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Tensor Completion is an important problem in big data processing. Usually, data acquired
from different aspects of a multimodal phenomenon or different sensors are incomplete
due to different reasons such as noise, low sampling rate or human mistake. In this
situation, recovering the missing or uncertain elements of the incomplete dataset is an
important step for efficient data processing. In this paper, a new completion approach
using Tensor Ring (TR) decomposition in the embedded space has been proposed. In the
proposed approach, the incomplete data tensor is first transformed into a higher order
tensor using the block Hankelization method. Then the higher order tensor is completed
using TR decomposition with rank incremental and multistage strategy. Simulation results
show the effectiveness of the proposed approach compared to the state of the art
completion algorithms, especially for very high missing ratios and noisy cases.
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1 INTRODUCTION

Joint analysis of datasets recorded by different sensors is an effective approach for investigating a
physical phenomenon. For this propose, the acquired datasets can be recorded in different matrices
and jointly analyzed (Ozerov and Févotte, 2009).

By increasing the volume of the recorded data and also the number of the recorded signals,
matrices are not any more efficient for analyzing and representing the datasets. For overcoming this
limitation, the acquired datasets are represented in tensor formats. Tensors are higher order arrays
used in different signal processing applications such as Blind Source Separation (BSS) (Cichocki
et al., 2009; Bousse et al., 2016), image in-painting/completion (Liu et al., 2012; Yokota et al., 2016;
Wang et al., 2017), time series analysis (Kouchaki et al., 2014; Sedighin et al., 2020) and machine
learning (Rabanser et al., 2017; Sidiropoulos et al., 2017).

The acquired datasets can be incomplete or uncertain due to different reasons such as noise,
outliers, hardware failure or human error (Liu et al., 2012; Yokota et al., 2016; Wang et al., 2017).
Even, sometimes, the resolution of the recorded data is not sufficient due to hardware limitations. In
these situations, tensor completion can be very helpful for efficient data analysis.

Tensor completion is an approach for recovering missing or uncertain elements of a
data tensor using its available elements (Liu et al., 2012; Yokota et al., 2016; Wang et al.,
2017). At the first look, the problem seems to be ill-posed and difficult, but indeed, it can be done
using some assumptions for the original data tensor (Gandy et al., 2011; Liu et al., 2012; Bengua
et al., 2017).
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Generally, tensor completion approaches can be divided into
two groups: low rank based approaches (Liu et al., 2012; Bengua
et al., 2017) and tensor decomposition based approaches (Yokota
et al., 2016, Yokota et al., 2018). However, in some completion
methods such as (Yuan et al., 2018b), both of the approaches have
been combined.

In low rank based completion approaches, it is assumed that the
original tensor is low rank. Under this assumption, the completion
is to find the missing elements of a tensor in a way that the
completed tensor has low rank approximation (Signoretto et al.,
2010; Gandy et al., 2011; Liu et al., 2012; Bengua et al., 2017; Yuan
et al., 2018b). In contrast to matrices, there is no unique definition
for the tensor rank. One of the basic definitions for the tensor rank
is the Canonical Polyadic Decomposition (CPD) rank, which is the
number of rank-one tensors after CP decomposition of the original
tensor. Estimating the CPD rank of a tensor is difficult, therefore,
other alternative definitions such as weighted summation of the
ranks of different unfoldings of the data tensor have been proposed
(Liu et al., 2012). Algorithms such as Simple Low Rank Tensor
Completion (SiLRTC) or High accuracy Low Rank Tensor
Completion (HaLRTC) (Liu et al., 2012; Bengua et al., 2017)
can be considered as examples for rank minimization based
completion algorithms.

In tensor decomposition based approaches, the incomplete
tensor is decomposed into several lower order or smaller factor
matrices and/or core tensors. These latent factors usually preserve
the structural information of the original tensor. Therefore, the
completed tensor can be reconstructed using the estimated latent
factors. Existing different approaches for tensor decomposition,
result in different decomposition based completion approaches.
In (Yokota et al., 2016), a completion approach based on CPD has
been proposed. In (Yokota et al., 2018), Tucker decomposition
has been exploited for tensor completion.

Besides the mentioned tensor decomposition based
approaches, recently, new completion methods based on
Tensor Train (TT) (Grasedyck et al., 2015; Ko et al., 2018;
Yuan et al., 2019) and Tensor Ring (TR) (Wang et al., 2017;
Yuan et al., 2018a; Yuan et al., 2018b) decompositions have also
been proposed. TT decomposition is an approach for
decomposing a tensor into a series of inter-connected third
order core tensors (Oseledets, 2011), as (see Figure 1).

