AUTHOR=Hall Patrick , Cox Benjamin , Dickerson Steven , Ravi Kannan Arjun , Kulkarni Raghu , Schmidt Nicholas TITLE=A United States Fair Lending Perspective on Machine Learning JOURNAL=Frontiers in Artificial Intelligence VOLUME=4 YEAR=2021 URL=https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2021.695301 DOI=10.3389/frai.2021.695301 ISSN=2624-8212 ABSTRACT=

The use of machine learning (ML) has become more widespread in many areas of consumer financial services, including credit underwriting and pricing of loans. ML’s ability to automatically learn nonlinearities and interactions in training data is perceived to facilitate faster and more accurate credit decisions, and ML is now a viable challenger to traditional credit modeling methodologies. In this mini review, we further the discussion of ML in consumer finance by proposing uniform definitions of key ML and legal concepts related to discrimination and interpretability. We use the United States legal and regulatory environment as a foundation to add critical context to the broader discussion of relevant, substantial, and novel ML methodologies in credit underwriting, and we review numerous strategies to mitigate the many potential adverse implications of ML in consumer finance.