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In recent decades, computational approaches to sociophonetic vowel analysis have been
steadily increasing, and sociolinguists now frequently use semi-automated systems for
phonetic alignment and vowel formant extraction, including FAVE (Forced Alignment and
Vowel Extraction, Rosenfelder et al., 2011; Evanini et al., Proceedings of Interspeech, 2009),
Penn Aligner (Yuan and Liberman, J. Acoust. Soc. America, 2008, 123, 3878), and DARLA
(Dartmouth Linguistic Automation), (Reddy and Stanford, DARLA Dartmouth Linguistic
Automation: Online Tools for Linguistic Research, 2015a). Yet these systems still have a
major bottleneck: manual transcription. For most modern sociolinguistic vowel alignment and
formant extraction, researchers must first create manual transcriptions. This human step is
painstaking, time-consuming, and resource intensive. If thismanual step could be replacedwith
completely automatedmethods, sociolinguists could potentially tap into vast datasets that have
previously been unexplored, including legacy recordings that are underutilized due to lack of
transcriptions. Moreover, if sociolinguists could quickly and accurately extract phonetic
information from the millions of hours of new audio content posted on the Internet every
day, a virtual ocean of speech from newly created podcasts, videos, live-streams, and other
audio content would now inform research. How close are the current technological tools to
achieving such groundbreaking changes for sociolinguistics? Prior work (Reddy et al.,
Proceedings of the North American Association for Computational Linguistics 2015
Conference, 2015b, 71–75) showed that an HMM-based Automated Speech Recognition
system, trained with CMU Sphinx (Lamere et al., 2003), was accurate enough for DARLA to
uncover evidence of the US Southern Vowel Shift without any human transcription. Even so,
because that automatic speech recognition (ASR) system relied on a small training set, it
produced numerous transcription errors. Six years have passed since that study, and since that
time numerous end-to-end automatic speech recognition (ASR) algorithms have shown
considerable improvement in transcription quality. One example of such a system is the
RNN/CTC-based DeepSpeech from Mozilla (Hannun et al., 2014). (RNN stands for recurrent
neural networks, the learning mechanism for DeepSpeech. CTC stands for connectionist
temporal classification, the mechanism to merge phones into words). The present paper
combines DeepSpeech with DARLA to push the technological envelope and determine how
well contemporary ASR systems can perform in completely automated vowel analyses with
sociolinguistic goals. Specifically, we used these techniques on audio recordings from 352
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North American English speakers in the International Dialects of English Archive (IDEA1),
extracting 88,500 tokens of vowels in stressed position from spontaneous, free speech
passages. With this large dataset we conducted acoustic sociophonetic analyses of the
Southern Vowel Shift and the Northern Cities Chain Shift in the North American IDEA speakers.
We compared the results using three different sources of transcriptions: 1) IDEA’s manual
transcriptions as the baseline “ground truth”, 2) the ASR built on CMU Sphinx used by Reddy
et al. (Proceedings of the North American Association for Computational Linguistics 2015
Conference, 2015b, 71–75), and 3) the latest publicly available Mozilla DeepSpeech system.
We input these three different transcriptions to DARLA, which automatically aligned and
extracted the vowel formants from the 352 IDEA speakers. Our quantitative results show
that newer ASR systems like DeepSpeech show considerable promise for sociolinguistic
applications like DARLA. We found that DeepSpeech’s automated transcriptions had
significantly fewer character error rates than those from the prior Sphinx system (from 46
to 35%). When we performed the sociolinguistic analysis of the extracted vowel formants from
DARLA, we found that the automated transcriptions from DeepSpeech matched the results
from the ground truth for the Southern Vowel Shift (SVS): five vowels showed a shift in both
transcriptions, and two vowels didn’t show a shift in either transcription. The Northern Cities
Shift (NCS) was more difficult to detect, but ground truth and DeepSpeech matched for four
vowels: One of the vowels showed a clear shift, and three showed no shift in either transcription.
Our study therefore shows how technology has made progress toward greater automation in
vowel sociophonetics, while also showing what remains to be done. Our statistical modeling
provides a quantified view of both the abilities and the limitations of a completely “hands-free”
analysis of vowel shifts in a large dataset. Naturally, when comparing a completely automated
system against a semi-automated system involving humanmanual work, there will always be a
tradeoff between accuracy on the one hand versus speed and replicability on the other hand
[Kendall and Joseph, Towards best practices in sociophonetics (withMariannaDiPaolo), 2014].
The amount of “noise” that can be tolerated for a given study will depend on the particular
research goals and researchers’ preferences. Nonetheless, our study shows that, for certain
large-scale applications and research goals, a completely automated approach using publicly
available ASR can produce meaningful sociolinguistic results across large datasets, and these
results can be generated quickly, efficiently, and with full replicability.

Keywords: sociophonetics, vowels, dialects, American English, automated speech recognition, linguistics, Northern
cities vowel shift, Southern vowel shift

INTRODUCTION

Phonetic alignment and extraction of vowel formants are central
to modern sociophonetics (Thomas, 2011; Kendall and Fridland,
2021), and recent decades have seen a steady increase in
automation for these important tasks. The FAVE system,
Forced Alignment, and Vowel Extraction (Rosenfelder et al.,
2011) provided one such semi-automated tool. With FAVE,
users manually transcribe the text in Praat TextGrids
(Boersma and Weenink 2019), upload to an automatic aligner

(FAVE-Align), then use FAVE-Extract to extract the vowel
formant frequencies. This produces an important
improvement in processing time: Labov et al. (2013) report
that, with 40 h of manual work his team could process the
phonetic information of 300 vowels. On the other hand, using
automatic alignment, up to 9,000 vowels could be processed in
the same 40 h. But despite this progress, the current state-of-the-
art methods still have to deal with an expensive and time-
consuming bottleneck: the manual transcription of recordings.
For accurate results, human transcribers must manually
transcribe the audio. In this respect, most modern
sociophonetic tools are “semi-automated,” in that they require
human transcription (or at least human verification of a
transcription) to then proceed to the automated extraction of
phonetic information. This step of manual transcription takes an

1Recordings and associated text files are copyright and used by special arrangement
with the International Dialects of English Archive at https://www.
dialectsarchive.com
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enormous amount of time and resources of human labor, and
frequently introduces human error due to typographical errors or
other problems during annotation.

