π and 0#|ATA|#π
4 thenwe

consider both aircraft to beHead-Onwhich is indicated by the
grey shaded area in the bottom-right quadrant of Figure 3.

• Offensive (Bottom-Left Quadrant) 0#|AA|#π
2 and

0#|ATA|#π
2 corresponding to the current aircraft

pointing it’s nose to it’s opponent’s tail. For some
maneuvers the goal is not only to get behind the
opponent’s tail but to meet stricter angular parameters.

This is indicated by the shaded blue region which is
specified by 0#|AA|#π

3 and 0#|AA|#π
6.

•Neutral (Top-Left Quadrant) 0≤ |AA|#π
2 and

π
2#|ATA|#π

corresponding to the two aircraft approximately facing away
from each other.

• Defensive (Top-Right Quadrant) π
2#|AA|#π and

π
2#|ATA|#π corresponding to the opponent aircraft
aligning it’s nose with the current aircraft’s tail. In some
situations (like air combat) this is considered dangerous
and hence the aircraft is in a defensive posture.

For aircraft that are facing each other head-on, angular
situation being in the bottom right hand corner of the angular
situation plot, it is often the case that they want to maneuver
themselves behind the opposing aircraft and find themselves in
the bottom left hand corner of the angular situation plot. As
mentioned above, the goal is satisfied once the aircraft is in blue
shaded region shown in Figure 3 (Right).

This type of maneuver is important for a number of reasons,
including visual identification of a threat or non-cooperative
aircraft, formation flying and escort, aerial refuelling and in
some instances, air combat where some weapons can only be
employed against the rear sector, stern in naval terminology, of an
opponent aircraft. As such, this type of maneuver is known as a
Stern Conversion. In the following section we describe the stern
conversion and other behaviours that our behaviour recognition
system attempts to recognise.

4.2 Agent Behaviours
In this section we describe the five aerial maneuvers that we
considered in our experimental study. These are:

• Stern Conversion. The observing agent executes a series of
maneuvers to get behind the opponent aircraft while
maintaining a specified separation distance on approach.

FIGURE 3 | (Left) ACE0 generated trajectories of Viper (Blue UAV) and Cobra (Red UAV) in 2D-space. (Right) The angular situation of Viper relative to Cobra in
orientation space where the x-axis plots the aspect angle |AA| against the antenna train angle |ATA| on the y-axis.
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• Pure Pursuit. The observing agent points the aircraft nose to
the opponent and flies directly at it.

• Lead Pursuit. The observing agent points the aircraft nose at
a specified lead angle in front of the opponent and tries to fly
a pursuit maneuver that leads the opponent. The idea here is
to point the nose ahead of the opponent trajectory to predict
where it is going.

• Offensive Flight. The observing agent attempts to keep the
opponent in the two lower (offensive) quadrants of the
angular situation plot.

• Fly Straight. The observing agent flies a straight line
completely ignoring the opponent aircraft. We use this
maneuver as a baseline.

All of these maneuvers are implemented in ACE0 in either low
level pilot action or higher level behaviours which are composed
of lower level actions.

Depending on the initial condition of the simulation (position,
orientation and speed of the two aircraft) it is entirely possible that
all these maneuvers (with the exception of the Fly Straight
maneuver) can not only succeed in achieving the goal of
maneuvering behind an opponent aircraft but could do so with
some very similar looking trajectories. This being the case, the ability
to distinguish between the behaviours is very challenging to achieve.

A conceptual representation of a stern conversion can be seen
in Figure 4. The maneuver is composed of a series of lower level
actions and maneuvers. One can imagine if the blue aircraft
started roughly behind the red aircraft the trajectory would look
closer to a Pure Pursuit maneuver rather than the blue trajectory
represented here.

Figure 5 presents graphical representations of the stern
conversion maneuver. On the left is a finite state machine

(FSM) representation of the decision logic, while on the right
we have behaviour tree (BT) representation of the same
maneuver. In the FSM representation the maneuver is made
up of a series of states which execute lower level maneuvers and
events allowing the FSM to transition from one state to another.
As can be seen, this representation is rather simplistic such that at
any point in time the agent can only be in one of five states. In the
behaviour tree implementation the execution of behaviours is
determined by the state of the conditional nodes in the tree.While
more complex and flexible than the FSM representation, this
representation still lacks the flexibility of a continuous plan
generation. By using an automated planner to generate the
stern conversion maneuver we allow for a more flexible
representation that makes possible the recognition of complete
behaviour trajectories according to highly sensitive cost
functions.

Figure 6 shows indicative trajectories for some of the
behaviours being considered. There are five aircraft in this
scenario; Viper-1 (Blue), Viper-2 (Orange), Viper-3 (Green),
Viper-4 (Purple) and Cobra-1 (Red). The opponent aircraft all
start from a slightly different starting location and implement the
following behaviours; Viper-1 (Blue) is performing Stern
Conversion; Viper-2 (Orange) performs Pure Pursuit; Viper-3
(Green) performs Lead Pursuit; Viper-4 is executing Fly Straight
(Left) Trajectory of Cobra-1 and Vipers-1\enleadertwodots four
in the 2D plane. In the right vignette in Figure 6 we can see
corresponding trajectories in the angular situation classification
space. The left chart in the figure shows the trajectories of all
aircraft on the 2D plane, whereas the right chart shows the
angular situation of Viper 1–4 each with respect to Cobra-1
(Red). The trajectories represent are generated from a 300 s
(5 min) ACE0 simulation run. Cobra-1 (Red) starts the

FIGURE 4 | A conceptual diagram of a blue UAV (the observer) performing a stern conversion maneuver with respect to a larger red aircraft. Reproduced with
permission from Papasimeon and Benke (2021).

Frontiers in Artificial Intelligence | www.frontiersin.org October 2021 | Volume 4 | Article 7170038

Fitzpatrick et al. Behaviour Recognition with Kinodynamic Planning

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


scenario in the top-right hand corner of the grid and flies in a
straight line at a heading of 225°, with its trajectory crossing the
map diagonally.

On the other hand, Viper-1,2,3,4 all start on the opposite side
of the map with a heading of 45° effectively facing Cobra-1 and
flying in its general direction. Viper-1,2,3,4 all start from the same
x-coordinate but are staggered by a couple of kilometres in the
initial y-coordinate for the purposes of clarity.

Viper-1 flies a Stern Conversion maneuver indicated by the
Blue trajectory. As can be seen by the Blue trajectory, the stern
conversion involves Viper-1 flying towards opponent aircraft,
Cobra-1. Once a specified range is reached, the maneuver begins
and Viper-1 flies at a specified offset angle until a desired
horizontal separation has been achieved. Once they have
passed each other, Viper-1 begins a turn to get behind
Cobra-1 and begins to approach it to follow it. We can see

FIGURE 5 | Agent diagrams from ACE0 implementing a stern conversion maneuver (Left) Stern conversion implement as a finite state machine (FSM) agent and
(Right) Stern Conversion maneuver implemented as a behaviour tree (BT) agent. Reproduced with permission from Ramirez et al. (2017) and Ramirez et al. (2018).

