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In recent years, the evolution of artificial intelligence, especially deep learning, has been
remarkable, and its application to various fields has been growing rapidly. In this paper, I
report the results of the application of generative adversarial networks (GANs), specifically
video-to-video translation networks, to computational fluid dynamics (CFD) simulations.
The purpose of this research is to reduce the computational cost of CFD simulations with
GANs. The architecture of GANs in this research is a combination of the image-to-image
translation networks (the so-called “pix2pix”) and Long Short-Term Memory (LSTM). It is
shown that the results of high-cost and high-accuracy simulations (with high-resolution
computational grids) can be estimated from those of low-cost and low-accuracy
simulations (with low-resolution grids). In particular, the time evolution of density
distributions in the cases of a high-resolution grid is reproduced from that in the cases
of a low-resolution grid through GANs, and the density inhomogeneity estimated from the
image generated by GANs recovers the ground truth with good accuracy. Qualitative and
quantitative comparisons of the results of the proposed method with those of several
super-resolution algorithms are also presented.

Keywords: deep learning, generative adversarial networks (GANs), image-to-image translation networks (pix2pix),
long short-term memory (LSTM), computational fluid dynamics (CFD)

1 INTRODUCTION

Artificial intelligence is advancing rapidly and has come to be comparable to or outperform humans
in several tasks. In generic object recognition, deep convolutional neural networks have surpassed
human-level performance (e.g, He et al., 2015; He et al., 2016; Ioffe and Szegedy, 2015). The agent
trained by reinforcement learning is capable of reaching a level comparable to professional human
game testers (Mnih et al., 2015). In the case of machine translation, Google’s neural machine
translation system, using Long Short-TermMemory (LSTM) recurrent neural networks [Hochreiter
and Schmidhuber (1997), Gers et al. (2000)], is a typical and famous example and its translation
quality is becoming comparable to that of humans (Wu et al., 2016).

One of the hottest research topics in artificial intelligence is generative models and one approach to
implementing a generative model is generative adversarial networks (GANs) proposed by Goodfellow
et al. (2014). GANs consist of two models trained with conflicting objectives. Radford et al. (2016)
applied deep convolutional neural networks to those two models, whose architecture is called deep
convolutional GANs (DCGAN). DCGAN can generate realistic synthesis images from vectors in the
latent space. Isola et al. (2017) proposed the network learning the mapping from an input image to an
output image to enable the translation between two images. This network, the so-called pix2pix, can
convert black-and-white images into color images, line drawings into photo-realistic images, and so on.
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The combination of deep learning and simulation has been
recently researched. One of such applications is to use simulation
results for improving the prediction performance of deep
learning. Since deep learning requires a lot of data for
training, numerical simulations that can generate various data
by changing physical parameters could help compensate for the
lack of training data. Another application is to speed up the solver
of computational fluid dynamics (CFD). Guo et al. (2016) used a
convolutional neural network (CNN) to predict velocity fields
approximately but fast from the geometric representation of the
object. Another example is that velocity fields are predicted from
parameters such as source position, inflow speed, and time by
CNN (Kim et al. (2019)). Their method is feasible to generate
velocity fields up to 700 times faster than simulations. As a more
general method, not limited to CFD problems, Raissi et al. (2019)
proposed the physics-informed neural network (PINN), which
utilizes a relatively simple deep neural network to find solutions
to various types of nonlinear partial differential equations.

GANs also have been combined with numerical simulations to
enable a new type of solution method. Farimani et al. (2017) used
the conditional GAN (cGAN) to generate the solution of steady-
state heat conduction and incompressible flow from boundary
conditions and calculation domain shape/size. Xie et al. (2018)
proposed a method for super-resolution fluid flow by a
temporally coherent generative model (tempoGAN). They
showed that tempoGAN can infer high-resolution, temporal,
and volumetric physical quantities from those of low-
resolution data.

The above-mentioned studies about the combination of GANs
and simulations show that GANs can generate the three-
dimensional data of the solution of physical equations. The
main topic in this research is the translation of images
(distributions of the physical quantity) by GANs. In the case
that the accuracy of the simulation is particularly important, a
large number of computational grids are needed. Additionally,
the number of simulation cases for design optimization is
typically numerous. It means that the computational cost
(machine power and time) becomes large. In such a case, it is
important to reduce the computational cost, and one way to do so
is to make effective use of low-cost simulations. Based on such an
idea, I investigated the feasibility of time-series image-to-image
translation: translation from time-series distribution plots in the
case of low-resolution computational grids to those in the case of
high-resolution grids. A quantitative evaluation of the quality of
generated images was also performed.