The DARLA system, which is short for “Dartmouth
Linguistic Automation” (darla.dartmouth.edu) (Reddy and
Stanford (2015a-c), provides a user-friendly version of this
workflow which has become prevalent in recent years with
researchers and students around the world; over 25,000 jobs
have been run on DARLA since 2015. DARLA has a web-
based utility for simple uploads of transcriptions (TextGrids
or plaintext) and audio. Unlike other systems, DARLA has
both a semi-automated and a fully automated system for
vowel alignment and extraction. Both systems use the
Montreal Forced Aligner for the phonetic alignment
(McAuliffe et al., 2017). In the semi-automated version,
users manually transcribe the audio into either plaintext
files or audio-aligned TextGrids. In the fully automated
system, users upload audio and DARLA uses its own in-
house automatic speech recognition system (ASR) to create
a transcription. After the ASR process is complete, DARLA
goes on to align and extract the vowel formants, matching the
audio and transcription with the Montreal Forced Aligner and
then extracting the formants using FAVE-Extract
(Rosenfelder et al., 2011). DARLA’s current ASR is based
on the CMU Sphinx toolkit, a HMM/GMM based ASR system.
(HMM/GMM stands for “Hidden Markov Model, Gaussian
Mixture Model,” the mechanism for finding the phones in the
audio stream). Reddy and Stanford (2015c) show that
DARLA’s fully automated transcription function can
generate useful sociolinguistic results in a completely
“hands-free” manner. The study used DARLA to
automatically analyze US Southern and US Northern
speakers, finding that the fully automated system could
uncover statistically significant contrasts between the two
regions in terms of the Southern Vowel Shift. Although
these North-South contrasts were more clearly visible in
the manually transcribed version, Reddy and Stanford
(2015c) pointed out that despite limitations of the current
ASR system, that fully automated system could still produce
useful sociolinguistic results from some types of large-scale
“big data” applications.

As examples a-d (reprinted from Reddy and Stanford, 2015c)
below suggest, errors in the transcription may not affect the
overall goal of producing vowel formants that are generally
representative of a speaker’s dialect features. In these
examples, the ASR system has made large errors in
transcription which crucially affect the meaning of some of
the sentences. But from the sociophonetician’s viewpoint, these
errors may not affect the end result. In many cases, the extracted
(stressed) vowel is the same for both systems, such as in the word
those versus close and in spend versus depend. Naturally,
phonetic environments may be affected [(z) in those versus (s)
in close]. But for some large-scale applications, this may not be
crucial. Reddy and Stanford (2015c) find that the US Southern
Vowel Shift can be effectively diagnosed using such fully
automated functions. Using 46 Southern and 47 Northern
speakers in the Switchboard corpus (Godfrey and Holliman,

1993), they show a statistically significant difference between
Southern speakers and Northern speakers, and they do this
without needing any manual human transcribers.

a) Manual: give me your first impression. ASR: give me yours
first impression

b) Manual: It’s one of those. ASR: It’s close
c) Manual: no It’s It’s wood turning. ASR: no it would turn it
d) Manual: and we really Don’t spend on anything. ASR: and we

don’t depend on anything

Even though the fully automated pipeline has been shown to
recover dialect differences, in practice, most users of DARLA
depend on the semi-automated version with manual transcripts,
since the word error rate of the CMU Sphinx ASR remains high.

In recent years, there have been numerous improvements in
automatic speech recognition over the traditional HMM/GMM
models. Two of them stand out: more availability of audio
training data, and more powerful end-to-end deep learning
algorithms. The amount of high-quality transcribed speech has
exploded in recent years, and much of this data is available under
open licenses. Two examples of such datasets are Mozilla’s crowd-
sourced Common Voice (Ardila et al., 2019), which contains more
than 1,600 h of English, where volunteers read elicited sentences, and
the OpenASR’s LibriSpeech (Panayotov et al., 2015), which contains
over 1,000 h of volunteers reading book passages. This has greatly
increased the training data available to ASR algorithms, which
themselves have improved during the last decade. The adoption of
end-to-end algorithms has led to important reductions in
transcription errors. These algorithms learn the word order and
the phone acoustics together, rather than through separate language
and acoustic models. They also build upon massive advances in deep
learning, particularly in the capacity of their neural networks to
understand the context of a word. The DeepSpeech algorithm
(Hannun et al., 2014) uses these open corpora and combines
them with an end-to-end architecture.

Our objective in this paper is to measure whether these end-to-
end algorithms can provide transcriptions that are good enough
to detect well-known sociophonetic patterns. There is research
indicating that current ASR systems do not perform equally well
with non-standard dialects of English (Tatman, 2017), so it is
possible that such an experiment will fail to detect patterns such
as the movements of vowels in the Southern dialect of US English.
We conduct a test with speakers from all states and examine two
regional dialects of US English: Southern and Inland North.

In the next sections we tackle the following questions: 1) Can
automated transcriptions detect large-scale sociolinguistic
patterns in a large dataset? 2) Can newer systems like
DeepSpeech detect these patterns better than previous
automated transcription methods? 3) How does an automated
transcription fare against human-transcribed data in detecting
sociolinguistic patterns? The first two questions will be studied in
Improvements in Sociophonetic Analysis andVariationist Analysis
of NCS Movements, and the third question will be studied in
Improvements in Sociophonetic Analysis for the Southern Vowel
Shift, and Variationist Analysis of NCS Movements for the
Northern Cities Shift.
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METHODS

We produced three types of transcriptions: (i) the manually
transcribed ground truth, based on the IDEA transcription but
hand-corrected to ensure it matches the recordings (ii) an
automated transcription produced by the DeepSpeech
program, (iii) and an automated transcription using the
previously existing DARLA system built upon CMU Sphinx
(Lamere et al., 2003). DeepSpeech was used with a pre-trained
model developed by Mozilla2, which is trained on the Fisher,
LibriSpeech, Switchboard, and Common Voice English corpora
in addition to 1700 h of transcribed NPR radio shows. The Sphinx
system uses a model pretrained on a variety of American English
speech corpora, mainly broadcast news and telephone
conversations. Figure 1 shows a summary of the workflow for
data extraction.