FIGURE 6 | Comparison of behaviours generated by ACE0, showing four aircraft flying different behaviours with respect to the red aircraft (Cobra-1) which is
implementing Fly Straight.
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that this has been successfully achieved both in the trajectory
chart and in the angular situation classification chart, where
Viper-1 starts in the bottom right corner (effectively head-on)
and manages to maneuver the situation to the bottom-left hand
corner where its behind Cobra-1’s tail. As one can imagine, the
shape of the stern conversion maneuver is susceptible to the
initial conditions of the two aircraft. For example, an attempt at
a stern conversion will look more like pursuit if the two aircraft
are not facing head-on initially.

In comparison if we look at the trajectory for Viper-2
(Orange) we simply have behaviour that “chases” Cobra-1. If
we look at both charts from Figure 6 we can see at some point,
due to the relative speeds of Viper-2 and Cobra-1, that Viper-2
passes Cobra-1 and ends up in the Neutral situation (with tails
facing each other), hence requiring Viper-2 to turn around and
chase Cobra-1; ultimately achieving the goal of getting
behind it.

On the other hand Viper-3 (Green) is flying a Lead Pursuit
maneuver, where it attempts to maintain a lead angle of Cobra-1
(Red). We can see from the angular situation chart that it
manages to succeed with the transition from head-on to
following Cobra-1. We can see that this maneuver causes a
slight overshoot at times ending up in neutral territory,
settling at a lead angle of |ATA| ≈ 30° for a short time it
overtakes Cobra-1 and ends up in a defensive position for a
short period of time at the end of the simulation run. This
problem could be alleviated by making the maneuver slightly
more complicated through the introduction of speed control.
Currently both aircraft fly at their initial speed.

Viper-4 (Purple) flies in a straight line, slightly offset from a
direct face-to-face encounter with Cobra-1. However, the story of
Viper-4’s trajectory with respect to Cobra-1 is easily told by the
situation classification chart where it starts in the lower right
offensive quadrant proceeds to end up in the top-left neutral
quadrant with the two aircraft tails pointing at each other.

As can be seen in Figure 6 the Stern Conversion maneuver
maintains an angular situation classification of an offensive
posture, that is within the lower two quadrants, for the
entirety of the maneuver. As such, this maneuver can also be
considered a valid Offensive Flight maneuver.

In the following we describe the behaviours as implemented
from the perspective of the planning based behaviour recognition
system, including formal definitions of the goal and cost
functions.

4.3 Behaviour Specifications
4.3.1 Notation and Definitions
We use pb and pr to denote the position vectors and Vb and Vr to
denote the velocity vectors of the blue and red aircraft
respectively. The distance (or range) between the two aircraft
is then defined as

R � |pb − pr| (10)

We use Rmin and Rmax to specify the minimum and maximum
range. The antenna train angle (ATA) and the aspect angle (AA)
described earlier are now defined as

ATA � arccos
pr − pb( ) · vb

‖pr − pb‖ ‖vb‖
( )[ ] (11)

And

AA � π − arccos
pb − pr( ) · vr

‖pb − pr‖ ‖vr‖
( )[ ] (12)

We use the notation ATAub and AAub to denote upper bounds
on the ATA and AA angles respectively.

In the following we describe each of the behaviours being
considered; Stern Conversion (SC), Pure Pursuit (PP), Lead Pursuit
(LP), Offensive Flight (OF) and Fly Straight (FS). Each of the
behaviours is formally defined in terms of a scoring function
Sx where the subscript x denotes the behaviour. The cost and and
terminal functions q and p that were described in Section 3.2 are
specified in terms of each behaviour’s scoring function.

q(x, u) � p(x) � Sx,∀x ∈ SC,PP, LP,OF, FS{ } (13)

For each behavior, functions q and p follow the same
definition.

4.3.2 Stern Conversion
The purpose of the Stern Conversion behaviour is for the blue
UAV to maneuver itself behind the red UAV such that a number
of conditions are met. These are that |ATA| ≤ATAub, |AA| ≤AAub

and Rmin ≤ R ≤ Rmax. The exact values of these parameters depend
on the purpose of attempting a stern conversion (such as
obtaining a visual identification, air to air refuelling, formation
flying or putting the blue aircraft into an offensive zone). In this
work we use the values of ATAub � 60°, AAub � 30°, Rmin � 100 m
and Rmax � 6000 m, which represent the conditions for a rear
quarter visual identification of the red UAV. The scoring function
for the stern conversion maneuver Ssc is defined as

Ssc � wg gpa + 1 − wg( ) ρsc (14)

Where wg is a constant weight balancing the reward of
maintaining the goal condition and orienting towards the goal.
We set this value to 0.8. gpa, the score given for satisfying the goal
is defined as

gpa � 1.0, if
Rmin ≤R≤Rmax and
|AA|<AAub and
|ATA|<ATAub

0.0, otherwise

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (15)

Where AAub is π
6 (30°), ATAub is π

3 (60°), Rmin is 100 m, Rmax is
6000 m.We specify the reward score as ρ so as to not overload the
symbol R which is used to specify the range between the two
aircraft. The reward score for the stern conversion behaviour ρsc is
made up an angular orientation component and a range
component. This means in order to maximise the score both
the relative angular orientation and the range between the two
aircraft need to be considered.

ρsc �
1
2

1
2

1 − |AA|
π

( ) + 1 − |ATA|
π

( )[ ] + exp −2 R − Rd( )
πkR

[ ]{ }
(16)
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We used a kR constant value of 1,000 m and a Rd value of
1,000 m. Rd denotes the desired range we want to be behind the
opponent aircraft.

4.3.3 Pure Pursuit
A Pure Pursuit behaviour involves pointing the aircraft’s nose at a
specific target and flying directly towards it. It can be considered a
following behaviour as it simply follows the designated target.
This can be implemented by setting the desired heading of the
UAV to the ATA of the target. This is a common behaviour that
can be used for various reasons from pursuing an opponent, to
formation flying, visual identification and refueling. The scoring
function for the pure pursuit maneuver Spp is

Spp � kr exp −k
π

π − |ψb − ξ| − π( )[ ] (17)

Where kr and k are set to a constant value of 10, ψb is the yaw of
the controlled, blue, aircraft and ξ is the pure pursuit angle and is
defined as

ξ � arctan
yr − yb

xr − xb
[ ] (18)

Where (xb, yb) and (xr, br) are the (x, y) cartesian coordinates of
the blue controlled and red aircraft respectively.

4.3.4 Lead Pursuit
A Lead Pursuit behaviour points the blue aircraft’s nose a certain
number of degrees in front of the red aircraft. A lead angle of ψ+ �
30° is commonly used. This is known as pulling lead and attempts
to predict where the red aircraft will be in the future and hence is
used in intercept maneuvers. We implemented this behaviour by
rewarding actions that get the UAV closer to a heading which
points 30° in front of the opposing UAV. The scoring function for
the lead pursuit maneuver Slp is

SLP � kr exp −k
π

π − |ψb − η| − π( )[ ] (19)

With the same constant values used in the Pure Pursuit
behaviour. We denote the lead heading using η and define it
as follows

η �
ξ + ψ+, ξ′ > ξ
ξ − ψ+, ξ′ < ξ
ξ, otherwise

⎧⎪⎨⎪⎩ (20)

Where ψ+ is the lead angle, which we set to a constant value of π6,
and ξ′ is the look ahead lead angle defined as

ξ′ � arctan
yr
′ − yb

′
xr′ − xb′

[ ] (21)

Where yr
′ , yb

′ , xr′ and xb′ are

xb′ � xb + k′vxb yb
′ � yb + k′vyb (22)

xr′ � xr + k′vxr yr
′ � yr + k′vyr (23)

We use a k′ constant value of 5.0, standing for 5 s of lookahead.
vxb and vyb are the (x, y) components of the controlled aircraft’s

current velocity and vxr and vyr are the (x, y) components of the
enemy aircraft’s current velocity.