The method proposed in this paper is the video (sequential
images)-to-video translation in which the difference of solutions
between the high- and low-resolution grid simulations is learned.
Meanwhile, the PINN constructs universal function
approximators of physical laws by minimizing the loss
function composed of a mismatch of state variables including
the initial and boundary conditions and the residual for the
partial differential equations (Meng et al., 2020). In other
words, the PINN is an alternative to CFD, while the proposed
method is a complement to CFD.

The paper is organized as follows. In section 2, I describe the
outline of the simulations whose results are input to GANs and

the details of the network architecture. In section 3, I give the
results of time-series image-to-image translation (in other words,
video-to-video translation) of physical quantity distribution and a
discussion mainly about the quality of generated images.
Conclusions are presented in section 4.

2 METHODS

2.1 Numerical Simulations
I solved the following ideal magnetohydrodynamic (MHD)
equations numerically in two dimensions to prepare input
images to GANs:

zρ

zt
+ ∇ · (ρv) � 0 (1)

z

zt
(ρv) + ∇ · ρvv + pTI − BB( ) � 0 (2)
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2

+ |B|2
2

(6)

where ρ, p, and v are the density, pressure, and velocity of the gas;
B is the magnetic field; c represents the heat capacity ratio and is
equal to 5/3 in this paper; pT and e represent the total pressure and
the internal energy density; I is the unit matrix.

One of typical test problems for MHD, the so-called
Orszag-Tang vortex problem (Orszag and Tang, 1979), was
solved by the Roe scheme (Roe 1981) with MUSCL
[monotonic upstream-centered scheme for conservation laws;
(van Leer 1979)]. The initial conditions are summarized in
Table 1. B0 is a parameter for controlling the magnetic field
strength. The compuational domain is 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. The
periodic boundary condition is applied in both x- and y-
directions. Simulations for each condition were performed
twice on computational grids with different resolutions. The
number of grid points is (Nx × Ny) � (51 × 51) or (251 × 251).
In the case of (Nx × Ny) � (251 × 251), the calculation time is
more than 70 times longer than in the other case though the
obtained solution is expected to be close to the true solution.

TABLE 1 | The initial conditions of simulations.

Physical quantity Description Value

ρ Density 25π/36
vx x-component of velocity −sin(2πy)
vy y-component of velocity sin(2πx)
vz z-component of velocity 0
Bx x-component of magnetic field −B0 sin(2πy)
By y-component of magnetic field B0 sin(4πx)
Bz z-component of magnetic field 0
p Pressure 5π/12
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2.2 Generative Adversarial Network
Architecture
After the original concept of GANs was proposed by Goodfellow
et al. (2014), various GANs have been researched. Among such
networks, I focused on pix2pix, which is a type of conditional
GAN and a network for learning the relationship between the
input and output images. The feasibility of translating from the
results of low-resolution grid simulations to those of high-
resolution grid simulations has been investigated in this
research. Furthermore, in order to enable the translation
across two time-series, the architecture combined pix2pix and
LSTM has been constructed.

Figure 1 shows the schematic picture of the architecture of
the generator in this research. The role of the LSTM layer is to
adjust the image translation dependent on the physical time
of the simulation; for the initial state of the simulation
(T � 0), no translation is needed at all, but as physical
time passes, progressively larger translations are needed.
Note that the weights of the encoder (decoder) before
(after) the LSTM layer are the same in the time direction.

Plots of the time evolution of the density in the low-resolution
simulations are input to the generator (plots are read as
single-channel images). The input images are converted to
vectors by the first-half of a U-shaped network (U-Net). In
Figure 2, I denote the architecture of the first-half of U-Net in
detail. It consists of eight convolutional blocks with a kernel
size of (4 × 4) or (2 × 2). The instance normalization
(Ulyanov et al. (2017)) is applied except for the first and
last blocks. The activation function is a leaky rectified linear
unit [leaky ReLU; Maas et al. (2013)] with a slope of 0.2 for all
blocks. A 512-dimensional vector is generated at the end of
this architecture.