X ≃ ≪G(1),G(2), . . . ,G(N) ≫ , (1)

where X ∈ RI1×I2×/×IN is the N-th order tensor to be decomposed
and G(n) ∈ RRn−1×In×Rn is the n-th core tensor. The vector

[R0,R1, . . . ,RN ] is the TT rank vector and R0 � RN � 1
(Oseledets, 2011). The (i1, . . . , iN )-th element of X, i.e., xi1 ,...,iN ,
can be estimated as

xi1 ,...,iN ≃ G(1)
i1 G(2)

i2 · · · G(N)
iN , (2)

where G(n)
in is the in-th lateral slice of the n-th core tensor.

In TR decomposition, similar to TT decomposition, a tensor is
decomposed into a chain of inter-connected third order core
tensors with a notation similar to (Eq. 1), with, R0 � RN ≥ 1
(Zhao et al., 2016). The elements of a tensor with TR structure can
be computed as

xi1 ,...,iN ≃ tr(G(1)
i1 G(2)

i2 · · · G(N)
iN ), (3)

where “tr” denotes the trace operator.
Recently, a promising approach, called Hankelization, has

been developed for improving the quality of tensor
completion approaches (Yokota et al., 2018; Sedighin
et al., 2020). Previously, Hankelization has been used as an
initial step for a time series analysis algorithm, called Singular
Spectrum Analysis (SSA) (Golyandina et al., 2013; Rahmani
et al., 2016; Hassani et al., 2017; Kalantari et al., 2018).
Generally speaking, Hankelization is an approach for
transferring a lower order dataset to a higher order one by
exploiting Hankel matrix structure. In this approach, the
initial data is reshaped into a tensor whose slices have Hankel
or block Hankel structure. Recall that in a matrix with Hankel
structure, all of the elements in each skew diagonal are the
same. Hankelization provides possibility of exploiting local
correlations of the elements. Due to the Hankel structure, it is
expected that the resulting higher order tensor provided by
the Hankelization is low rank. This low-rankness in addition
to a rank incremental strategy for Tucker model has been
used for tensor completion in (Yokota et al., 2018). In
(Asante-Mensah et al., 2020), TR decomposition has been
used for the completion of Hankelized images. Also in
(Sedighin et al., 2020), a new approach for time series
completion based on a two-stage Hankelization has been
proposed. In this approach, a one way data, i.e., the time
series, is first reformatted into a Hankel matrix, and then the
resulting Hankel matrix is block Hankelized into a 6-th order
tensor using block (patch) Hankelization. In block
Hankelization approach, in contrast to classic
Hankelization methods, blocks of elements are Hankelized
instead of individual elements (Sedighin et al., 2020).

In this paper, we mainly focus on image completion. Using
the block Hankelization approach of (Sedighin et al., 2020),
the original incomplete tensor (image) is first transformed
into a higher order 7-D tensor. Then a TR decomposition has
been applied for image completion. Applying TR
decomposition for the completion of Hankelized images,
or better to say, in the embedded space, has been
investigated in few papers such as (Asante-Mensah et al.,
2020) and (Sedighin et al., 2021). Similar to many TT and TR
completion approaches, determining proper ranks for
completion is an important issue, so in this paper, the
rank incremental strategy, developed by us in (Sedighin

FIGURE 1 |General structure for TT and TR decompositions. For the TT
decomposition, R0 � RN � 1.
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et al., 2021), is used for determining the TR ranks. Moreover,
a multistage strategy is developed for further improving the
quality of reconstructed images. Multistage strategy has been
previously proposed by us in (Sedighin et al., 2020) for time
series completion. To best of our knowledge, this is the first
time of using multistage strategy for image completion along
with adaptive TR decomposition. This is the main difference
of the proposed approach with the simulation presented in
(Sedighin et al., 2021). The contributions of this paper can be
summarized as.

• Applying block Hankelization on each frontal slice of the
incomplete image which results in a 7-th order tensor. The
block (patch) Hankelization has been applied on each slice
of the color image separately, which results in three 6-th
order tensors. Then these 6-th order tensors have been
combined with each other to produce a 7-th order tensor

• Applying TR decomposition with automatic rank
incremental strategy proposed in (Sedighin et al., 2021).

• Developing a multistage strategy for improving the quality
of the final reconstructed image.

Extensive simulation results confirmed the quality of the
proposed algorithm in image completion, especially for high
missing ratios and noisy cases.