4.3.5 Offensive Flight
If a blue aircraft can maneuver to always keep the red aircraft in
front of it, it typically means it has the advantage. This is known as
being in an offensive, as opposed to a defensive, posture and is
defined as keeping the ATA between ± 90°. We implemented this
behaviour by rewarding actions which put the UAV in a state
where the antenna train angle from the UAV to the opposing
UAV is between ± 90°, awarding a higher score the closer the
antenna train angle is to zero. The scoring function for the
offensive flight maneuver SOF

SOF � kr exp −k
π

π −
∣∣∣∣∣∣ψb − ω

∣∣∣∣∣∣ − π( )[ ] (24)

Where the offensive heading angle, ω, is defined as

ω � ATA (25)

Where as mentioned previously ATA is the antenna train angle
and ψb is the heading of the controlled blue aircraft.

4.3.6 Fly Straight
The Fly Straight behaviour aims for the UAV to fly straight and
level. We included this behaviour for two reasons. First, it is the
simplest behaviour and may therefore be used as a baseline and
second, it is used as a building block for more complex
behaviours. As a result it can be easily confused with other
behaviours. We implemented this behaviour by providing a
negative reward to actions that may change the direction of
the UAV. The scoring function for the fly straight maneuver
SFS is

SFS � −|gload| (26)

Where gload is the g force load on the controlled aircraft while it is
undertaking turning with a roll angle of ϕ.

5 EXPERIMENTAL SETUP

5.1 Experimental Architecture
The experimental architecture used in this work involves a two
stage process; a behaviour generation process which generates
aircraft trajectories to be used as observations and a behaviour
recognition process which attempts to recognise and correctly
classify observations to behaviours.

The high level overview of the behaviour generation process is
shown in Figure 7 which also illustrates the relationship between
the ACE0 simulation environment and multiple autonomous
planners. As can be seen the ACE0 behaviour simulation
encompasses the behaviour of two aircraft (UAV), Viper
(denoted in blue) and Cobra (denoted in red). The behaviours
for both aircraft are controlled by automated planners. In this
example Cobra, the red UAV, always flies in a straight line and
Viper, the blue UAV, flies one of the five behaviours mentioned
previously (Fly Straight, Pure Pursuit, Lead Pursuit, Offensive
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Flight and Stern Conversion). This is the process used in order to
generate observations for recognition.

The high level overview of the behaviour recognition process is
shown in Figure 8. This is the process whereby Cobra, the red
UAV, aims to accurately recognize the behaviour of Viper, the
blue UAV. The recognizer receives as input the last T steps of the
observation sequence, and the set of possible behaviours B,
defined in Section 3.2. The behaviour recognizer initial state
xstart is set to the beginning of the observation sequence. The
recognizer then utilizes a planner for generating potential
behaviour sequences which it will compare against the
observation sequence, at the end of which process the
recognizer will output the posterior probability of the
behaviours given the observation sequence, Section 3.2, Eq. 3.

5.2 Experimental Configurations
To evaluate our behaviour recognition approach we need to
consider a range of different initial configurations for the blue
and red UAVs. The primary factors that affect the initial
configuration is the range R (distance) between the UAVs and
their relative orientation as shown in Figure 2. By varying the
relative headings of the two UAVs we obtain different values for

the antenna train angle (ATA) and the aspect angle (AA). In all
configurations we set the red UAV flying straight and level (that is
in a straight line) at a fixed altitude and speed. To obtain our
different experimental configuration we vary the blue UAV’s

FIGURE 7 | Behaviour generation framework.

FIGURE 8 | Behaviour recognition framework.
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range and angular orientation relative to the red UAV. Hence
from the perspective of the blue UAV each experimental
configuration can be specified with three values (R, ATA, AA).
We use a horizon of T � 10 timesteps with a timestep of δ � 0.1 s
to define the kinodynamic problem (Def. 1). The planner solves
the kinodynamic problem on every new state as it uses only the
first applicable action u0 of the returned policy. The new state
results from the application of the action through the simulator.

As a part of experimental exploration, smaller experiments
were performed to investigate different values of T, the search
horizon, ranging from T � 1 to T � 100. these different
experiments produced minor different behaviours. These may
represent more optimal local or more optimal global states
considered by the planner, but as we only consider the control
actions from the first state suggested by the planner, a large
lookahead tends to be significantly less important in deriving real-
time, online planning decisions. The timestep resolution, δ,
similarly generates behaviours with minor differences, but
smaller scale informal tests suggest this likely does not
meaningfully change the recognition properties of the
algorithm and probably isn’t a particularly promising area to
examine.

We consider 36 starting starting positions for the blue UAV on
a 6 × 6 grid at 2.5 km increments up to a maximum of ±10 km in
the x and y axes relative to the red UAV. For each of these 36
starting positions for blue, we consider four representative
relative orientations. We define these relative orientations
using the conventions of the air combat domain (Burgin and
Sidor, 1988; Park et al., 2016) where the absolute value of the
aspect angle |AA| is plotted against the absolute value of the
antenna train angle |ATA| as shown in Figure 9. The convention
is to take advantage of symmetry, hence both axes are in the range

of 0°–180°. Any point on this chart represents a unique relative
orientation of the blue UAV relative to the red UAV. However we
consider four representative cases as shown in Figure 9 by
splitting the chart in to four quadrants each one 90 ° × 90 ° in
size. Starting in the top left quadrant, we define these as follows:

• Neutral: The blue and red UAVs are generally facing away
from each other and are in a neutral relative posture.

• Defensive: The blue UAV has its tail facing the red UAV and
is hence in a defensive posture.

• Offensive-Approaching: Both blue and red UAVs have their
noses roughly facing and approaching each other and the
blue UAV is in an offensive position. Also known as a head-
on configuration.

• Offensive-Behind: The blue UAV is behind the red UAV’s
tail also in an offensive posture or configuration.

In many air combat scenarios, one of the goals of a pilot during
a mission may be to maneuver their aircraft from the situation
represented by the bottom right hand corner (facing head-on
with an opponent) in Figure 9 into a configuration represented
by the bottom left hand corner (getting behind an opponent).

Given our 36 starting locations and our four relative
orientations we then have 144 geometric configurations in our
experimental setup. Finally, given these initial starting conditions
we consider the five aerial maneuvers that we want the blue UAV
to fly and are the subject of our behaviour recognition
experiment. We consider the Fly Straight, Pure Pursuit, Lead
Pursuit, Offensive Flight and the Stern Conversion maneuvers.
This gives us a total of 36 × 4 × 5 � 720 scenarios to consider.
With the exception of the straight line maneuver, all maneuvers
flown by the blue UAV are flown relative to the red UAV.

We consider a range of positions and orientations because the
maneuvers the blue UAV flies will look different depending on
the initial configuration. In fact, in many cases we expect that
some maneuvers will look very similar to others making them
difficult to distinguish not only by automated behaviour
recognition algorithms but also by human experts.

5.3 Evaluation
We used the following metrics to evaluate the performance and
efficiency of our behaviour recognition algorithm:

• True Positive Rate The number of time steps the correct
hypothesis was ranked as most likely (i.e., rank 1), which
indicates general accuracy. The more frequently the
recognizer ranked the correct hypothesis first, the more
reliable we consider the recognizer to be. We again
normalize using the length of the observation sequence.