These transcriptions were produced for recordings of 352
speakers of American English included in the International
Dialects of English Archive3 corpus (IDEA). All of the
recordings are in a conversational, informal style, recorded in
interviews asking the participants to talk about where they are
from. There is only one recording per speaker, and, in total, the
corpus contains approximately 12.5 h of audio (45,154 s). The
recordings were an average of 128 ± 59 s long, with a minimum of
23 s and a maximum of 6 min 28 s. The corpus included 192
female and 160 male speakers, 54 and 46% respectively. The ages
of the speakers at the time of recording ranged between 11 and
95 years old at the time of recording, with a median age of 37. The
ethnic makeup of the sample is as follows: 79% was white (279),
10% was black (34), 5% was of Latin American descent (16), 3%
was Native American (10), 0.28%was Asian American (1 person),
3% reported mixed ancestry 9), and 1% declared no ethnicity (3).

The data included speakers from every state in the
United States. These speakers were grouped in three groups:
Inland North, Southern, and General North. These three regional
groupings made it possible for us to make regional comparisons
of speakers in terms of the Southern Vowel Shift (SVS) and the
Northern Cities Shift (NCS), as discussed below.

The Inland North group was defined according to the region
identified as Inland North in the Atlas of North American English
(ANAE) (Labov et al., 2006), as reprinted in Figure 2. In Figure 2,
Our Inland North group was defined according to the region
identified as Inland North in the Atlas of North American English
(ANAE) (Labov et al., 2006, see ANAE page 148 map 11.15). The
Inland North is the region around the US Great Lakes states and
stretching east into New York state and also stretching downward
along the “St. Louis Corridor” to St. Louis, following the ANAE
analysis of this region as the Northern Cities Shift region. The
Southern group was defined as speakers located in the traditional
US South in the ANAE, not including Florida. Florida is
exceptional since it has large amounts of immigration from
northern US regions, and it has a different sociolinguistic
history (controlled by Spain for a long period of time in the
colonial era). Finally, our General North group was defined as all
speakers not in the South, not in Florida, and not in the Inland
North (and therefore, as roughly equivalent to Standard
American English). This also includes Western varieties of
American English. The reason for this analytical choice to
define the General North broadly is that this broad region is
known to contrast sharply both with the South and with the
Inland North, as defined in the ANAE, in terms of two major
vowels shifts considered here: The Southern Vowel Shift and the
Northern Cities Shift. That is, in prior work (ANAE, Labov et al.,
2006) the SVS vowel features were found in the South as defined
here, and speakers in this region contrasted with speakers
elsewhere in North America. Therefore, for SVS we compare
speakers in the South group versus speakers in the General North
group. As for NCS, the ANAE determined that the NCS vowel
shift was found in the Inland North in contrast to the vowel
system of the General North; the regional boundaries of the
Inland North are defined in the ANAE in terms of this vowel shift
that differs from the General North. Likewise, our NCS analysis
compares Inland North speakers with General North speakers. In
this way, we are able to test whether the NCS vowel contrast that
the ANAE reported in terms of Inland North versus General
North, which was based on manual vowel extractions, is also
present in the IDEA data set using the automated methods of our
present paper.

Once the recordings are transcribed, we calculated the
Character Error Rate between (i) the ground truth
transcription and the DeepSpeech automatic transcription and
(ii) the ground truth and the CMU Sphinx transcription (see
Character Error Rate below). We then extracted the formants of

FIGURE 1 | Workflow for data processing.

2https://github.com/mozilla/DeepSpeech/releases/tag/v0.9.3
3Recordings and associated text files are copyright and used by special arrangement
with the International Dialects of English Archive at https://www.
dialectsarchive.com
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the vowels in each transcription system (ground truth, Sphinx,
and DeepSpeech) with the DARLA semi-automated system,
which uses the Montreal Forced Aligner and FAVE-Extract to
calculate the formant information. This workflow is shown in
Figure 1 above. We then constructed vocalic triangles, diagrams
of the position of different vowels along F1 and F2. We then
compared the positions of different vowels according to F1 and
F2 and measured the degree of overlap between the ground truth
vowels and both the Sphinx and the DeepSpeech transcribed
vowels. Finally, we used this information to observe two well-
known phenomena in American English: Southern Vowel Shift
and the Northern Cities Vowel Shift.

Following standard methods in American English
sociophonetics, we removed tokens of vowels in unstressed
and reduced syllables since such tokens do not accurately
represent the vowels being studied here (Thomas, 2011).
Likewise, we removed tokens of vowels in function words
(e.g., common grammatical words like “the,” “and,” etc.), and
also any tokens with large, unreliable formant bandwidths
(greater than 300 Hz). This filtering of high-bandwidth tokens
is a standard way of ensuring that the tokens used in the study are
based on reliable Linear Predictive Coding, since their LPC
formant estimations are likely to be less reliable at a high-
bandwidth (Hofmann, 2014:110, 162, 196; Ladefoged, 2003:
117; Thomas, 2011:47). To reduce the effects on varying
phonetic environments, we also removed tokens where vowels
are in pre-liquid position, following standard practice for such
shifts (Fridland and Bartlett, 2006; Nesbitt, 2018). Finally, since
physiology and other factors can affect vocal tract length and
vowel formants, we normalized the vowel formant measurements
using the Lobanov method (Lobanov, 1971; Kendall and Thomas,
2010). The Lobanov normalization method has been one of the
more commonly used approaches in sociophonetics spanning a
large amount of time up to the present (e.g., Thomas, 2011;

Fridland et al., 2014; Grama and Kennedy, 2019; Fridland and
Kendall, 2019; D’Onofrio and Van Hofwegen, 2020; Nesbitt,
2021). We recognize that Barreda’s perceptual analyses
(Barreda, 2020, Barreda, 2021) suggest a log-based method
rather than Lobanov, and future work may take that approach.
However, the prior DARLA testing (Reddy and Stanford, 2015a;
Reddy and Stanford, 2015b) that we are comparing in the present
study used the Lobanov method, and we prefer a direct
comparison between the results here and previous ones. We
also note that the Lobanov normalization is included in the
FAVE output spreadsheets, and so computational
sociolinguistics readers will be familiar with this output. We
also note that there are a large number of different vowel
normalization practices and debates in sociolinguistics (see
Thomas and Kendall, 2007 online NORM site for detailed
discussion of five such methods). We decided to use one of
the more commonly accepted methods at the present time, the
Lobanov method, recognizing that every method has its own
strengths and weaknesses.