The rest of this paper is organized as follows: Notations and
preliminaries are presented in Section 2, different TT and TR
completion algorithms are briefly reviewed in Section 3.
Section 4 is devoted to the Block Hankelization and the
proposed algorithm is presented in Section 5. Finally,
results and discussion are presented in Section 6 and
Section 7, respectively.

2 NOTATIONS AND PRELIMINARIES

Notations used in this paper are adopted from (Cichocki et al.,
2016). It is assumed that vectors, matrices and tensors contain
real valued elements. An N-th order tensor is denoted by a bold
underlined capital letter as X ∈ RI1×I2×/×IN , where In is the
number of elements in the n-th mode. An I1 × I2 matrix is
denoted by a bold capital letter as X ∈ RI1×I2 and vectors are
denoted by bold lower case letters as x ∈ RI1 . The
(i1, i2, . . . , iN)-th element of tensor X is denoted by xi1 ,i2 ,...,iN .

Matricization or unfolding of a tensor is reshaping that tensor
into a matrix with the same elements. The mode-n matricization
of a tensor is defined as X(n) ∈ RIn×I1···In−1In+1 ···IN in which
X(n)(in, i1/in−1in+1/iN ) � xi1,i2 ,...,iN . Mode-{n} canonical
matricization of a tensor is also defined as X <n> ∈ RI1I2...In×In+1...IN
in which X <n> (i1 · · · in, in+1 · · · iN) � xi1 ,i2 ,...,iN . Furthermore,
X[n] ∈ RIn×In+1/IN I1/In−1 is an unfolding of a tensor in a way that
X[n](in, in+1 · · · iN i1 · · · in−1) � xi1 ,i2 ,...,iN .

Hadamard (component wise) product of two tensors is
denoted by ;. Mode-n product of a tensor A and a matrix B
is denoted by A×n B. vec(X) and rank(X) are the vectorization
and rank of a matrix, respectively.

3 TENSOR TRAIN AND TENSOR RING
BASED COMPLETION ALGORITHMS

Tensor Train decomposition has been exploited in many
completion algorithms. In (Yuan et al., 2019), two completion
algorithms, TT Weighted OPTimization (TT-WOPT) and TT
Stochastic Gradient Descent (TT-SGD) have been proposed. The
two algorithms are based on the minimization of the following
weighted cost function using a gradient descent method:

����Ω;(X − X̂(θ))����2F , (4)

where Ω is a binary mask tensor whose elements are 1 for the
observed and 0 for the missing elements, X is the observed tensor
and X̂(θ) is the estimated tensor with TT structure as

X̂(θ) � ≪G(1), . . . ,G(N) ≫ , (5)

and θ � (G(1), . . . ,G(N) .)
A TT based completion algorithm using system identification

has been proposed in (Ko et al., 2018). In this approach, the
indices of the observed elements are the inputs of a system and the
observed values are the outputs. Alternating Least Squares (ALS)
and Alternating Directions Fitting (ADF) based approaches have
also been proposed in (Grasedyck et al., 2015).

TT rank minimization has been used in many of tensor
completion algorithms. Indeed, these algorithms are basically
categorized as the rank minimization based approaches, however,
since they are using TT rank which is closely related to TT
decomposition, we have briefly reviewed them in this section.

In these algorithms, the cost function is defined as (Bengua
et al., 2017)

∑N−1

n�1
αnrank(X <n> ), (6)

where αn is the weight of the n-th term. The above cost function
is a weighted summation of the ranks of the canonical
unfoldings of the input tensor, called TT rank. Algorithms,
such as SiLRTC-TT and TMac-TT have been developed based
on the minimization of the TT rank and parallel matrix
factorization (Bengua et al., 2017). Furthermore,
minimization of the TT rank in addition to a sparsity
assumption of the mode-n matricizations of the incomplete
tensor has been proposed in (Yang et al., 2018).

TR decomposition has also been used in many completion
algorithms. TR-WOPT has been proposed in (Yuan et al., 2018a)
and is based on minimizing the cost function similar to (Eq. 4),
where X(θ) has a TR structure. In (Wang et al., 2017), an
approach called TR-ALS (Alternating Least Squares) has also
been developed for tensor completion.

TR-LRF (TR Low Rank Factors) algorithm has been proposed
in (Yuan et al., 2018b). This algorithm is based on a combination
of rank minimization and TR decomposition approaches, in
which the rank minimization has been applied on different
matricizations of the core tensors resulting from TR
decomposition of the incomplete tensor.
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Moreover, in (Yu et al., 2018), a completion algorithm called
MTRD has been introduced based on a more balanced
matricization of a tensor with TR structure. A new
matricization has been defined as X <n,d> ∈ RIaIa+1···In×In+1In+2 ···Ia−1 ,
where

X <n,d>(iaia+1 · · · in, in+1in+2 · · · ia−1) � xi1 ,i2 ,...,iN , (7)

and a is defined as

a � { n − d + 1 d ≤ n
n − d + 1 + N otherwise.