• Single True Positive Rate The number of time steps the correct
hypothesis was ranked as most likely alone. By this measure we
are able to completely identify the chosen behaviour, with no ties
or confusion with other behaviours. This indicates a higher level
of confidence and precision by the recognizer. The more
frequently the recognizer solely ranked the correct hypothesis
first, the more confident it is. Higher values indicate better
recognition success. We again normalize using the length of
the observation sequence.

FIGURE 9 | Relative orientation configurations defining the Blue UAV’s
posture relative to the Red UAV.
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• False Positive Rate The number of time steps a behaviour
which was not the true behaviour was ranked first. Since our
approach allows for multiple behaviours to be ranked first
concurrently, Section 3.2 Eq. 3, this metric is of critical
importance in determining the similarity of trajectories and
the quality of discrimination. For example, a trivial behaviour
recognition technique would be to assume all behaviours are the
true behaviour, without considering the false positive rate; this
will rank well in other metrics, despite not being useful in
practice, if not outright dangerous. We further evaluated this
measure by looking at the number of behaviours tied as leading
behaviour hypotheses as well aswhich of the behaviours were tied.

6 RESULTS

6.1 Successful Behaviour Recognition
Our approach showed great promise for recognizing a range of
complex aerial maneuvering behaviours. We achieved a True
Positive rate of 100% over all behaviours. This means that we
always included the correct behaviour in the set of highest ranked
behaviour hypotheses. Since the observations tested were not
noisy, we were able to accurately match the partial observations to
behaviour hypotheses generated by the planners on demand.
Complementary to this result we also achieved a False Negative
rate of 0%, meaning we never excluded the correct behaviour
from our goal hypotheses.

Distinguishing completely between behaviours, as can be
determined by the Single True Positive rate, proved more
challenging due to the complexity of the domain and the
similarities between the behaviours. Even though, we were able
to fully distinguish the correct behaviour in 434, i.e. 60% out of
the initial 720 scenarios tested. For those scenarios which were
distinguishable, the percent of observations whereby the correct
behaviour was recognized alone in each scenario, can be viewed in
Table 2.

As can be seen, the Fly Straight behaviour was the most
recognizable behaviour, being uniquely distinguished over
99.9% of the observations on average per scenario, with a
minimum value of 98% and a maximum value of 100%. This
means that for each of the 434 scenarios where Fly Straight was
the correct behaviour, we were able to recognize it as the only
possible behaviour for almost all of the observation sequence.
This was somewhat to be expected as the Fly Straight behaviour is
independent of the trajectory of the opponent (red) aircraft with
the direction being the only distinguishing feature.

The hardest behaviour to recognize proved to be the Offensive
Flight behaviour. On average we were able to uniquely distinguish
it from all other behaviours in 86.5% of the observation
sequences, with a minimum value of 49.5% and a maximum
value of 99.1%. The trajectory generated by the Offensive Flight
behaviour is not only dependant on the trajectory of the opponent
aircraft but is also highly dependent on the initial configuration.
This behaviour attempts to maneuver the blue aircraft to position
the red aircraft in its forward sector, hence it is not obvious (even
for a human observer) what the trajectory should look like. For
certain initial orientations (such as Offensive-Behind) the
trajectory could resemble a Pure Pursuit or Lead Pursuit
maneuver.

6.2 Potential Sources for Behaviour
Confusion
One of the difficulties in distinguishing between the behaviours
considered in this paper is that they often result in similar
trajectories depending on the initial aircraft configuration. We
can demonstrate this through some examples as shown in
Figure 10 looking at different initial configurations between
blue and red aircraft. For the purposes of simplicity we
assume all red aircraft fly straight and level.

In Figure 10A we see that in the initial configuration both
aircraft are roughly facing head-on. The blue vectors in the Figure
denote the Fly Straight, Pure Pursuit and Lead Pursuit
maneuvers. While there is potentially some difficulty in
distinguishing between these maneuvers in this configuration,
the situation becomes even more difficult as they also
approximate the trajectory of an Offensive Flight and Stern
Conversion maneuver. In an Offensive Flight maneuver the
blue aircraft is required to keep the red aircraft in its forward
sector (denoted by |ATA| ≤ π). This is shown by the grey line
intersecting the blue aircraft. As can be seen, the Fly Straight, Pure
Pursuit and Lead Pursuit all satisfy the conditions for the
offensive maneuver in this configuration. Similarly when
considering the stern conversion, these are all good starting
points until sufficient displacement and range is achieved to
turn the blue aircraft around and point it at the red aircraft’s
tail. We see a similar situation in Figures 10B,C whereby a Fly
Straight maneuver or a Pure Pursuit can be easily considered as a
valid Offensive Flight or Stern Conversion maneuver simply
because the red aircraft is in a Defensive position.

Finally, in the Defensive configuration shown in Figure 10D,
it would be easier and more intuitive for a human to distinguish
between a Fly Straight maneuver and the two Pursuit maneuvers.
In the case of the Pursuit maneuvers the blue aircraft needs to
conduct a significant left hand turn. However, this is similar
behaviour that would be expected for an Offensive Flight or a
Stern Conversion maneuver.

6.3 Tied Behaviour Recognition
In light of these potential challenges, we evaluated the ties between
the different behaviours while independently looking at each of the
four different initial configurations; 36 starting positions, five
behaviours for each position for a total of 180 behaviour

TABLE 2 | Behaviour recognition mean, minimum, maximum and standard
deviation of true positive rates.

Fly Pure Lead Offensive Stern

Straight Pursuit Pursuit Flight Conversion

Mean 0.999 0.874 0.970 0.865 0.963
Min 0.980 0.495 0.660 0.496 0.495
Max 1.000 0.991 1.000 0.991 1.000
SD 0.004 0.126 0.053 0.136 0.099
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recognition scenarios per initial configuration. Even though we were
able to fully distinguish the correct behaviour in 60% (434/720) of
the configurations considered, it is important to analyse the cases
where multiple behaviours were tied as the most likely behaviour
hypothesis. In this section we look at the recognition success and tie
rate for each of the four orientation configurations shown originally
in Figure 9 and attempt to explain why we might have ties between
multiple behaviours.

• Offensive-Approaching: No ties in 136/180 cases (76%
recognition success rate).

• Defensive: No ties in 132/180 cases (73% recognition
success rate).

• Offensive-Behind: No ties in 100/180 cases (56%
recognition success rate).

• Neutral: No ties in 66/180 cases (37% recognition success
rate).

The initial configurations which result in the highest
recognition successes are the Offensive-Approaching and the
Defensive configurations. This is because for all maneuvers (except
for straight line), in most cases the blue aircraft has to conduct a
significant turn to get behind the red aircraft when starting in these
configurations. These maneuvers contain large turning circles which
should be also intuitively recognisable for human observers.

When starting in the Offensive-Behind configuration, many of
the success criteria for successfully executing a maneuver have
already been satisfied (with the red aircraft being in the blue
aircraft’s forward sector). Hence many of the maneuvers devolve
into a pursuit, making it more difficult to distinguish between the
two pursuit maneuvers (Pure/Lead Pursuit) and one of the more
complex maneuvers such as Offensive Flight or Stern Conversion.