RESULTS

This section compares the two transcription methods we used
(Sphinx and DeepSpeech) in the following ways: (i) How well
their transcriptions overlap with manual transcriptions
(Character Error Rate), and (ii) how effective they are in
detecting sociolinguistic phenomena such as the Southern
Vowel Shift (Sociophonetic Results From the Southern Vowel
Shift) and Inland North Cities Shift (Northern Cities Shift Results).

Character Error Rate
In order to investigate the differences in error rate between the
transcription methods, we used a linear mixed effects model with

FIGURE 2 | North American dialect regions as outlined in the ANAE. Dark blue � Inland North. Red � South. Map to be reprinted from Labov et al. (2006).
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character error rate as the dependent variable. Character error
rate (henceforth CER) is the edit distance between two strings.
For example, if the ground truth had the transcription “BAT” and
the ASR produced the transcription “CAT,” then the CER would
be 0.334. The CER was log-transformed to meet the assumptions
of linear-mixed effects models. As for the independent variables,
we used the type of transcription (DeepSpeech versus Sphinx,
henceforth DS and SPH), the gender of the speakers, the
geographic area (Inland North, Southern, and General North)
the estimated year of birth (from 1915 to 2007), and the
interaction between transcription type and gender. This
interaction was included because research has shown that ASR
systems perform systematically worse on female voices (Tatman
and Kasten, 2017). All categorical variables were encoded using
treatment coding; the reference level for each of them was the first
one alphabetically (type of transcription: DeepSpeech, gender:
female, area: Inland North). The numerical variable estimated
year of birth was centered by calculating the z-score of the
variable. Finally, the model included a random intercept for
speakers.

The DeepSpeech ASR does produce a statistically significant
improvement in transcription, and this improvement is greater
for females than for males [transcription by gender interaction:
βMale:DS � −0.13 ± 0.03, t (347) � −4.0, p < 0.001]. As for the
males, there is a reduction of 0.09 units in the character error rate
(from CERSPH/M � 0.46 ± 0.11 to CERDS/M � 0.37 ± 0.17). On the
other hand, the improvement is greater when transcribing speech
from females. In this case, the reduction in character error rate is
0.13 units (from CERSPH/F � 0.46 ± 0.13 to CERDS/F � 0.33 ±
0.16). This result is particularly important given the known
issues with transcription of female speech, and our results
suggest that deep-learning algorithms may be closing the
gender gap in ASR performance. The main effects are also
significant, confirming the direction of the interaction: When
all other factors are held constant, there is a main effect for gender
[βMale � 0.13 ± 0.04, t (492) � 3.3, p < 0.001]: Overall, the
transcription for males has a higher error rate (CER � 0.41) than
the transcription for females (CER � 0.39). Likewise, there is a
main effect for transcription type [βSphinx � 0.40 ± 0.02, t (347) �
18.0, p < 0.00001]: On average, when all other factors are held
constant, the transcription for Sphinx (CER � 0.46) had more
errors than the DeepSpeech transcription (CER � 0.35). These
main results should be interpreted in light of the interaction:
These main effect results agree with the more general result that
Sphinx has more errors than DeepSpeech for female speakers. As
for the other variables in the model, there are no significant
differences in CER by region of the recording: Inland North: 0.40,
South: 0.41, General North: 0.39 (pInlandNorth/GeneralNorth � 0.67,
pSouth/GeneralNorth � 0.15). There are no significant differences

in CER by estimated year of birth either (p � 0.30). Finally,
the random intercept for speakers explains a sizable portion of
the remaining variance in the regression (varspeaker � 0.08,
varresidual � 0.05). In summary, the DeepSpeech ASR does
provide improvements in transcription, particularly for speech
from female speakers.

In general, the reduction in CER is an indication that the
DeepSpeech transcriptions are closer to the original. The
examples below show the improvements in the transcriptions
of a speaker from the Inland North region, specifically from
Minnesota. While words like “mom” are mistranscribed by both
systems (as man and men respectively), the DeepSpeech
transcription produced the correct vowel in “me”/“he,” and
correctly transcribed the words “that they do” and “so my.”

GT: So, my mom and me came down here for the orientation
that they do.

DS: so myman and he came down here for the orientation that
they do (CER � 0.15).

Sphinx: follow men and i mean came down here for the
orientation of the u (CER � 0.34).

The examples below show transcriptions for speakers from the
South, from Alabama and Louisiana respectively. In the Alabama
example, the DeepSpeech transcription is completely correct, but
the Sphinx transcription has a few problems, including missing
the pronoun “I” andmistranscribing “born in Jackson County” as
going to act in canton. The Louisiana example shows an example
of audio that was grossly mistranscribed by both systems. Even
though they both make mistakes, the DeepSpeech system is closer
to the original. For example, the stressed vowels in the words
“growing” and going are the same (OW), whereas the Sphinx
transcription has ground for those segments, which has the
vowel AW5.