(8)

In (Yu et al., 2019), another completion approach, called
TRNNM (TR Nuclear Norm Minimization), based on
minimizing the nuclear norm of X <n,d> has been proposed.
Other completion approaches based on balanced
matricizations of tensors with TR structure have also been
proposed in (Huang et al., 2020a,b).

4 BLOCK HANKELIZATION

As mentioned earlier, Hankelization is an effective approach in
signal processing for exploiting local correlations of pixels or
elements. In many of time series completion or forecasting
algorithms, Hankelization has been used for transforming a
lower order signal into a higher order matrix or tensor (Shi
et al., 2020). An illustration for Hankelizing a time series has been
shown in Figure 2.

In (Yokota et al., 2018), Hankelization is performed by
multiplying a special matrix, called duplication matrix, by each
of the modes of the original tensor followed by a
tensorization step.

Block (patch) Hankelization using blocks of elements
(instead of single elements) has been proposed in
(Sedighin et al., 2020). The block Hankelization is also
performed by multiplying matrices, called block duplication
matrices (shown in Figure 3), by different modes of
the original tensor (Sedighin et al., 2020). Each
block duplication matrix is of size SH,k ∈ R

PTk(Ik /P−Tk+1)×Ik,
where SH,k is the block duplication matrix which is
multiplied by the k-th mode of the original tensor, P is the

block size, Tk is the k-th window size and Ik is the size of
the k-th mode of the original tensor which should be
dividable by P.

The resulting matrix after multiplication of matrix H ∈ RI1×I2
by block duplication matrices SH,1 ∈ RPT1(I1/P−T1+1)×I1
and STH,2 ∈ RI2×PT2(I2/P−T2+1) is Hb � SH,1HSTH,2 ∈
RPT1(I1/P−T1+1)×PT2(I2/P−T2+1). The matrix Hb is then folded
(tensorized) into a 6-th order tensor of size
P × P × T1 × D1 × T2 × D2, where P × P is the block size, T1

and T2 are the window sizes for the first and second modes,
respectively, D1 � I1/P − T1 + 1 and D2 � I2/P − T2 + 1. Block
Hankelization has been illustrated in Figure 4. Note that in
this figure, each colored block is a P × P matrix [for more
details please see (Sedighin et al., 2020)].

5 PROPOSED ALGORITHM

As mentioned earlier, the main idea of this paper is to apply TR
decomposition on the Hankelized incomplete image. In many TR
completion algorithms, the cost function used for completion can
be written as

J(θ) � ∣∣∣∣∣∣∣∣Ω; (X − X̂ (θ))∣∣∣∣∣∣∣∣2
F
, (9)

whereΩ is the mask tensor, whose elements are 1 for the observed
and 0 for the missing elements of the input tensor, X is the
incomplete input tensor, X̂ is the completed tensor with TR
representation and θ � (G(1),G(2), . . . ,G(N)). The cost function
in the embedded space, i.e., after Hankelization of the datasets,
can be written as

JH(θ) �
∣∣∣∣∣∣∣∣ΩH;(H − Ĥ (θ))∣∣∣∣∣∣∣∣2

F
, (10)

where ΩH and H are the resulting tensors after Hankelization of
Ω and X, respectively and Ĥ(θ) is the TR estimation of H.

FIGURE 2 | Illustration of Hankelization of a one-dimensional signal.

FIGURE 3 | Illustration of a block duplication matrix. The lower order
tensor is transformed into a higher order tensor by multiplying this matrix into
its different modes following by a folding step.
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Similar to (Yokota et al., 2018) and by using a
Majorization Minimization approach, minimization of
(Eq. 10), can be achieved by minimizing the following
auxiliary function

JH(θ∣∣∣∣θk) � ∣∣∣∣∣∣∣∣ΩH;(H − Ĥ(θ))∣∣∣∣∣∣∣∣2F
+
∣∣∣∣∣∣∣∣∣∣(1 −ΩH);(Ĥ(θk) − Ĥ(θ))∣∣∣∣∣∣∣∣∣∣2F ,

(11)

where Ĥ(θk) is the estimated tensor in the TR format in the k-th
iteration and 1 is a tensor with the size equal to ΩH whose all
elements are 1. The cost function (Eq. 11), can be re-written as
(Yokota et al., 2018; Sedighin et al., 2020)