A series of 512-dimensional vectors converted from the
time-series plots is input to the LSTM layer. An input vector xt
originated from the plot at time � t is calculated with the
hidden state ht−1 and memory cell ct−1. A forget gate (f ), an
input gate (i), an output gate (o), and part of the term to be
added to the memory cell (z) in Figure 3 are calculated as
follows:

f � σ W f xt + Rf ht−1 + bf( ) (7)

i � σ W ixt + Riht−1 + bi( ) (8)

o � σ Woxt + Roht−1 + bo( ) (9)

z � tanh Wzxt + Rzht−1 + bz( ) (10)

where σ is the sigmoid function and tanh is the hyperbolic
tangent function; W· and R· are the input-to-hidden weight
matrices and the recurrent weight matrices; b· are bias vectors.
The hidden state and memory cell are updated by:

ct � f ☉ ct−1 + i☉ z (11)

ht � o☉ tanh ct( ) (12)

The hidden state ht is reshaped as (1, 1, 512) . The reshaped
hidden state ht’ is passed to the latter-half of U-Net and is
decoded to the image data (Figure 4). This part consists of
eight deconvolutional blocks with an upsampling of the
feature map, convolution with a kernel size of (2 × 2)or (4 ×
4) (the size of the feature map does not change because the stride

FIGURE 1 | Schematic picture of the architecture of the generator in this
research. The generator in the original pix2pix network is a U-shaped network
(U-Net). In this research, the LSTM layer is inserted into the middle of U-Net.
The skip connections from the first-half of U-Net to the latter-half over the
LSTM layer are implemented.

FIGURE 2 | The details of the first-half of U-Net. The expression “conv4x4 64” refers to a convolutional layer with a kernel size of (4 × 4) and 64 channels. Each
feature map is copied and is concatenated to the feature map of the corresponding block in the latter-half of U-Net denoted in Figure 4.
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of convolution is 1), the instance normalization and activation by
ReLU function except the last block. As seen in Figure 1, the
generator outputs synthetic time-series plots of density
distribution.

The authenticity of the images is judged by the discriminator.
Figure 5 shows the details of the architecture of the
discriminator in this research. A real image (plot of the
density distribution in a high-resolution simulation) or a
synthesis image is input to the discriminator. It consists of
five convolutional blocks with a kernel size of (4 × 4). The
instance normalization is applied except for the first and last
blocks. Except for the last block, the leaky ReLU function with a
slope of 0.2 is applied as the activation function. The 16 × 16
patch is eventually output. The discriminator classifies each
patch into real or synthetic. We call its architecture the
patchGAN (Isola et al., 2017).

The objective of the network is the same as the regular pix2pix
as follows:

FIGURE 4 | The details of the latter-half of U-Net. The expression “Upsampling2x2” refers to an upsampling layer that doubles the size of input by copying one value
twice horizontally and vertically, respectively. From the first-half of U-Net displayed in Figure 2, feature maps are passed to corresponding blocks and are concatenated
to the feature maps output from the previous blocks.

FIGURE 3 | The architecture of LSTM. The input to LSTM (xt) is the
vector transformed from an image of density distribution, and the output is the
reshaped hidden state vector (ht′ ) resulting from several operations. The
vector c is the memory cell, and f, i, o, and z are a forget gate, an input
gate, an output gate, and part of the term to be added to the memory cell (see
equations (7) to (10) for details).

FIGURE 5 | The details of the architecture of the discriminator in this research.
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G* � arg min
G

max
D

LcGAN(G,D) + λLL1(G) (13)

LcGAN(G,D) �E log,D x,y( )]+E[log(1−D(x,G(x)))][ (14)

LL1(G) � E[‖y − G(x)‖] (15)

where G and D denote the generator and discriminator, λ is the
weighted sum parameter and equal to 100 in this research, and x and y

mean the source and target images.G(x) returns a synthesis image and
D(x, y) or D(x,G(x)) returns the probability that y or G(x) is a real
target image. LL1(G) is the mean absolute error (L1 loss) calculated
from the pixel-wise comparison between the real image and the
synthetic image. The optimizer is Adamwith a learning rate of 0.0002.

The architecture is implemented using Keras 2.5.0 and
TensorFlow as a backend. The model was trained on Google

TABLE 2 | The details of the training and testing datasets.

