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INTRODUCTION AND BACKGROUND

The Medical Information Mart for Intensive Care (MIMIC) is a database of de-identified electronic
health records (EHR) associated with patients who stayed in intensive care units (ICU) at the Beth
Israel Deaconess Medical Center in Boston, MA (Johnson et al., 2016). Currently on its fourth
iteration, the database is maintained by the Massachusetts Institute of Technology’s Laboratory for
Computational Physiology. With time frames and release dates shown in Table 1, all four MIMIC
versions are accessible and available to the public, supporting the concept of reproducibility within
ICU research (Johnson et al., 2018). Among these, MIMIC-III alone contains 53,423 distinct adult
hospital admissions to one of the five different ICU departments at the Beth Israel DeaconessMedical
Center between 2001 and 2012 (Johnson et al., 2016). These specialized ICU departments include
Coronary Care, Cardiac Surgery Recovery, Medical Intensive Care, Surgical Intensive Care, and
Trauma Surgical Intensive Care units. MIMIC is populated with data from hospital electronic health
records, automated critical care information systems, and the Social Security Administration Death
Master File. The two critical care information systems which provided time-stamped physiological
measurements and progress notes were the Philips CareVue Clinical Information System and
iMDsoft MetaVision ICU. Classes ofMIMIC data include patient demographics, billing information,
unstructured text (notes), prescription medications, vital signs, laboratory results, and a plethora of
physiological measurements.

Due to the granularity of information, MIMIC serves as a real-world data (RWD) foundation for
artificial intelligence (AI) and machine learning (ML) research applications. MIMIC places
thousands of ICU records with millions of physiological measurements directly into scientists’
hands, which serves as a springboard for numerous projects in the development of AI/ML algorithms
to support the work of ICU clinicians and staff. Here, we highlight a few of MIMIC’s contributions
within the world of AI and ML, referring to this fusion as Artificial Intelligence for Real-World Data
(AI4RWD). For the sake of brevity, a limited number of these efforts are mentioned in this short
overview.

MIMIC FACILITATES AI/ML RESEARCH WITH RWD

As the largest publicly available EHR ICU dataset, MIMIC has received intense interest from the AI/
ML community as a common ground for developing and validating new methods. For example, in
terms of ICU sepsis treatment, MIMIC has been used in various AI/ML approaches ranging from
gradient-boosting to reinforcement and deep learning (Komorowski et al., 2018; Dauvin et al., 2019;
Kaji et al., 2019; Hou et al., 2020). Several projects have focused on predicting ICU mortality,
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producing results that include a decision support tool for
determining optimal patient ICU discharge times to improve
patient outcomes (McWilliams et al., 2019). There are ICU vital
signs monitoring programs, based on fuzzy models, that perform
with a high degree of accuracy (Leite et al., 2011). These
mentioned studies are a sample out of hundreds that employ
MIMIC data to explore and develop AI applications for the
critical care environment.

Prediction is the goal of most ML tasks that use the MIMIC
EHRs. Generally, approaches to prediction involve the
application of statistics, ML, and AI to arrive at post-
admission outcomes. Logistic regression, proportional hazards
model, random forests, support vector machines, boosting, and
neural networks are some of the more common statistical and AI/
ML approaches to these problems of prediction (Nemati et al.,
2018; Vincent et al., 2018; Lin et al., 2019; McWilliams et al., 2019;
Le et al., 2020; Nallabasannagari et al., 2020). These methods have
been used extensively in other areas for regression or
classification tasks depending on the nature of the response
variable (continuous, categorical, time-to-event). The
advantages and disadvantages of these methods have been
extensively discussed. However, EHR data’s complex and
heterogeneous nature can make directly transplanting
approaches from other domains difficult. Recent developments
in deep neural networks and natural language processing (NLP)
have further expanded the scope of these applications (Shickel
et al., 2017).

Like other EHR datasets, one significant challenge of working
with MIMIC data is the high degree of inherent medical
heterogeneity (MIT Critical Data, 2016). In contrast to the
more homogeneous input tasks like image processing, MIMIC
data spans free text forms (clinical notes, radiological reports),
medical codes (ICD9/10), demographic information, time-series
for vital signs, laboratory results, and medication records.
Extensive data preprocessing is needed for any modeling effort
that utilizes this data because feature engineering requirements
are significant to the derivation of meaningful outcomes. Deep
neural network-based NLP approaches, in turn, provide powerful
tools to incorporate information from free-text clinical notes
(Alsentzer et al., 2019). These challenges make deep learning
development, with its capacity for hierarchical feature
construction and long-range dependency modeling, valuable
for analyzing EHR data (Shickel et al., 2017).