JH(θ∣∣∣∣θk) � ∣∣∣∣∣∣∣∣~H − Ĥ(θ)∣∣∣∣∣∣∣∣2F , (12)

where ~H � ΩH;H + (1 −ΩH);Ĥ(θk) . It can be inferred from
(Eq. 12) that the minimization of (Eq. 10) is equivalent to the TR
decomposition of the input tensor, where in each iteration, the
observed elements are kept fixed. Considering (Eq. 12), TR
estimation is done in an iterative manner, where the number
of iterations is denoted by Iint . In each iteration, the TR
decomposition of ~H, i.e., Ĥ(θ) has been estimated and then
the updated ~H is computed.

As mentioned in the introduction, determining the ranks for
TT and TR decompositions is a challenging task. In papers such

FIGURE 4 | Illustration of the block Hankelization. In the first step, the initial matrix is multiplied by two block duplication matrices, and in the second step, the
resulting matrix is folded into a 6-th order P × P × T1 × D1 × T2 × D2 tensor, where each colored block is a P × P matrix.

FIGURE 5 | Illustration of the de-Hankelization of a block Hankelized dataset. Each colored block is a P × P matrix.
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as (Wang et al., 2017; Yuan et al., 2018b), the TR ranks are
determined in advance and as inputs for the algorithm. These
fixed rank approaches usually fail in reconstruction of the images
with high missing ratios. Also, determining proper input ranks is
difficult. In papers such as (Yokota et al., 2018; Sedighin et al.,
2020), the input ranks are not determined in advance, but are
increased gradually during iterations. Experiments show that
these adaptive rank approaches are more successful in image
completion when missing ratio is high. In this paper, for
controlling the TR ranks, i.e., the size of the core tensors, rank
incremental approach, presented in detail in (Sedighin et al.,
2021), has been exploited. In (Sedighin et al., 2021), sensitivities of
the estimation error to each of the core tensors are estimated and
the size of the core tensors whose sensitivities are larger than a

threshold are increased. However, in contrast to (Sedighin et al.,
2021), in this paper, both of the ranks of the selected core tensor
are increased. The step for increasing the ranks in each iteration
can be 1 or any other natural number. It is also possible not to
increase the ranks in some iterations, i.e., changing the rank
increasing step to 0. The latter case is mainly applicable for images
with high missing ratios.

The estimated Ĥ is then re-transformed into the original
image space by de-Hankelization, which results in X̂. De-
Hankelization is a procedure for transferring back a
Hankelized dataset into its original format. De-Hankelization
of a block Hankelized tensor is done by averaging the
corresponding frontal slices (slices with the same color in
Figure 4) and then averaging the blocks with the same color

FIGURE 6 | Conceptual model for the multistage strategy in the embedded space.

Algorithm 1 | Pseudo code of the proposed algorithm

INPUT: Incomplete image X, mask tensor Ω, vector of block sizes p � [P1 ,P2 , . . . ,PL] where L is number of stages, t � [T1 , T2], rank vectors r1 , . . . , rN , error level ϵ,
maximum value of the rank Rmax , internal iteration number Iint, the rank increasing step (inc) and the threshold for selecting the core tensors for rank incremental in each
iteration (tol).
OUTPUT: Completed image X̂.
1: Initialize the missing elements of X by zero.
2: for l � 1 : L do
3: Block Hankelize the input incomplete image (X) and the mask tensor (Ω) by block size Pl × Pl and window size t � [T1 , T2] which results in H and ΩH.
4: Put ~H � H
5: while max(rl)<Rmax (or the normalized approximation error is higher than the error level ϵ) do
6: for j � 1 : Iint do
7: Compute the TR decomposition of ~H, i.e., Ĥ with rank vector rl .
8: ~H � ΩH ;H + (1 −ΩH); Ĥ
9: end for
10: Increase the elements of the rank vector rl using the approach of (Sedighin et al., 2021).
11: Compute X̂ by de-Hankelizing ~H (in noisy cases by de-Hankelizing Ĥ).
12: X̂ � Ω;X + (1 − Ω); X̂.
13: Apply smoothing by replacing each estimated element (for Ω � 0) by the average of its four neighbors in the frontal slice and keeping the observed elements fixed.
14: end while
15: Put X � X̂.
16: end for
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and alphabet (Sedighin et al., 2020). An illustration for de-
Hankelization has been shown in Figure 5. The estimated X̂ is
then modified as X̂ � Ω;X + (1 −Ω); X̂ and smoothness, by
replacing each estimated element of X̂ (for Ω � 0) by the average
of its four neighbors in the frontal slice, is applied.