Training/Testing The number of cases The total number of
images

The pixel size of
images

The value of B0

Training 16 320 256 × 256 0.1–1.5 with the interval of 0.1, and 2.0
Testing 19 380 256 × 256 0.15–1.55 and 1.6–1.9 with the interval of 0.1

FIGURE 6 | Two examples of the time-evolution of density distribution for the training datasets.
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Colaboratory with Tesla P100-PCIe GPU. For applying the
convolution and deconvolution to the sequential data, sets of
operations as shown in Figures 2,4,5 are passed to the
TimeDistributed layer. The skip connections are implemented by
feeding the outputs of the previous upsampling block in the latter-
half of U-Net and the same-level (it means that the size of the feature
map is the same) convolutional block in the first-half of U-Net to the
Concatenate layer. The “return_sequences” and “stateful” parameters
in the LSTM layer are set to True and False, respectively.

3 RESULTS AND DISCUSSION

In this chapter, I show the results of time-series image-to-image
translation for the training datasets first and then explain the way

to evaluate the quality of the synthesis images quantitatively. The
evaluation result of the synthesis images for the training datasets is
presented next. Then, I show the results for the testing datasets.
Finally, the quality of the synthesis images is compared with those
of images upsampled by conventional super-resolution algorithms.
The conditions (the magnetic field strength) of the simulations are
shown in Table 2 that summarizes the details of the training and
testing datasets. The sixteen cases were performed to prepare the
training datasets, and the nineteen cases were performed to prepare
the testing datasets. For each case, two simulations were run with
the high-resolution and the low-resolution grids.

3.1 Results for the Training Datasets
Figure 6 shows two examples of the time-evolution of density
distribution for the training datasets. The top and bottom images

FIGURE 7 | Comparison of the inhomogeneity of the density between the high-resolution grid cases and the low-resolution grid cases for the training datasets. (A)
The inhomogeneities for all time-series and all magnetic field strength cases are plotted. (B) The inhomogeneities for T ≥ 0.12 and B0 ≥ 0.6 are plotted.

FIGURE 8 | Comparison of the inhomogeneity calculated from the
density values on the grids and the inhomogeneity predicted from the
distribution maps. The coefficient of determination (R2) is equal to 0.999.

FIGURE 9 |Comparison of the inhomogeneity of the high-resolution grid
simulation results and the inhomogeneity predicted from the synthesis images
for the training datasets.

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 6702086

Kigure An Application of GANs to CFD

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


of Figures 6A,B show the simulation results, and the middle
images are synthesis ones generated from the top ones (the results
of low-resolution grid simulations) through the generator.
Compared to the high-resolution grid cases, the density
distributions in the low-resolution grid cases show less fine
structure and become closer to the uniform. Figure 7 displays
the comparison of the inhomogeneity of the density between the
high-resolution grid cases and the low-resolution grid cases. The
inhomogeneity is defined by α � σρ/�ρ, where σρ and �ρ are the
standard deviation and the average of the density. In the low-
resolution grid, the numerical diffusion is larger than in the high-
resolution grid, and therefore the inhomogeneity of the density
tends to be smaller especially from the middle stage of the vortex
development and in the relatively strong magnetic field (Figure

7B). The synthesis images reproduce the fine structures of the
density distributions and appear to be well consistent with the
high-resolution grid results.

To quantitatively evaluate the quality of the synthesis images, I
estimated the density inhomogeneity from the distribution map.
When calculating the density inhomogeneity from the simulation
result, we can use the value of the density on each grid; however,
the density distribution maps (including synthesis images in this
research) have only the information of the RGB values. Therefore,
to estimate the density inhomogeneity from the distribution map,
I trained a three-layer fully connected neural network with
196,608 (256pixel × 256pixel × 3) inputs, two hidden layers of
1,024 and 128 neurons and one output layer. Figure 8 shows the
result of the inhomogeneity prediction from the density

FIGURE 10 | Examples of the time-evolution of density distribution for the testing datasets.
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distribution maps. The horizontal axis is the inhomogeneity
calculated from the density values on the grids, and the
vertical axis is the inhomogeneity predicted from the
distribution maps by the trained neural network. The
coefficient of determination (R2) is equal to 0.999. Thus we
conclude that the trained neural network provides an accurate
estimation of the density inhomogeneity from the distribution
maps and the synthesis images.