By applying deep learning and NLP approaches to MIMIC
data, notable advances have been made in concept and patient
representation and concept extraction in addition to outcome
prediction (Beaulieu-Jones et al., 2018; Alsentzer et al., 2019;

Huang et al., 2019; Nuthakki et al., 2019; Killian et al., 2020;
Magna et al., 2020). The capacity for representation learning is
significant because it enables common downstream tasks such as
regression or classification. It also opens up the possibility for
applications like computational phenotyping and clinical data de-
identification. Going forward, MIMIC is expected to continue to
be a valuable resource for the development and validation of ML/
AI methods with applications to EHR data. One potential area of
development that will benefit from MIMIC is causal inference,
especially in conjunction with propensity score modeling and
targeted maximum likelihood estimation. This holds the promise
of harnessing the vast predictive power of AI/ML in the pre-final
estimation steps while maintaining the well-established causal
modeling framework (Blakely et al., 2021).

MIMIC SERVES AS A CONDUIT FOR
COLLABORATION

Critics of AI andMLmethods developed onMIMIC raise concerns
about lack of validation in terms of safety and failure to
demonstrate real-world effectiveness in the clinical setting. They
cite that AI acceptance will be limited without stakeholder
engagement and will suffer from a limited understanding of the
critical care environment (Herasevich et al., 2020). These criticisms
are not without merit, but they fail to recognize that these initial
studies establish a basis for implementing an AI- or ML-based
medical application designed to support the ICU clinician. Publicly
available critical care datasets like MIMIC provide a collaborative
“sandbox” that brings together clinicians, academia, medical
technology companies, and the pharmaceutical industry. The
public availability of MIMIC, combined with the granularity
and volume of ICU data, fabricates a “crucible” where data
scientists’ and medical practitioners’ ideas and efforts are
“forged” together. This merging of disciplines is manifested at
international datathons centered around MIMIC including the
United Kingdom, China, Australia, Brazil and Singapore.
Currently, MIMIC is studied in over 30 countries, with 4,000-
plus users in industry and academia (Pollard andCeli, 2017). These
alliances create unlimited potential for AI applications within the
ICU, ultimately promoting positive patient outcomes and easing
clinician workloads.

UTILITY IN REGULATORY SCIENCE

AI systems that assist in decision-making for individual patients
are referred to as clinical AI by the National Academy of
Medicine (Matheny et al., 2019). The performance of these
systems undergoes intense scrutiny by the U.S. Food and Drug
Administration (FDA) and its international counterparts. The
challenges faced by these regulatory bodies include the collection
of dynamic data (i.e., wearable devices) combined with RWD,
such as EHRs; providing effective oversight and validating these
systems requires more than a static, limited dataset. Because
clinical AI systems are deployed to different institutions servicing
different communities, epidemiological drift will likely require

TABLE 1 | Versions of MIMIC.

Version Years Spanned Release Date

MIMIC 1994–1996 March 2000
MIMIC-II 2001–2007 February 2010
MIMIC-III 2001–2012 September 2016
MIMIC-IVa 2008–2019 August 2020

aMIMIC-IV was released as an extension to MIMIC-III.
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some fine-tuning of the algorithms to incorporate data from
diverse populations (Matheny et al., 2019). In conjunction with
other dynamic ICU EHRs, MIMIC can serve as one building
block for calibrating these algorithms over time.

The FDA states that “Artificial intelligence and machine
learning technologies have the potential to transform health
care by deriving new and important insights from the vast
amount of data generated during the delivery of health care
every day” (FDA, 2021). In other words, regulatory oversight of
clinical AI systems is essential to ensure safety, quality, and most
importantly, public trust. MIMIC is a treasure trove of ICU data
collected during the daily delivery of critical care to patients. As
such, the insights provided by the AI/ML project initiatives, based
upon MIMIC, serve as additional support for decision-making
within regulatory science. An example of the wayMIMIC facilitates
the regulatory mission involves the antidiarrheal medication
Loperamide. In 2016 the FDA issued a safety communication
regarding serious heart problems associated with the use of
Loperamide (FDA, 2016). There are 2,309 prescriptions of
Loperamide captured within MIMIC-III, allowing further study
and modeling of the drug relative to patient demographics, vital
signs, and other factors of interest in the critical care environment
(Adibuzzaman et al., 2016). Thus, the findings derived from
MIMIC can offer opportunities to advance public health by
improving and managing critical care outcomes.

CONCLUSION

MIMIC is an ICU real-world data set that serves as a research
catalyst fusing the AI and ML efforts of technologists, academic
researchers, regulators, and clinicians together to improve the
critical care environment. It is foreseeable that MIMIC, in
conjunction with other ICU datasets, may provide regulatory
agencies with a bird’s-eye view of the post-market performance of
new critical-care AI devices and systems. MIMIC serves as a
cornerstone that brings AI and RWD together into an innovative
mix, spawning ideas, algorithms and laying the groundwork for
new critical care medical technologies.
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