The above procedure is repeated until the maximum value of the
TR rank vector achieves the limit or the normalized approximation

error in the embedded space i.e., ||ΩH;(H−Ĥ(θ))||2F
||ΩH;(H)||2F (or the change in

the normalized approximation error between two consecutive
iterations) becomes less than a pre-determined error level ϵ.

In this paper, we have employed a multistage strategy to
further improve the quality of final results. This is the main
difference of this paper with the simulation presented in
(Sedighin et al., 2021), which was the result of a single stage
algorithm. The main idea and the structure of the multistage
strategy have been illustrated in Figure 6. In this approach, the
incomplete image is block Hankelized with block size P1 × P1
and completed by the algorithm. Then the output of the
algorithm is again processed as the new input of the
algorithm with block size P2 × P2, where P2 < P1. The initial

TR rank vector for the first stage is set to all 1 vector. For the
next stages, the initial values of the rank vectors are set higher
than 1 but lower than the final ranks of the previous stage. The
procedure can be repeated for several stages until the desired
accuracy is achieved. The multistage strategy has a benefit of
providing a good initialization for the algorithm and
improving the quality of the final result (especially for very
high missing ratios and noisy cases), in comparison to a single
stage algorithm.

The pseudo code of the proposed algorithm has been listed in
Algorithm 1.

6 RESULTS

In this section, the effectiveness of the proposed multistage
approach has been investigated and compared with the state
of the art algorithms. The proposed algorithm has been
compared with the HaLRTC algorithm (Liu et al., 2012)
which is a rank minimization based completion algorithm
and also with MDT (Yokota et al., 2018), TR-ALS (Wang

TABLE 2 | Comparison of the performance of the algorithms for the reconstruction of images with 90% missing ratio. PSNR, SSIM and normalized approximation error
corresponding to each image have been written in brackets.

Missed image HaLRTC TT-WOPT TR-ALS TR-LRF MDT Proposed

[3.2,0.01,0.94] [16.2,0.3,0.21] [15.1,0.2,0.23] [8.3,0.1,0.52] [15,0.38,0.37] [21.5,0.73,0.11] [22.3,0.77,0.1]

[7,0.027,0.94] [14.4,0.44,0.4] [13.9,0.3,0.42] [6.4,0.4,0.98] [15.4,0.4,0.35] [21.8,0.8,0.17] [22.4,0.8,0.16]

[6,0.02,0.94] [15.3,0.44,0.3] [15.2,0.4,0.3] [10.2,0.3,0.57] [17.1,0.5,0.26] [21.2,0.73,0.16] [22.3,0.76,0.14]

TABLE 1 | The initial parameters for each algorithm for the first simulation.

Missing ratio 90% 95% 99%

Image size 128 × 128 × 3 128 × 128 × 3 256 × 256 × 3

P1 � 8, P2 � 4, t � [2,2] P1 � 8, P2 � 4, t � [2,2] P1 � 8, P2 � 4, t � [2,2]
Proposed Rmax ≤23 Rmax ≤23 Rmax ≤23
Algorithm Initial rank � [1,1,1,1,1,1,1] Initial rank � [1,1,1,1,1,1,1] Initial rank � [1,1,1,1,1,1,1]

MDT Window size � [8,8,1] Window size � [8,8,1] Window size � [16,16,1]

TRLRF Rank vector � [5,5,5] Rank vector � [5,5,5] Rank vector � [5,5,5]

TR-ALS Rank vector � [3,3,3] Rank vector � [25,25,25] —

TT-WOPT Rank vector � [15,15,3] Rank vector � [15,15,3] Rank vector � [15,15,3]
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et al., 2017), TT-WOPT (Yuan et al., 2018a) and TR-LRF
(Yuan et al., 2018b), which are tensor decomposition based
approaches. We have used standard (typical) color images for
our simulations.