We can quantitatively evaluate the quality of the synthesis
images by inputting those into the neural network and comparing
the outputted inhomogeneity with the inhomogeneity calculated
from the high-resolution grid simulation results. Figure 9 shows

that the inhomogeneity predicted from the synthesis images
matches that calculated from the high-resolution grid
simulation results with good accuracy; therefore the quality of
the synthesis images is definitely good for the training datasets.

3.2 Results for the Testing Datasets
In the previous subsection, I have shown that the results for the
training datasets are pretty good. However, the generalization
ability needs to be investigated for practical use. The testing
datasets (the magnetic field strength is different from the training
datasets as shown in Table 2) that were not used for training are
input to the trained model, and the synthesis images are output
from the generator. Figures 10A,B show the comparison of the
simulation results and the synthesis images for two example cases.
From the 19 cases in the testing datasets, the results for the cases
with B0 � 0.75 and 1.7 were selected for presentation. The B0 � 1.7
case is especially suitable for verifying the generalization ability
because there is no training data between B0 � 1.5 and 2.0. The top
images show the time evolution of the density distribution of low-
resolution grid simulations, which are input for the generator; the
bottom images show that of high-resolution grid simulations,
which are compared with the synthesis images; the middle images
are synthesis ones generated through the generator. As with the
cases for the training datasets, the synthesis images qualitatively
reproduce the density distributions of the high-resolution grid
simulations. Even in the B0 � 1.7 case, the synthesis images show
the fine structure of the density distribution very similar to that in
the ground truth images, as shown in the zoomed-in image in
Figure 10B.

Figure 11 is almost the same as Figure 9 but for the testing
datasets. The density inhomogeneity predicted from the
synthesis images through the fully connected neural
network (explained in the previous subsection) is in good
agreement with the inhomogeneity calculated from the results

FIGURE 11 | Comparison of the inhomogeneity of the high-resolution
grid simulation results and the inhomogeneity predicted from the synthesis
images for the testing datasets.

FIGURE 12 | Comparison of the results of the conventional super-resolution algorithms with that of the proposed method and ground truth.
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of high-resolution grid simulations. This result indicates that
the method in this research is capable of obtaining high
generalization ability.

3.3 Comparison With Conventional
Super-resolution Algorithms
To demonstrate the effectiveness of the proposed method and the
quality of the generated images, I compare the results with those
obtained by conventional super-resolution algorithms. The
algorithms investigated here are a bicubic interpolation, a
Lanczos interpolation, and Laplacian Pyramid Super-
Resolution Network [LapSRN; Lai et al. (2017)]. The pixel size
of the image to be used as the basis of the super-resolution is 64 ×
64, and each algorithm quadruples the pixel size. These results
were compared qualitatively and quantitatively with the result of
high-resolution grid simulation and the image generated by the
proposed method. Plots of the density distribution in high-
resolution simulations in the training datasets were used to
train LapSRN.

I performed the super-resolution algorithms to the testing
datasets (380 images). As an example, the results for the B0 � 1.7
and T � 0.38 case are compared in Figure 12. In this case, none of
the three conventional super-resolution algorithms can work
with a quality comparable to the method proposed in this
research. To compare the proposed method with the others
quantitatively, the pixel-wise mean squared error (MSE) and
the structural similarity index measure [SSIM; Wang et al.
(2004)] are calculated between the ground truth image and the
synthesis image or the result of super-resolution. Figure 13 shows
that the quality of the synthesis images by the proposed method is
significantly high compared to that of the results by the
conventional super-resolution algorithms.

3.4 Application of This Research
In this subsection, I discuss an application of this research. As
mentioned above, results of high computational cost simulations
can be estimated from those of low-cost simulations by the method
in this paper. However, it is important to note that simulation

results of quite a few cases are needed to train the network1.
Therefore, it is not beneficial for a small number of simulations.
The more simulations are required, the greater the benefits arise.
One such case is optimization based on CFD simulations. As the
number of objective variables to be optimized increases, the
number of calculations required to obtain the desired
performance is expected to increase; in some cases, it takes
several thousand cases to evaluate. In such multi-objective
optimization simulations, for example, the first dozens to
several hundred cases are simulated on both high- and low-
resolution grids, and the results are used to train the GANs.
After the GANs are trained, low-resolution grid simulations are
run, the results are input to the GANs to reproduce the results of
high-resolution grid simulations, and objective variables are
estimated from synthesis images by, for example, a neural network.