Alabama:
GT: I was born in northeastern Alabama. I was born in Jackson

County.
DS: I was born in north eastern alabama I was born in jackson

county (CER � 0.08).
Sphinx: I was born in northeastern alabama was going to act in

canton (CER � 0.28).
Louisiana:
GT: Growing up with my sister, I always felt like I got the short

end of the stick.
DS: the going on with my sister always felt like so i got the

short instink (CER � 0.33).
Sphinx: the ground and women does your always the white

jacket distorted (CER � 0.73).
Given that there is a significant improvement in

transcriptions, our next question is: Do these new
transcriptions extend our capabilities to detect sociophonetic
patterns in automatically transcribed data? We will test these

4CER is defined as (substitutions + deletions + insertions)/length of source. In the
case of BAT/CAT, only one letter is substituted in a string of length three, and
therefore CER � 1/3 � 0.33. If both the source and the target transcriptions are
identical (e.g., BAT/BAT), then the CER is zero. If the transcription is wrong but
has the same length, then CER � 1 (e.g., BAT/DOG). If the transcription is longer
than the original, then the CER can be greater than one (e.g., cat/foxes, CER � 1.66)

5The vowels in this paper are transcribed using the ARPABET system for American
English, as found in the CMU dictionary and in FAVE output spreadsheets: IY �
FLEECE, UW � GOOSE, IH � KIT, EY � FACE, EH �DRESS, AE � TRAP, AW �
MOUTH, AY � PRICE, AA � LOT, AO � THOUGHT, AH � STRUT, OW �
GOAT, ER � NURSE, UH � FOOT, OY � CHOICE, and AHR � START
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by trying to observe the well-understood phenomena of two
North American English vowel shifts: The Southern Vowel Shift
and the Northern Cities Shift (Labov et al., 2006).

Sociophonetic Results From the Southern
Vowel Shift
In the first subsection we will present the improvements in the
sociophonetic analysis of speakers of Southern English. Following
this, we will compare the Southern speakers with those of the
General North, and analyze how the DeepSpeech transcription
performs in comparing these two.

Improvements in Sociophonetic Analysis
In Figure 3A, we plot the Southern speakers versus the General
North speakers using the ground truth (GT) transcription.
We can see that the Southern Vowel Shift (SVS) is evident
in this manually transcribed version of the data. First, note
the EY/EH tense/lax shift in the General South (red) speakers
such that EH becomes higher than EY (compare to the SVS
schematic in Figure 3B). We also see some graphical evidence for
the IY/IH tense/lax shift, although we expect this to be a weaker
shift. Next, we note a highly advanced AW vowel in the General
South speakers, as well as evidence of AE raising and OW-
fronting. We note UW-fronting as well, but this is shared by
both the General North and Southern speakers, suggesting an
overall pattern of UW-fronting. We do not examine AXR and
other complex shifts involving liquids since such movements go
beyond the scope of the present study; likewise, the Southern
monophthongization of AY and raising of OY and so on are
topics for another study since they would require analysis of the
off-glide.

Now consider Figure 4B, which shows Southern speakers in all
three of the transcription types. Figure 4A, which includes the three
transcription types for General North, is included for comparison. All
three of the transcription types show the SVS features noted above,
but ground truth (GT) and DeepSpeech (DS) show the clearest
differences between the two dialects. In particular, note the
configuration of EY/EH for the three transcription types. Both
ground Truth and DeepSpeech show the full rotation as EH and
EY “switch places” in the vowel space, as we would expect from the
schematic in Figure 3B: the EY vowel (the vowel in FACE orMADE)
retracts and lowers, while EH (the vowel in DRESS or RED) fronts
and raises. By contrast, DARLA’s current in-house Sphinx version
only shows a general movement of EY/EH toward the SVS
configuration but not the rotation. We expect that the
Southerners’ EY/EH shift will be more advanced than their IY/IH
shift because this is commonly the case for the Southern Vowel Shift
(Kendall and Fridland, 2012), and this is what we find in the figure.
Moreover, we find that the DeepSpeech version more accurately
reflects the status of the tense/lax shift than the Sphinx version.

We now examine each of the vowels in the SVS in terms of F1 and
F2, comparing across all three transcription types: DeepSpeech,
DARLA’S CMU Sphinx, and the ground truth. Following Johnson
(2015) and Stanley (2018), we compare the token distributions using
Bhattacharyya’s Affinity (BA). This is calculated by describing each
token by its two-dimensional coordinates (Lobanov-normalized F1
and F2), and then measuring the amount of overlap between the
regions covered by both vowels. An affinity of 1.0 indicates a perfect
overlap between the two distributions of vowel tokens, and an affinity
of 0.0 indicates perfectly non-overlapping distributions. The formula
and the concrete implementation used can be found in the
kerneloverlap function in the R package adehabitatHR (R Core
Team, 2021; Calenge, 2006). We use Bhattacharyya’s Affinity
rather than Pillai approaches since Johnson (2015) argues that BA

FIGURE 3 | (A) Southern versus General North data from manual transcription: Red � South, Blue � North. Ground truth (manual transcription). Speaker vowel
means. 330 speakers, 31,900 tokens. Plotted in Lobanov-normalized units. (B) Abstract schematic of the Southern Vowel Shift (adapted from Labov, 1996).
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improves upon Pillai by more accurately quantifying overlap for the
purposes of vowel distributions (for example, by better handling
unequal distributions or distributions with an unequal number of
tokens). In addition to this, Bhattacharyya’s Affinity has been used to
study vowel contrasts in New Zealand English (Warren, 2018) and in
back vowels in Kansas (Strelluf 2016).

For each of the Southern Vowel Shift vowels, we compute the
Bhattacharyya’s Affinity for each speaker’s distribution in terms
of Sphinx versus ground truth, and then in terms of DeepSpeech
versus ground truth. We then use a repeated-measures ANOVA
to determine the relationship between Bhattacharyya’s Affinity,
type of transcription and the vowels in the transcripts. The
affinity was used as the dependent variable, transformed with
a reflected square root transformation to comply with normality

assumptions. The vowels and the types of transcriptions were
used as within-subjects independent variables.

There was a significant difference between the Sphinx
transcription and the DeepSpeech transcription [F (1) � 25.8,
p < 0.00005, η2 � 0.053]. As can be seen in Figure 5, the vowels
transcribed with DeepSpeech have a higher BA with the ground
truth vowels. The median affinity for CMU Sphinx is 0.88, while
the median affinity for DeepSpeech is 0.92. There was also a
significant difference between vowels [F (13) � 1.2, p < 0.00005,
η2 � 0.034]: Some vowels have higher overall BAs (e.g., EH: 0.901,
EY: 0.889, IH: 0.916, IY: 0.894), while others have significantly
lower affinities (e.g., AO: 0.817). Table 1 shows the vowels
involved in the SVS. The interaction between vowels and type
of transcription was not statistically significant (p � 0.26),

FIGURE 4 | (A) General North and (B) Southern speaker’s vowels (mean position) in all three transcription types. Blue: Ground truth (manual) transcription, Red:
CMU Sphinx transcription, Green: DeepSpeech transcription. 105 speakers and a total of 28,225 vowel tokens. Plotted in Lobanov-normalized units.