In the first simulation, the approaches have been compared for
the completion of images with high missing ratios, i.e., 90%, 95%
and 99% missing pixels. The parameters regarding to each
algorithm have been listed in Table 1. The results have been
presented in Tables 2–4, respectively. Peak Signal to Noise Ratio
(PSNR), Structural SIMilarity (SSIM) and normalized

approximation error (||T−X̂||F||T||F ), where T is the original image,

have been written beneath each figure in brackets. For the

proposed approach, the two stage strategy has been exploited.
The block size of the first stage was set to P1 � 8 and for the
second stage was set to P2 � 4. The window size of the both stages
was t � [2, 2]. Rank incremental step for 90% and 95% missing
ratios were 1 for both of the stages. For 99% missing ratio, in the
first stage, the ranks were increased by 1 in each 4 iterations, and
for the second stage the rank increasing step was 1 in each
iteration. The size of the reconstructed images in Table 2 and
Table 3 are 128 × 128 × 3 and in Table 4 are 256 × 256 × 3. For
the MDT approach, the window size was set to [8, 8, 1] for 128 ×
128 × 3 images and [16, 16, 1] for 256 × 256 × 3 images. The initial
rank vector for TR-LRF was set to [5, 5, 5] and for TT-WOPT has

TABLE 4 | Comparison of the performance of the algorithms for the reconstruction of images with 99% missing ratio. PSNR, SSIM and normalized approximation error
corresponding to each image have been written in brackets.

Missed image HaLRTC TT-WOPT TR-ALS TR-LRF MDT Proposed

[5.44,0.002,0.99] [9.25,0.1,0.64] [13.3,0.2,0.4] Fail [13.45,0.1,0.39] [18.04,0.54,0.23] [18.34,0.55,0.22]

[6.48,0.002,0.99] [9.9,0.2,0.67] [13.5,0.3,0.44] Fail [14.75,0.3,0.4] [18.41,0.67,0.25] [18.62,0.68,0.24]

[5.96,0.002,0.99] [8.8,0.23,0.71] [11.9,0.46,0.5] Fail [11.84,0.23,0.5] [17.3,0.81,0.27] [18.15,0.83,0.24]

TABLE 3 | Comparison of the performance of the algorithms for the reconstruction of images with 95% missing ratio. PSNR, SSIM and normalized approximation error
corresponding to each image have been written in brackets.

Missed image HaLRTC TT-WOPT TR-ALS TR-LRF MDT Proposed

[5.4,0.01,0.97] [10.8,0.5,0.5] [14.6,0.6,0.3] [4.5,0.06,1] [14.8,0.64,0.3] [20.96,0.89,0.16] [21.22,0.89,0.15]

[6.7,0.01,0.97] [10.8,0.2,0.6] [14.1,0.3,0.4] [5.9,0.03,1] [14.7,0.36,0.4] [19.8,0.73,0.21] [20,0.73,0.21]

[6.2,0.01,0.97] [10,0.3,0.6] [12.2,0.45,0.5] [4,0.03,1.2] [13.1,0.5,0.4] [19,0.85,0.22] [19.52,0.86,0.21]
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been set to [15, 15, 3]. In TR-ALS, the initial rank for 90% missing
ratio was set to [3, 3, 3] and for 95% missing ratio was set to
[25, 25, 25] (Table 1). As the results show, for high missing
ratios, the proposed approach provides higher performance in
comparison to the fixed rank approaches such as TT-WOPT, TR-
ALS and TR-LRF. This higher performance is more significant for
99% missing ratio where TR-ALS completely fails. Indeed, the
TR-ALS algorithm could not provide any output for images with
99% missing ratio. This shows the importance of adaptive rank
selection for image completion. The higher performance of the
algorithm is also clear in comparison with the low rank
completion based algorithm such as HaLRTC. The results
show that the performance of HaLRTC dramatically
deteriorates when the missing ratio increases. The proposed
algorithm has also slightly higher performance in comparison
to the MDT approach, which is a tensor decomposition based
approach with rank incremental strategy. The run time of our
algorithm is larger than the other considered approaches. This is
due to themultistage structure of our algorithm. Additionally, our

algorithm in each stage has inner iterations for computing TR
decomposition of the input and outer iterations for increasing the
ranks. These two kinds of iterations are repeated for each stage.
Moreover, in our approach 3-rd order images are transformed
into 7-th order tensors. Analyzing this higher order tensor also
increases the run time of the algorithm. These together increase
the run time of our approach, however this longer run time
results in the better performance of our approach.

In the next simulation, the algorithms have been compared for
the completion of structurally missing images. The images with
blocks and slices missing elements were completed by the
algorithms and the results have been presented in Table 5. The
image size of this simulation was 128 × 128 × 3 and the algorithms
parameters were similar to Table 1 for 90% missing ratio. The
completed images along with the PSNR’s, SSIM’s and normalized
approximation errors, show the superiority of the proposed
approach in comparison to the other completion methods.