I demonstrate the estimation of computational cost reduction.
If the number of simulations required originally and that to train
the GANs are N (several thousands in some cases) and Nt (N >
Nt), the calculation times of the high- and low-resolution grid
simulations are Th and Tl (Th > Tl), and the computational cost to
train the GANs is Tt, the computational cost reduction is roughly
equal to

N × Th − Nt × Th + Tt + N × Tl( ) (16)

where the first term corresponds to the computational cost in the
case that all simulations are run on the high-resolution grid, and
the second term corresponds to that in the case that the method in
this research is applied (the cost to reproduce the results of high-
resolution grid simulations by the GANs is negligible compare to
performing the simulations). In this way, by substituting low-
resolution grid simulations and the result conversion by the
GANs for quite a part of high-resolution grid simulations, a
great reduction of the computational cost should be achieved.

FIGURE 13 | Box plots of the pixel-wise mean squared error (MSE) and the structural similarity index measure (SSIM) calculated in the testing datasets (380
images).

1In this research, simulation results of 16 cases were used as the training datasets;
the training was successful with a relatively small number of data, probably due to
the simple situation. If the target is a simulation of a realistic engineering situation,
it is expected that much more data will be needed for the training.
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4 CONCLUSION

In this paper, I validated an idea to use GANs for reducing the
computational cost of CFD simulations. I studied the idea of
reproducing the results of high-resolution grid simulations
with a high computational cost from those of low-resolution
grid simulations with a low computational cost. More
specifically speaking, distribution maps of a physical
quantity in time series were reproduced using pix2pix and
LSTM. The quality of the reproduced synthesis images was
good for both the training and testing datasets. The conditions
treated in this paper are simple; the computational region is a
square with a constant grid interval, the boundary conditions
are cyclic, and the governing equations are the ideal MHD

equations. In the next step, I need to examine the idea in more
realistic conditions.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

HK: Conceptualization, Data curation, Formal analysis,
Investigation, Methodology, Software, Visualization, Writing.

REFERENCES

Farimani, A. B., Gomes, J., and Pande, V. S. (2017). Deep Learning the Physics of
Transport Phenomena arXiv.

Gers, F. A., Schmidhuber, J., and Cummins, F. (2000). Learning to Forget:
Continual Prediction with Lstm. Neural Comput. 12, 2451–2471.
doi:10.1162/089976600300015015

Goodfellow, I., Pouget-Abadie, J., and Mirza, M., (2014). “Generative Adversarial
Nets,” in Advances in Neural Information Processing Systems, 27, 2672–2680.

Guo, X., Li, W., and Iorio, F. (2016). “Convolutional Neural Networks for Steady
Flow Approximation,” in KDD ’16: The 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco,
California (New York: Association for Computing Machinery), 481–490.
doi:10.1145/2939672.2939738

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep Residual Learning for Image
Recognition,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Las Vegas, Nevada (Manhattan, New York:
IEEE). doi:10.1109/cvpr.2016.90

He, K., Zhang, X., Ren, S., and Sun, J. (2015). “Delving Deep into Rectifiers:
Surpassing Human-Level Performance on Imagenet Classification,” in
Proceedings of the IEEE International Conference on Computer Vision
(ICCV). doi:10.1109/iccv.2015.123

Hochreiter, S., and Schmidhuber, J. (1997). Long Short-Term Memory. Neural
Comput. 9, 1735–1780. doi:10.1162/neco.1997.9.8.1735

Ioffe, S., and Szegedy, C. (2015). “Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift,” in Proceedings of Machine
Learning Research PMLR (Proceedings of Machine Learning Research).

Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A. (2017). “Image-to-image Translation
with Conditional Adversarial Networks,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
Honolulu, Hawaii (Manhattan, New York: IEEE). doi:10.1109/cvpr.2017.632

Kim, B., Azevedo, V. C., Thuerey, N., Kim, T., Gross, M., and Solenthaler, B. (2019).
Deep Fluids: A Generative Network for Parameterized Fluid Simulations.
Comp. Graphics Forum 38, 59–70. doi:10.1111/cgf.13619

Lai, W.-S., Huang, J.-B., Ahuja, N., and Yang, M.-H. (2017). “Deep Laplacian
Pyramid Networks for Fast and Accurate Super-resolution,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Honolulu, Hawaii (Manhattan, New York: IEEE). doi:10.1109/cvpr.2017.618

Maas, A. L., Hannun, A. Y., and Ng, A. Y. (2013). “Rectifier Nonlinearities Improve
Neural Network AcousticModels,” in ICMLWorkshop on Deep Learning for Audio,
Speech and Language Processing. Editors S. Dasgupta and D. McAllester JMLR.