FIGURE 5 | Southern data: vowel medians for the Bhattacharyya’s affinity by type of transcription. Red: DeepSpeech versus ground truth, Green � CMU Sphinx
versus ground truth. 105 speakers and a total of 28,225 vowel tokens.
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meaning that no vowels were observed to have a marked
improvement over others. In general, for all of the vowels
involved in the SVS there is a gain in BA when transcribed
automatically using DeepSpeech.

Variationist Analysis of SVS Movements
In the previous section we presented evidence that the
DeepSpeech-based system is more effective than Sphinx at
measuring the vowels of Southern speakers. Based on this, we
can assume that the DeepSpeech system will also help in
observing the vowel differences between Southern speakers
and speakers of the General North variants. Figure 6A below
shows the vowels from these two dialects, as extracted from the
DeepSpeech data. Compare this to Figure 6B, the vowels as
extracted by the Sphinx ASR system. The DeepSpeech system
shows a clearer impressionistic separation between the two
dialects. For example, the vowel IY shows a much clearer
separation in the DeepSpeech data (Figure 6A), compared to
the partial overlap in the Sphinx data (Figure 6B).

The next step is to conduct a variationist analysis of all of the
major movements of the Southern Vowel Shift. Using linear
mixed effects modeling with the lme4 package (Bates et al., 2015)
from (R Core Team, 2021), we built models with the independent
variables of Region (General North versus South), Year of Birth,6

Gender, and Following Environment (nasal, voiceless obstruent,
voiced obstruent). Year of birth is a numerical variable, so it was
centered using z-scoring; the categorical variables were encoded
using treatment coding. We also included the variable
Transcription type (DeepSpeech versus ground truth), so that
we can examine how well DeepSpeech holds up in comparison to
the ground truth. The interaction between transcription type and
region was also included, to determine whether the DeepSpeech
automated transcription shows the North/South differences in a
way that is, similar to the ground truth data (for example, by
seeing of the degree of separation between Northern and
Southern IY in the ground truth is also present in the
DeepSpeech data). Finally, the election of the random effects
for each model proceeded via backward selection from amaximal
model, which included all variables (as well as the Region:
Transcription interaction) for both speaker and word effects
(Barr et al., 2013; Bates et al., 2015). We used the step
instruction in (R Core Team, 2021), which gave us an optimal
random effect structure for each of the vowels. The resulting
models are shown in Supplementary Appendix S1.

The dependent variable for these models will vary according to
the relevant variable for the motion of each vowel. For example,

FIGURE 6 | Southern versus General North. Red: General North, Red: Southern. (A) DeepSpeech ASR, speaker vowel means. 330 speakers, 24,295 tokens. (B)
CMU Sphinx ASR, speaker vowel means. 330 speakers, 27,637 tokens. Plotted in Lobanov-normalized units.

TABLE 1 | Bhattacharyya’s Affinity for DeepSpeech versus ground truth and
Sphinx versus ground truth in Southern speakers. BA score 1.0 � perfectly
overlapping distributions, 0.0 � completely non-overlapping.

SVS vowel Median BA for DS
vs. GT

Median BA for SPH
vs. GT

Δ(BA)

AW 0.907 0.883 0.024
EH 0.905 0.899 0.006
EY 0.910 0.855 0.055
IH 0.943 0.899 0.043
IY 0.923 0.850 0.074
OW 0.916 0.880 0.036
UW 0.918 0.903 0.015

6Most speakers in the IDEA dataset have a specific Year of Birth listed. But for a
handful of speakers, the Year of Birth is just given as a decade, such as “1950s.” For
such speakers, we simply estimated the Year of Birth at the middle of the decade,
i.e., 1955
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TABLE 2 | LMER models for comparison between Southern Vowel Shift (SVS) and General North vowels. The dependent variable is F2 for the vowels MOUTH (AW), GOAT (OW), GOOSE (UW), and F2-2xF1 for the vowels TRAP

(AE), FACE (EY), DRESS (EH), FLEECE (IY), and KIT (IH). R2 shows marginal and conditional coefficient. Deltas show the difference between the mean position of the Northern vowel and the mean position of the Southern vowel
for each transcription type: AE shows divergence in GT/DS results; for the other vowels, either both models detect a North/South difference or they do not.

A. Results for region and transcription type; R2 for entire model

Vowels Region by Transcription Region Transcription Post-hoc ΔRegionGT Post-hoc ΔRegionDS R2