In the next simulation, the effectiveness of the multistage
strategy has been investigated. For this purpose, one stage

TABLE 7 | Investigation of the effect of noise on the performance of the proposed and MDT algorithms. Images have 90% missing ratio and σ is the standard
deviation of noise. The presented results are the averaged PSNR’s over seven incomplete noisy images and their standard deviations. It is clear that even in noisy cases,
the proposed approach outperforms MDT.

σ 0.1 0.2 0.3 0.4 0.5 0.6

Proposed algorithm 21.16 ± 0.61 19.80 ± 0.53 18.55 ± 0.61 18.02 ± 0.74 17.45 ± 0.76 16.54 ± 0.69
MDT 20.78 ± 0.84 19.39 ± 0.53 18.1 ± 0.67 17.69 ± 0.74 17.31 ± 0.95 16 ± 0.62

TABLE 6 | Investigation of the effectiveness of the multistage strategy. Single stage algorithms with P � 8 and P � 4 have been compared with a multistage algorithm with
P1 � 8 and P2 � 4. PSNR, SSIM and normalized approximation error corresponding to each figure have been written in brackets.

Missed image One stage algorithm (P � 8) One stage algorithm (P � 4) Two stage algorithm (P1 � 8, P2 � 4)

[5.96,0.002,0.99] [17.81,0.82,0.25] [17.66,0.81,0.27] [18.15,0.83,0.24]

TABLE 5 | Comparison of the performance of the algorithms for the reconstruction of images with structural missing elements. PSNR, SSIM and normalized approximation
error corresponding to each image have been written in brackets.

Missed image HaLRTC TT-WOPT TR-ALS TR-LRF MDT Proposed

[15.3,0.84,0.3] [25.3,0.9,0.1] [19,0.9,0.2] [24.5,0.9,0.1] [25.33,0.9,0.1] [25.8,0.94,0.09] [28.31,0.95,0.07]

[9.5,0.5,0.6] [10.5,0.6,0.5] [18.2,0.84,0.2] Fail [17.6,0.7,0.2] [21.96,0.93,0.14] [24.28,0.95,0.11]

Frontiers in Artificial Intelligence | www.frontiersin.org August 2021 | Volume 4 | Article 6871769

Sedighin and Cichocki Multistage Tensor Ring Completion

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


algorithms with P � 8 and P � 4 have been compared with a two
stage algorithm with P1 � 8 and P2 � 4 for the completion of an
image with 99%missing ratio. The window size was set to t � [2, 2]
and the initial rank vector for the second stage was set to
[10, 10, . . . , 10]. The results have been illustrated in Table 6. As
the results show, the quality of the reconstructed image resulted
from the two stage algorithm is higher than the images resulted
from single stage algorithms. This is because the first stage of the
algorithm can provide a good initialization for the second stage,
which can result in a better completion performance comparing to
single stage algorithms.

Finally, for investigating the effect of noise on the
performance of the proposed algorithm, several incomplete
noisy images have been completed by the proposed and the
MDT approaches. The size of the images in this simulation was
128 × 128 × 3. The missing ratio of the images was 90% and the
remaining pixels have been contaminated by noise with normal
distribution and standard deviation σ. The two methods have
been compared for different σ’s. The parameters of the two
algorithms were similar to Table 1 for 90% missing ratio. The
ranks of the second stage of the proposed algorithm have been
set equal to 10 for σ � 0.1 and 3 − 6 for other σ’s. For the MDT
approach, noise levels have been selected as 10−2, 4 × 10−2, 10−1,
1.6 × 10−1, 2.5 × 10−1 and 3.6 × 10−1 for σ � 0.1, 0.2, 0.3, 0.4, 0.5
and 0.6, respectively. For each σ, seven incomplete noisy images
have been completed by each algorithm and the resulting
PSNR’s have been averaged and the standard deviation has
been computed. Note that in noisy cases, the line 12 of the
Algorithm 1 moves to after line 13 and the output of the line
13 will be the output of each stage (i.e., before replacing the
observed elements). The results have been presented in Table 7.
As the results show, the qualities of the both approaches decrease
by increasing σ. However, even in these noisy cases, the quality of
the proposed approach is higher than MDT.

7 DISCUSSION

A new approach for image completion in the embedded space by
block Hankelization and by exploiting TR decomposition has been
proposed and extensively tested. In this approach, the incomplete
image has been transformed into a higher order 7-th order tensor
using block Hankelizaion and then a TR decomposition with rank
incremental strategy and smoothness have been applied for
completion. Moreover, a multistage strategy, which has been
previously applied by us for time series completion, has been
used for increasing the quality of the final completed image.
Simulation results and comparisons with the state of the art
algorithms indicated the advantage of the proposed algorithm.
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