Meng, X., Li, Z., Zhang, D., and Karniadakis, G. E. (2020). Ppinn: Parareal Physics-
Informed Neural Network for Time-dependent Pdes. Comp. Methods Appl.
Mech. Eng. 370, 113250. doi:10.1016/j.cma.2020.113250

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., et al.
(2015). Human-level Control through Deep Reinforcement Learning. Nature
518, 529–533. doi:10.1038/nature14236

Orszag, S. A., and Tang, C.-M. (1979). Small-scale Structure of Two-Dimensional
Magnetohydrodynamic Turbulence. J. Fluid Mech. 90, 129–143. doi:10.1017/
s002211207900210x

Radford, A., Metz, L., and Chintala, S. (2016). “Unsupervised Representation
Learning with Deep Convolutional Generative Adversarial Networks,” in 4th
International Conference on Learning Representations, San Juan, Puerto Rico
(arXiv).

Raissi, M., Perdikaris, P., and Karniadakis, G. E. (2019). Physics-informed Neural
Networks: A Deep Learning Framework for Solving Forward and Inverse
Problems Involving Nonlinear Partial Differential Equations. J. Comput.
Phys. 378, 686–707. doi:10.1016/j.jcp.2018.10.045

Roe, P. L. (1981). Approximate Riemann Solvers, Parameter Vectors, and
Difference Schemes. J. Comput. Phys. 43, 357–372. doi:10.1016/0021-
9991(81)90128-5

Ulyanov, D., Vedaldi, A., and Lempitsky, V. (2017). “Improved Texture Networks:
Maximizing Quality and Diversity in Feed-Forward Stylization and Texture
Synthesis,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Honolulu, Hawaii (Manhattan, New York: IEEE).
doi:10.1109/cvpr.2017.437

van Leer, B. (1979). Towards the Ultimate Conservative Difference Scheme. V. A
Second-Order Sequel to Godunov’s Method. J. Comput. Phys. 32, 101–136.
doi:10.1016/0021-9991(79)90145-1

Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P. (2004). Image Quality
Assessment: from Error Visibility to Structural Similarity. IEEE Trans. Image
Process. 13, 600–612. doi:10.1109/TIP.2003.819861

Wu, Y., Schuster, M., and Chen, Z., (2016). Google’s Neural Machine Translation
System: Bridging the Gap between Human and Machine Translation arXiv.
e-prints , arXiv:1609.08144.

Xie, Y., Franz, E., Chu, M., and Thuerey, N. (2018). Tempogan: A Temporally
Coherent, Volumetric gan for Super-resolution Fluid Flow. ACM Trans. Graph.
37, 1–15. doi:10.1145/3197517.3201304

Conflict of Interest: The author declares that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Kigure. This is an open-access article distributed under the terms
of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 67020810

Kigure An Application of GANs to CFD

https://doi.org/10.1162/089976600300015015
https://doi.org/10.1145/2939672.2939738
https://doi.org/10.1109/cvpr.2016.90
https://doi.org/10.1109/iccv.2015.123
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/cvpr.2017.632
https://doi.org/10.1111/cgf.13619
https://doi.org/10.1109/cvpr.2017.618
https://doi.org/10.1016/j.cma.2020.113250
https://doi.org/10.1038/nature14236
https://doi.org/10.1017/s002211207900210x
https://doi.org/10.1017/s002211207900210x
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/0021-9991(81)90128-5
https://doi.org/10.1016/0021-9991(81)90128-5
https://doi.org/10.1109/cvpr.2017.437
https://doi.org/10.1016/0021-9991(79)90145-1
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1145/3197517.3201304
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

	Application of Video-to-Video Translation Networks to Computational Fluid Dynamics
	1 Introduction
	2 Methods
	2.1 Numerical Simulations
	2.2 Generative Adversarial Network Architecture

	3 Results and Discussion
	3.1 Results for the Training Datasets
	3.2 Results for the Testing Datasets
	3.3 Comparison With Conventional Super-resolution Algorithms
	3.4 Application of This Research

	4 Conclusion
	Data Availability Statement
	Author Contributions
	References