As expected we are unlikely to be able to easily distinguish
between the maneuvers because they don’t have to vary their
trajectory much to meet their goal criteria.

In the final case, (Neutral), where the aircraft are facing away
from each other, the blue aircraft needs to execute a 180° turn to
change its posture fromNeutral toOffensive-Behind. In all maneuver
cases (except for Fly Straight) these are going to look very similar.

6.4 Analysis of Tied Behaviours
We further analysed the behaviour hypotheses for those instances
in which ties did occur. Figure 11 presents the percentage of how
many behaviours were tied with regards to the different initial
configurations. The x-axis represents how many behaviours were
tied; the y-axis represents the percent out of all ties; and the
different coloured bars represent the different initial
configurations. Lower values are better, indicating less ties,
hence a more confident recognition. As can be seen there were
no 5-behaviour ties in any of the initial configurations. Hence, the
recognizer was always able to rule out at least one behaviour.When
looking at Table 3 it is apparent that the behaviour that was never
tied with any other was the Fly Straight behaviour.

As explained in the previous section, the initial configuration
in which there was most confusion was theNeutral configuration,
with 114/180 instances, i.e. 73% of cases without conclusive
recognition. Figure 11 shows a breakdown of those cases in
terms of how many behaviours were tied. We can see that 31.58%
of the ties occurred among four behaviours, 15.79% among three
behaviours and 10.53% between two behaviours. This result is in
agreement with our hypothesis that in all maneuver cases, except
Fly Straight, these behaviours will look very similar.

In the Offensive Behind initial configuration, whereby 80/180
or 44% of the cases were not conclusively distinguishable, the

FIGURE 10 | Behaviour similarities under different initial conditions which could lead to potential confusion in successful behaviour recognition.
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majority of cases, 52.5%, arose because of ties among three
behaviours. In the Defensive initial configuration, whereby
most cases were conclusively distinguishable, over those 48
instances (27%) which weren’t, 87.5% of the ties were among
three behaviours. Finally, in the Offensive Approaching initial

configuration, over those 44 instances (24%) which were not
conclusively distinguishable, 59.1% of the ties occurred between
two behaviours. We looked into the specific tied instances and
identified which of the behaviours were more easily confused with
each other.

Table 3 presents the number of times each of the behaviours
were tied to each other with respect to the different initial
configurations. These ties were not unique and could have
occurred along with other ties in accordance with Figure 11.
The Fly Straight behaviour was easy to recognize and was not tied
with any other behaviours. As previously stated this is because the
blue aircraft flies in a straight line independent of the trajectory of
the red aircraft. Intuitively, we also expect the Pure Pursuit and
Lead Pursuit behaviours to be confused with each other because
they are essentially the same behaviour with the only difference
being that in the former the blue aircraft follows the red aircraft
directly, whereas in the latter case the blue aircraft follows the red
aircraft with a 30° angular lead. We can see this to be the case in
three out of the four configurations in Table 3 where these two
maneuvers are easily confused.

The only case where this doesn’t happen is in the Offensive-
Approaching configuration where there is confusion between the
Offensive Flight behaviour and the Pure Pursuit behaviour. This
stands to reason, because in order for the goal conditions for
Offensive Flight behaviour to be satisfied it needs to fly a trajectory
that closely resembles a Pure Pursuit. We see this confusion
between these two behaviours across all the initial configurations.

Finally we also expect some confusion in identifying a Stern
Conversion maneuver for the Offensive Flight and Pure Pursuit

FIGURE 11 | Percent of ties between behaviours per initial configuration.

TABLE 3 | The number of ties for each behaviour with respect to the different initial configurations, corresponding to the four quadrants of the angular situation classification.

Neutral Defensive

Fly
Straight

Pure
Pursuit

Lead
Pursuit

Offensive
Flight

Stern
Conv

Fly
Straight

Pure
Pursuit

Lead
Pursuit

Offensive
Flight

Stern
Conv

Fly — 0 0 0 0 — 0 0 0 0
Straight
Pure 0 — 66 114 84 0 — 42 47 0
Pursuit
Lead 0 66 — 66 48 0 43 — 42 0
Pursuit
Offensive 0 114 66 — 84 0 48 42 — 0
Flight
Stern 0 84 48 84 — 0 0 0 0 —

Conv

Offensive-behind Offensive-approaching

Fly
Straight

Pure
Pursuit

Lead
Pursuit

Offensive
Flight

Stern
Conv

Fly
Straight

Pure
Pursuit

Lead
Pursuit

Offensive
Flight

Stern
Conv

Fly
Straight

— 0 0 0 0 — 0 0 0 0

Pure 0 — 16 78 57 0 — 0 44 18
Pursuit
Lead 0 16 — 16 16 0 0 — 0 0
Pursuit
Offensive 0 78 16 — 60 0 44 0 — 18
Flight
Stern 0 58 16 60 — 0 18 0 18 —

Conv
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behaviours. This is because when the two aircraft are facing each
other all of these three maneuvers require a large turn to get
behind the opponent aircraft, hence they look similar. In other
initial configurations where a turn is not required, then a Stern
Conversion devolves into a chase, making it look like a Pure
Pursuit.

In the case where the two aircraft are facing head-on in the
Offensive-Approaching configuration we can see confusion
between Stern Conversion and Offensive Flight because in both
cases the UAV has to fly a large turn trajectory to put it behind the
opponent.

One of the challenges in our benchmarks was the similarity
among different types of maneuvers which would make it difficult
even for human experts to distinguish. Despite this, our approach
performed well and we expect it to perform even better with more
diverse behaviour sets.

7 CONCLUSION AND FUTURE WORK

In summary we have formally defined the problem of behaviour
recognition and developed a MPC, kinodynamic behaviour
recognizer. We evaluated the performance of our recognizer in
the challenging domain of aerial maneuvers and defined a set of
benchmark aerial maneuver behaviours under a range of different
initial configurations. We have chosen challenging, real-life
maneuvers which may be partially similar in different parts of
the trajectory, depending on the behaviour of the opposing
aircraft as well as the initial geometrical configuration. We
were able to achieve a True Positive rate of 100% and a False
Negative rate of 0% while also evaluating the Single True Positive
rates whereby the correct behaviour was recognized alone. This
enabled us to provide more insight as to the similarities of the
behaviours and the challenges of the aerial maneuver domain.

The ties between the recognition of some behaviours was
expected due to a number of factors. First, was the similarity in
the generated behaviour trajectories. For example, the difference
between a Pure Pursuit and a Lead Pursuit behaviour is subtle, with
only the lead angle being the only distinguishing feature. Second,
more complex behaviours are composed of simpler behaviours. The
Stern Conversion behaviour relies on the Pure Pursuit behaviour.
This behavioural composability means that depending on the
situation, a more complex behaviour begins to look like a simpler
behaviour making them more difficult to distinguish and hence
resulting in ties. Finally, the trajectories of the behaviours are not
absolute. Rather they are highly context dependant with the resulting
aircraft trajectories being influenced by the behaviour of the
opposing aircraft and the initial geometric configuration. Being
able to distinguish these types of aircraft maneuvers is difficult
even for experienced pilots and air traffic controllers. This
highlights either that the planner’s selected present behaviours
which are fundamentally hard to discriminate or that the
discrimination method is not sensitive to the differences. This is a
very challenging domain that requires further study from the
intention recognition research community.