AE (n � 5198) p � 0.08 p � 0.09 βGT � −0.001 ± 0.0004
t (265) � −2.6, p < 0.01

Δ � 0.40
z � −3.0, p < 0.05

Δ � 0.28 p � 0.33 0.21
0.69

AW (n � 3116) βGT:South � 0.02 ± 0.01
t (2567) � 2.2, p < 0.05

βSouth � 0.03 ± 0.01
t (179) � 2.9, p < 0.005

βGT � 0.03 ± 0.008
t (52) � 3.4, p < 0.005

Δ � 0.31
z � −4.8, p < 0.0001

Δ � 0.22 z � −2.9,
p < 0.05

0.10
0.56

EY (n � 5730) p � 0.41 βSouth � −0.07 ± 0.01
t (179) � −7.8, p < 0.00001

βGT � 0.02 ± 0.004
t (201) � 4.7, p < 0.00001

Δ � 0.86
z � 7.9, p < 0.0001

Δ � 0.84
z � 7.8, p < 0.0001

0.08
0.59

EH (n � 5930) βGT:South � 0.02 ± 0.01
t (144) � 2.0, p < 0.05

βSouth � 0.06 ± 0.01
t (121) � −1.3, p < 0.00001

p � 0.20 Δ � 0.98
z � −9.1, p < 0.0001

Δ � 0.75
z � −6.2, p < 0.0001

0.10
0.53

IY (n � 4442) p � 0.86 p � 0.13 βGT � 0.03 ± 0.005
t (134) � 7.2, p < 0.00001

Δ � 0.29 p � 0.15 Δ � 0.26 p � 0.43 0.08
0.55

IH (n � 5961) p � 0.58 βSouth � 0.03 ± 0.008
t (282) � 4.0, p < 0.00001

βGT � 0.02 ± 0.003
t (333) � 5.2, p < 0.00001

Δ � 0.28
z � −4.2, p < 0.0005

Δ � 0.30
z � −4.0, p < 0.0005

0.02
0.62

OW (n � 4611) p � 0.25 βSouth � 0.03 ± 0.009
t (250) � 3.2, p < 0.005

βGT � −0.03 ± 0.004
t (69) � −7.2, p < 0.00001

Δ � 0.16
z � −4.5, p < 0.0001

Δ � 0.12
z � −3.2, p < 0.01

0.03
0.50

UW (n � 2786) p � 0.70 βSouth � 0.02 ± 0.01
t (255) � 2.1, p < 0.05

p � 0.25 Δ � 0.08
p � 0.07

Δ � 0.06
p � 0.17

0.01
0.56

B. Results for other social and linguistic variables in the model

Vowels Year of birth Gender Following environment (Nasal versus voiced obstruent) Following environment (Nasal versus voiceless obstruent)

AE (n � 5198) β � −0.001 ± 0.0003,
t (195) � −2.3, p < 0.05

p � 0.54 βNas/+VoicedObs � −0.12 ± 0.01, t (280) � −9.7,
p < 0.00001

βNas/-VoicedObs � −0.15 ± 0.001,
t (525) � −15.7, p < 0.00001

AW (n � 3116) β � −0.02 ± 0.004,
t (246) � −4.6, p < 0.00001

p � 0.87 βNas/+VoicedObs � −0.06 ± 0.01, t (80) � −4.7,
p < 0.0001

βNas/-VoicedObs � −0.06 ± 0.01,
t (108) � −4.5, p < 0.0001

EY (n � 5730) β � 0.02 ± 0.004,
t (171) � 5.2, p < 0.00001

p � 0.65 p � 0.34 βNas/-VoicedObs � 0.03 ± 0.01,
t (196) � 2.4, p < 0.05

EH (n � 5930) β � −0.01 ± 0.003,
t (283) � −3.2, p < 0.005

βmale � 0.02 ± 0.007,
t (283) � −3.2, p < 0.0005

βNas/+VoicedObs � −0.03 ± 0.01, t (434) � −3.2,
p < 0.005

βNas/-VoicedObs � −0.06 ± 0.01,
t (495) � −7.2, p < 0.00001

IY (n � 4442) β � 0.01 ± 0.003,
t (257) � 4.3, p < 0.00001

p � 0.15 βNas/+VoicedObs � 0.06 ± 0.01, t (115) � 5.4,
p < 0.00001

βNas/-VoicedObs � 0.08 ± 0.01,
t (132) � 6.9, p < 0.00001

IH (n � 5961) β � 0.005 ± 0.002,
t (286) � 2.2, p < 0.05

p � 0.32 p � 0.17 βNas/-VoicedObs � 0.02 ± 0.01,
t (424) � 2.2, p < 0.05

OW (n � 4611) β � 0.009 ± 0.003,
t (297) � 2.7, p < 0.01

p � 0.99 p � 0.30 p � 0.13

UW (n � 2786) β � 0.01 ± 0.003,
t (265) � 3.1, p < 0.005

p � 0.79 p � 0.10 p � 0.76
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some vowels, like AE, show raising, which is quantified using the
standard sociophonetic formula from Labov et al. (2013) 40
which describes such diagonal movement along the front of
the vowel space by the relationship: F2 - (2 × F1). Other
vowels, such as AW, will use Lobanov-normalized F2 as the
dependent variable, to show their movement front or back. All
of the dependent variables were transformed (arcsin of the
square root) to improve normality and meet the assumptions
of LMERs. In summary, the linear mixed-effects modeling
will provide 1) a basic description of the Southern Vowel
Shift in the data set and 2) a quantified way of determining
how close the DeepSpeech transcription gets to the ground
truth version. In other words, using publicly available
speech recognition methods (like Mozilla DeepSpeech),
how close have we come to being able to produce a reliable
“hands-free” analysis of a vowel shift from fieldwork
recordings of conversations?

Table 2 shows the results from the models. First, we will
examine the results related to Region and Transcription type. The
most relevant result is that, for seven out of eight vowels involved
in the shift, the behavior of the DeepSpeech data is similar to that
of the ground truth data. Figure 7 shows the vowel shift and the
F2 for the vowels involved in the Southern Vowel Shift, separated
by transcription type. There are five of the vowels, AW, EY, EH,
IH, OW, where there are clear differences between the North and

South tokens, and these are visible in both the DeepSpeech and
the ground truth data. For the vowel AW, for example, the North/
South difference for the ground truth is ΔRegionGT � 0.31,
whereas the North/South difference for DeepSpeech
transcriptions is ΔRegionDS � 0.22. The model as a whole
shows differences between North and South [βSouth � 0.03 ±
0.01, t (179) � 2.9, p < 0.005]. The model also shows a
significant interaction between Region and Transcription [βGT:South
� 0.02 ± 0.007, t (2567) � 2.2, p < 0.05], which means that the
ΔRegionGT � 0.31 is significantly smaller than the ΔRegionDS � 0.22.
A estimated marginal means (EMM), Tukey-corrected post-hoc
analysis was carried out to determine if each of those deltas was
actually significantly different from zero (i.e., is there a
significant difference between North/South if we looked just
at the DeepSpeech data, or if we looked just at the ground truth
data?). This was calculated using the emmeans package in R
(Russell, 2021 ). The post-hoc results in Table 2 confirm that, in
the case of AW, both the ground truth (z � −4.8, p < 0.0001) and
DeepSpeech transcriptions (z � −2.9, p < 0.05) show significant
differences between North and South. Taken together, these
results indicate that, even if DeepSpeech sees less of a difference
between the Northern and Southern tokens of AW, it still sees a
significant difference between them, and therefore, the ground
truth and DeepSpeech data are describing this sociolinguistic
variation is roughly similar ways.