In future we would like to incorporate additional features to the
recognition process such as opponent intent, to further help

distinguish between the different maneuvers and attempt to
recognize sophisticated multi-aircraft maneuvers (such as
formation flying). This can be achieved through the inclusion of a
situation awarenessmodel as was previously done for human decision
making in complex tacticalmilitary scenarios (Vered et al., 2020).Also,
and related, for any practical domain, it is be quite important to
properly establish what the a priori probabilities of the behaviours are,
for instance, depending on the tactical situation in the case of the air
combat domain. We hypothesize that establishing these probabilities
will significantly improve the performance of our approach.

Additionally, while we acknowledge that false positive rates are
unavoidable and an inherent characteristic of any benchmark of
scientific interest. More work needs to be done to provide
assistance to human decision-makers to handle these when
they happen. Perhaps recognition needs to be made aware of
what the possible observer actions are, and to consider their
potential outcomes to present a more nuanced classification of
the sequence of observations.

Another possible angle to consider would be to extend the
formulation of goal, plan and behaviour recognition to consider
sets of goals, plans and behaviours rather than single goals, plans
and behaviours. This hierarchical organisation of hypotheses
would follow from, for instance, not considering classification
errors between goals that belong to the same category as all that
important. This is directly linked to the inclusion of multi-aircraft
maneuvers, which opens up the possibility of exploring team
behaviour recognition, an area of significant importance in many
domains but expressively in the aerial maneuver domain. We
would also like to compare our results against expert human
recognition to facilitate human-agent teaming.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

GF - Lead Author, responsible for implementation of experimental
process and initial results metrics, original project member. NL -
Coauthor, algorithm formalisation assistance, search algorithm
implementation and review, original project member. MP -
Coauthor, industry supervisor, implementation of simulator
software and aerial maneuvering domain expert and review,
original project member. MR - Coauthor, MPC formulation,
planner implementation and review, original project member.
MV - Project Lead, Coauthor, Mirroring domain expert and
review, original project member.

FUNDING

This work was partially funded by a grant from the Australian
Defence Science Institute (DSI) and supported by the Defence
Science and Technology Group (DSTG) in Melbourne, Australia.

Frontiers in Artificial Intelligence | www.frontiersin.org October 2021 | Volume 4 | Article 71700317

Fitzpatrick et al. Behaviour Recognition with Kinodynamic Planning

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


REFERENCES

Aineto, D., Jiménez, S., Onaindia, E., and Ramírez, M. (2019). Model Recognition
as Planning. Proc. Int. Conf. Automated Plann. Scheduling 29, 13–21.

Azarewicz, J., Fala, G., Fink, R., and Heithecker, C. (1986). “Plan Recognition for
Airborne Tactical Decision Making,” in AAAI’86: Proceedings of the Fifth
AAAI National Conference on Artificial Intelligence, 805–811. Available at:
https://www.aaai.org/Papers/AAAI/1986/AAAI86-134.pdf.

Baker, C., Saxe, R., and Tenenbaum, J. B. (2005). “Bayesian Models of Human
Action Understanding,” in Advances in Neural Information Processing
Systems, Vancouver, BC, Canada, December 5–8, 2005, 99–106.

Barbosa, F. S., Karlsson, J., Tajvar, P., and Tumova, J. (2021). “Formal Methods for
Robot Motion Planning with Time and Space Constraints (Extended
Abstract),” in International Conference on Formal Modeling and Analysis
of Timed Systems (Springer), 1–14. doi:10.1007/978-3-030-85037-1_1

Bertsekas, D. P. (2017). Dynamic Programming And Optimal Control. 4th Edn.
Belmont, MA: Athena Scientific.

Borck, H., Karneeb, J., Aha, D. W., and Navy, N. (2015a). “Active Behavior
Recognition in beyond Visual Range Air Combat,” in Proceedings of the Third
Annual Conference on Advances in Cognitive Systems ACS, 9.

Borck, H., Karneeb, J., Alford, R., and Aha, D. W. (2015b). “Case-based Behavior
Recognition in beyond Visual Range Air Combat,” in Twenty-Eighth
International Flairs Conference.

Burgin, G. H., and Sidor, L. B. (1988). Rule-Based Air Combat Simulation. Tech.
Rep. 4160. , 1988 National Aeronautics and Space Administration (NASA).

Calvanese, D., De Giacomo, G., and Vardi, M. Y. (2002). Reasoning about Actions
and Planning in Ltl Action Theories. KR 2, 593–602. doi:10.1016/b978-0-08-
051447-5.50007-4

Chen, L., Mantegh, I., He, T., and Xie, W. (2020). “Fuzzy Kinodynamic Rrt: A
Dynamic Path Planning and Obstacle Avoidance Method,” in 2020
International Conference on Unmanned Aircraft Systems (ICUAS) (IEEE),
188–195. doi:10.1109/icuas48674.2020.9213964

Colledanchise, M., Almeida, D., and Ögren, P. (2019). “Towards Blended Reactive
Planning and Acting Using Behavior Trees,” in 2019 International Conference on
Robotics and Automation (ICRA) (IEEE), 8839–8845. doi:10.1109/icra.2019.8794128

Colledanchise, M., and Ögren, P. (2017). How Behavior Trees Modularize Hybrid
Control Systems and Generalize Sequential Behavior Compositions, the
Subsumption Architecture, and Decision Trees. IEEE Trans. Robot. 33,
372–389. doi:10.1109/TRO.2016.2633567

Dennett, D. (2009). Intentional Systems Theory. The Oxford handbook Philos.
mind, 339–350. doi:10.1093/oxfordhb/9780199262618.003.0020

Floyd, M. W., Karneeb, J., Moore, P., and Aha, D. W. (2017a). “A Goal Reasoning
Agent for Controlling Uavs in Beyond-Visual-Range Air Combat,” in
Proceedings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence (IJCAI-17), 4714–4721. doi:10.24963/ijcai.2017/657

Floyd, M. W., Karneeb, J., Moore, P., and Aha, D. W. (2017b). A Goal Reasoning
Agent for Controlling Uavs in Beyond-Visual-Range Air Combat. IJCAI,
4714–4721. doi:10.24963/ijcai.2017/657

G. Sukthankar, R. P. Goldman, C. Geib, D. V. Pynadath, and H. Bui (Editors) (2014).
Plan, Activity, and Intent Recognition. San Francisco, CA: Morgan Kaufmann.

Heinze, C., Cross, M., Goss, S., Josefsson, T., Lloyd, I., Murray, G., et al. (2002).
Agents of Change: The Impact of Intelligent Agent Technology on the Analysis of
Air Operations. chap. 6., 229–268. doi:10.1142/9789812776341_0006

Heinze, C., Goss, S., and Pearce, A. (1999). “Plan Recognition in Military
Simulation: Incorporating Machine Learning with Intelligent Agents,” in
Proceedings of IJCAI-99 Workshop on Team Behaviour and Plan
Recognition, 53–64.

Heinze, C. (2004). “Modelling Intention Recognition for Intelligent Agent
Systems,” Ph.D. thesis (Melbourne, Australia: Department of Computer
Science and Software Engineering, The University of Melbourne).

Heinze, C., Papasimeon, M., Goss, S., Cross, M., and Connell, R. (2008).
“Simulating Fighter Pilots,” in Defence Industry Applications of Autonomous
Agents and Multi-Agent Systems. Editors M. Pěchouček, S. G. Thompson, and
H. Voos (Basel: Birkhäuser Basel), 113–130.

Hossam, M., Le, T., Huynh, V., Papasimeon, M., and Phung, D. Q. (2020).
“Optigan: Generative Adversarial Networks for Goal Optimized Sequence
Generation,” in International Joint Conference on Neural Networks

(IJCNN), Glasgow, UK, July 19–24, 2020. doi:10.1109/
ijcnn48605.2020.9206842

Ilachinski, A. (2004). Artificial War: Multiagent-Based Simulation of Combat.
World Scientific.

Jiménez, S., Segovia-Aguas, J., and Jonsson, A. (2019). A Review of Generalized
Planning. Knowledge Eng. Rev. 34. doi:10.1017/s0269888918000231

Kabanza, F., Bellefeuille, P., Bisson, F., Benaskeur, A. R., and Irandoust, H. (2010).
“Opponent Behaviour Recognition for Real-Time Strategy Games,” in Plan,
Activity, and Intent Recognition 10, 29–36.

Kaminka, G. A., Vered, M., and Agmon, N. (2018). Plan Recognition in
Continuous Domains. AAAI, 6202–6210.

Kurniawan, B., Vamplew, P., Papasimeon, M., Dazeley, R., and Foale, C. (2019).
“An Empirical Study of Reward Structures for Actor-Critic Reinforcement
Learning in Air Combat Manoeuvring Simulation,” in AI 2019: Advances in
Artificial Intelligence (Springer International Publishing), 54–65. doi:10.1007/
978-3-030-35288-2_5

Kurniawan, B., Vamplew, P., Papasimeon, M., Dazeley, R., and Foale, C. (2020).
“Discrete-to-deep Supervised Policy Learning: An Effective Training Method
for Neural Reinforcement Learning,” in ALA 2020: Adaptive Learning Agents
Workshop at AAMAS 2020 (Auckland, New Zealand.

Lam, C.-P., Masek, M., Kelly, L., Papasimeon, M., and Benke, L. (2019). A Simheuristic
Approach for Evolving Agent Behaviour in the Exploration for Novel Combat
Tactics. Operations Res. Perspect. 6, 100123. doi:10.1016/j.orp.2019.100123

LaValle, S. M. (2006). Planning Algorithms. Cambridge, UK: Cambridge University
Press.

Lesh, N., and Etzioni, O. (1995). . IJCAI 95, 1704–1710. doi:10.5555/
1643031.1643119

Lipovetzky, N., and Geffner, H. (2012). “Width and Serialization of Classical
Planning Problems,” in European Conference on Artificial Intelligence (ECAI).

Martin, Y. E., Moreno, M. D. R., Smith, D. E., et al. (2015). “A Fast Goal
Recognition Technique Based on Interaction Estimates,” in Proceedings of
the International Joint Conference on Artificial Intelligence (IJCAI), 761–768.

Marzinotto, A., Colledanchise, M., Smith, C., and Ögren, P. (2014). “Towards a
Unified Behavior Trees Framework for Robot Control,” in proceedings of 2014
IEEE International Conference on Robotics and Automation (ICRA 2014),
5420–5427. doi:10.1109/icra.2014.6907656

Masek, M., Lam, C. P., Benke, L., Kelly, L., and Papasimeon, M. (2018).
“Discovering Emergent Agent Behaviour with Evolutionary Finite State
Machines,” in PRIMA 2018: Principles and Practice of Multi-Agent Systems.
Editors T. Miller, N. Oren, Y. Sakurai, I. Noda, B. T. R. Savarimuthu, and
T. Cao Son (Tokyo, Japan: Springer International Publishing)), 19–34.
doi:10.1007/978-3-030-03098-8_2

Masek, M., Lam, C. P., Kelly, L., Benke, L., and Papasimeon, M. (2021). “A Genetic
Programming Framework for Novel Behaviour Discovery in Air Combat
Scenarios,” in Data and Decision Sciences in Action 2. Editors A. T. Ernst,
S. Dunstall, R. García-Flores, M. Grobler, and D. Marlow (Cham: Springer
International Publishing)), 263–277. doi:10.1007/978-3-030-60135-5_19

Masters, P., and Sardina, S. (2019). Cost-based Goal Recognition in Navigational
Domains. jair 64, 197–242. doi:10.1613/jair.1.11343

Masters, P., and Vered, M. (2021). “What’s the Context? Implicit and Explicit
Assumptions in Model-Based Goal Recognition,” in Proceedings of the
Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21).

Ménager, D., Choi, D., Floyd, M. W., Task, C., and Aha, D. W. (2017). Dynamic
Goal Recognition Using Windowed Action Sequences. Workshops at the
Thirty-First AAAI Conference on Artificial Intelligence.

Meneguzzi, F., and Pereira, R. F. (2021). “A Survey on Goal Recognition as
Planning,” in Proceedings of the Thirtieth International Joint Conference on
Artificial Intelligence (IJCAI-21). doi:10.24963/ijcai.2021/616

Mohammed, H., Romdhane, L., and Jaradat, M. A. (2021). RRT*N: an Efficient
Approach to Path Planning in 3D for Static and Dynamic Environments. Adv.
Robotics 35, 168–180. doi:10.1080/01691864.2020.1850349

Mohmed, G., Lotfi, A., and Pourabdollah, A. (2020). Enhanced Fuzzy Finite State
Machine for Human Activity Modelling and Recognition. J. Ambient Intell.
Hum. Comput 11, 6077–6091. doi:10.1007/s12652-020-01917-z

Oh, H., Kim, S., Shin, H.-S., Tsourdos, A., and White, B. A. (2014). Behaviour
Recognition of Ground Vehicle Using Airborne Monitoring of Unmanned
Aerial Vehicles. Int. J. Syst. Sci. 45, 2499–2514. doi:10.1080/
00207721.2013.772677

Frontiers in Artificial Intelligence | www.frontiersin.org October 2021 | Volume 4 | Article 71700318

Fitzpatrick et al. Behaviour Recognition with Kinodynamic Planning

https://www.aaai.org/Papers/AAAI/1986/AAAI86-134.pdf
https://doi.org/10.1007/978-3-030-85037-1_1
https://doi.org/10.1016/b978-0-08-051447-5.50007-4
https://doi.org/10.1016/b978-0-08-051447-5.50007-4
https://doi.org/10.1109/icuas48674.2020.9213964
https://doi.org/10.1109/icra.2019.8794128
https://doi.org/10.1109/TRO.2016.2633567
https://doi.org/10.1093/oxfordhb/9780199262618.003.0020
https://doi.org/10.24963/ijcai.2017/657
https://doi.org/10.24963/ijcai.2017/657
https://doi.org/10.1142/9789812776341_0006
https://doi.org/10.1109/ijcnn48605.2020.9206842
https://doi.org/10.1109/ijcnn48605.2020.9206842
https://doi.org/10.1017/s0269888918000231
https://doi.org/10.1007/978-3-030-35288-2_5
https://doi.org/10.1007/978-3-030-35288-2_5
https://doi.org/10.1016/j.orp.2019.100123
https://doi.org/10.5555/1643031.1643119
https://doi.org/10.5555/1643031.1643119
https://doi.org/10.1109/icra.2014.6907656
https://doi.org/10.1007/978-3-030-03098-8_2
https://doi.org/10.1007/978-3-030-60135-5_19
https://doi.org/10.1613/jair.1.11343
https://doi.org/10.24963/ijcai.2021/616
https://doi.org/10.1080/01691864.2020.1850349
https://doi.org/10.1007/s12652-020-01917-z
https://doi.org/10.1080/00207721.2013.772677
https://doi.org/10.1080/00207721.2013.772677
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Papasimeon, M., and Benke, L. (2021). “Multi-Agent Simulation for AI Behaviour
Discovery in Operations Research,” in 22nd International Workshop on Multi-
Agent-Based Simulation (MABS 2021) (London, UK).

Park, H., Lee, B.-Y., Tahk, M.-J., and Yoo, D.-W. (2016). Differential Game Based
Air Combat Maneuver Generation Using Scoring Function Matrix. Int.
J. Aeronaut. Space Sci. 17, 204–213. doi:10.5139/ijass.2016.17.2.204

Pereira, R. F., Fuggitti, F., and De Giacomo, G. (2021). Recognizing Ltlf/pltlf Goals
in Fully Observable Non-deterministic Domain Models. arXiv [Preprint].
Available at: https://arxiv.org/abs/2103.11692 (Accessed March 22, 2021).

Pereira, R. F., and Meneguzzi, F. (2016). “Landmark-Based Plan Recognition,” in
Proceedings of the European Conference on Artificial Intelligence (ECAI).

Pereira, R. F., Oren, N., and Meneguzzi, F. (2017). “Landmark-Based Heuristics for
Goal Recognition,” in Proceedings of the Association for the Advancement of
Artificial Intelligence (AAAI).

Pereira, R. F., Vered, M., Meneguzzi, F. R., and Ramírez, M. (2019). “Online
Probabilistic Goal Recognition over Nominal Models,” in Proceedings of the
28th International Joint Conference on Artificial Intelligence doi:10.24963/
ijcai.2019/770

Ramırez, M., and Geffner, H. (2009). “Plan Recognition as Planning,” in
International Joint Conference on Artifical Intelligence, 1778–1783.

Ramırez, M., and Geffner, H. (2010). “Probabilistic Plan Recognition Using Off-
The-Shelf Classical Planners,” in International Joint Conference on Artificial
Intelligence.

Ramirez, M., Papasimeon, M., Benke, L., Lipovetzky, N., Miller, T., Pearce, A. R.,
et al. (2018). “Integrated Hybrid Planning and Programmed Control for Real
Time Uav Maneuvering,” in 17th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2018) (Stockholm, Sweden),
1318–1326.

Ramirez, M., Papasimeon, M., Benke, L., Lipovetzky, N., Miller, T., and Pearce, A.
R. (2017). “Real–time Uav Maneuvering via Automated Planning in
Simulations,” in 26th International Joint Conference on Artificial
Intelligence (IJCAI) (Melbourne, Australia), 5243–5245.

Rao, A., Artificial, A., and Murray, G. (1994). “Multi-agent Mental-State
Recognition and its Application to Air-Combat Modelling,” in 13th
International Workshop on Distributed Artificial Intelligence.

Rao, A. S., and Georgeff, M. P. (1991). “Modeling Rational Agents within a Bdi-
Architecture,” in Proceedings of the Second International Conference on
Principles of Knowledge Representation and Reasoning (San Francisco, CA:
Morgan Kaufmann Publishers Inc.), 473–484.

Schmidt, C. F., Sridharan, N. S., and Goodson, J. L. (1978). The Plan Recognition
Problem: An Intersection of Psychology and Artificial Intelligence. Artif.
Intelligence 11, 45–83. doi:10.1016/0004-3702(78)90012-7

Shaw, R. L. (1985). Fighter Combat. Annapolis, MD: Naval Institute Press.

Sitanskiy, S., Sebastia, L., and Onaindia, E. (2020). Behaviour Recognition of
Planning Agents Using Behaviour Trees. Proced. Computer Sci. 176, 878–887.
doi:10.1016/j.procs.2020.09.083

Sohrabi, S., Riabov, A. V., and Udrea, O. (2016). “Plan Recognition as Planning
Revisited,” in The Twenty-Fifth International Joint Conference on Artificial
Intelligence, 3258–3264.

Srivastava, S., Immerman, N., and Zilberstein, S. (2011). ANew Representation and
Associated Algorithms for Generalized Planning. Artif. Intelligence 175,
615–647. doi:10.1016/j.artint.2010.10.006

Van-Horenbeke, F. A., and Peer, A. (2021). Activity, Plan, and Goal Recognition: A
Review. Front. Robotics AI 8, 106. doi:10.3389/frobt.2021.643010

Vered, M., Howe, P., Miller, T., Sonenberg, L., and Velloso, E. (2020). Demand-
Driven Transparency for Monitoring Intelligent Agents. IEEE Trans. Hum.
Mach. Syst. 50, 264–274.

Vered, M., Kaminka, G. A., and Biham, S. (2016). “Online Goal Recognition
through Mirroring: Humans and Agents,” in The Fourth Annual Conference
on Advances in Cognitive Systems.

Vered, M., and Kaminka, G. A. (2017). “Heuristic Online Goal Recognition in
Continuous Domains,” in Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence (IJCAI-17), 4447–4454. doi:10.24963/
ijcai.2017/621

Vered, M., Pereira, R. F., Kaminka, G., and Meneguzzi, F. R. (2018). “Towards
Online Goal Recognition Combining Goal Mirroring and Landmarks,” in
Proceedings of the 19th International Conference on Autonomous Agents
and Multiagent Systems, Suécia, 2018.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Fitzpatrick, Lipovetzky, Papasimeon, Ramirez and Vered. This is
an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other
forums is permitted, provided the original author(s) and the copyright owner(s)
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Artificial Intelligence | www.frontiersin.org October 2021 | Volume 4 | Article 71700319

Fitzpatrick et al. Behaviour Recognition with Kinodynamic Planning

https://doi.org/10.5139/ijass.2016.17.2.204
https://doi.org/10.24963/ijcai.2019/770
https://doi.org/10.24963/ijcai.2019/770
https://doi.org/10.1016/0004-3702(78)90012-7
https://doi.org/10.1016/j.procs.2020.09.083
https://doi.org/10.1016/j.artint.2010.10.006
https://doi.org/10.3389/frobt.2021.643010
https://doi.org/10.24963/ijcai.2017/621
https://doi.org/10.24963/ijcai.2017/621
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

	Behaviour Recognition with Kinodynamic Planning Over Continuous Domains
	1 Introduction
	2 Related Work
	3 Behaviour Recognition with Online Kinodynamic Planning
	3.1 Online Kinodynamic Planning
	3.2 Kinodynamic Behaviour Recognition

	4 Simulating Aerial Maneuvers
	4.1 Simulation Environment
	4.2 Agent Behaviours
	4.3 Behaviour Specifications
	4.3.1 Notation and Definitions
	4.3.2 Stern Conversion
	4.3.3 Pure Pursuit
	4.3.4 Lead Pursuit
	4.3.5 Offensive Flight
	4.3.6 Fly Straight


	5 Experimental Setup
	5.1 Experimental Architecture
	5.2 Experimental Configurations
	5.3 Evaluation

	6 Results
	6.1 Successful Behaviour Recognition
	6.2 Potential Sources for Behaviour Confusion
	6.3 Tied Behaviour Recognition
	6.4 Analysis of Tied Behaviours

	7 Conclusion and Future Work
	Data Availability Statement
	Author Contributions
	Funding
	References