FIGURE 7 | Vowels in the Southern Vowel Shift, by Region (General North versus Southern) and transcription type. In six of the vowels (AW, EH, EY, IH, OW, UW)
there is a significant separation between General North and Southern vowels, and this is tracked by both transcription systems. DS � DeepSpeech, GT � Ground truth.
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The same general patterns observed for AW are also present in the
vowels EY, EH, IH, and OW. In all of them there is a significant
difference between Region, which means that the North/South
differences were visible in the data. The post-hoc analysis also
indicates that the North/South difference can be found in both the
ground truth and the DeepSpeech data, and only in the EH is there an
interaction between Region and Transcription: The North/South
difference in ground truth (ΔRegionGT � 0.86) is significantly larger
than the difference in DeepSpeech [ΔRegionDS � 0.75, βGT:South �
0.02 ± 0.01, t (144) � 2.0, p < 0.05]. In the other three vowels (EY, IH,
and OW), both the ground truth and the DeepSpeech data have a
similar magnitude for the North/South difference.

There are two vowels, IY and UW, for which neither the
ground truth nor the DeepSpeech data could find a significant
difference between North and South. (UW has a main effect for
Region, but this is an additive effect when both types of
transcriptions are put together; once they are separated by the
post-hoc test, the significance disappears, with p � 0.07 for
ΔRegionGT and p � 0.17 for ΔRegionDS). This means, in
essence, that both ground truth and DeepSpeech data fail to
show Northern/Southern differences in similar ways.

The vowel AE deserves special mention because it is the one
vowel where ground truth data shows a North/South difference,
but DeepSpeech does not. There is a significant difference
between transcriptions [βGT � −0.001 ± 0.0004, t (265) � −2.6,
p < 0.01], which is confirmed when the post-hoc results are
computed: The ground truth shows a significant difference
between North/South AE (ΔRegionGT � 0.40, z � −3.0,
p < 0.05). However, the DeepSpeech data does not show a
significant difference in the tokens of AE in the two regions
(ΔRegionDS � 0.28, p � 0.33). This means that there was one
vowel for which DeepSpeech and ground truth disagree. On the
other hand, for the other seven, the results from the two
transcription types are similar: Either both systems detect a
difference, or neither of them does.

The bottom part of Table 2 also shows results which
correspond to patterns that are well established in the
sociophonetic literature on the Southern Vowel Shift (Labov
et al., 2006). All of the vowels show significant effects for year
of birth: For five of the vowels (EY, IY, IH, OW, and UW)
younger speakers show more shift, whereas in three of them (AE,
AW, and EH), older speakers showmore shift. In six of the vowels
there are significant differences in shift influenced by the
phonological environment of the vowel (e.g., vowel followed
by a nasal, a voiced obstruent like/g/, or a voiceless obstruent
like/k/). Finally, only one of the vowels (EH) showed a significant
difference by gender: Male speakers had a more negative shift
(−0.17), whereas female speakers had a more positive shift (0.07).

Table 2 above shows the coefficient of determination (R2) for
the models used. The column shows the marginal correlation
coefficient (from the fixed factors) as well as the conditional
correlation coefficient (from both the fixed and random factors).
The differences between the two show how much of the variation
can be explained through random variation due to individual
speakers and words: The marginal correlation, which is the
correlation from the independent variables, ranges from R2 �
0.01 to R2 � 0.21. On the other hand the conditional correlation,

which incorporates the random factor structure, can reach much
higher correlation values, up to R2 � 0.69 for the vowel AE, for
example. This pattern is to be expected, given that the model
doesn’t include numerous other factors that could explain
variation across speakers (e.g., ethnicity) and variation across
words (e.g., lexical frequency). The Supplementary Appendix
includes the full results for the random variable structure of
each model.

In summary, the data from the DeepSpeech automated
transcription appears to be adequate in the detection of the
SVS vowel patterns. While it is not perfect, it produces similar
results to those from manually transcribed data. In the next
section we will present evidence of the usability of the
DeepSpeech data by focusing on a second sociolinguistic
phenomenon, one that has not been extensively studied using
automated methods: the vowel shift present in the Northern
Cities of the United States.

Northern Cities Shift Results
Figure 8A shows the vowel means of IDEA speakers from Inland
North (blue) and the General North regions (red). The General
North speakers were defined as all speakers not from Inland
North and not from the US Southern regions. In this plot of the
results from the ground truth transcription, we see graphical
evidence of the five classic NCS vowel movements (Labov et al.,
2006; Nesbitt, 2018). First, note that AE has raised for Inland
North speakers, representing the classic Stage 1 of the NCS.
Second, the Inland North speakers appear to have fronted the AA
vowel, which is NCS Stage 2. Then, in the classic chain shift
model, the AO vowel has moved toward the original location of
the AA vowel, which is Stage 3. For Stage 4, we see that the EH
vowel appears to have moved down and back, and for Stage 5, we
see that the AH vowel appears to have moved back.

Now consider Figure 8C, where we plot the Inland North versus
General North again but this time we show the results for
DeepSpeech and for the Sphinx ASR transcriptions. Overall, we
observe the same NCS shifts in these automated transcription types,
with similar directions and magnitudes (e.g., raising of AE). This
indicates that the automated methods may be able to uncover the
presence of the NCS in these recordings. On the other hand, there are
differences betweenDeepSpeech and Sphinx: Vowels like IY andUW
are almost completely overlapping in Sphinx (Figure 8D), whereas
they show some separation in the DeepSpeech data. In order to
test the differences between these, we will first compare
Bhattacharyya’s Affinity between ground truth/DeepSpeech and
ground truth/Sphinx to confirm the improvements from the
DeepSpeech transcription. We will then use a linear mixed effects
model to confirm that the DeepSpeech data correctly portrays the
motions involved in the NCS.

Improvements in Sociophonetic Analysis
We noted in Figure 8C that the DeepSpeech system shows
graphical evidence of all the same NCS movements as we
found above in the ground truth transcription: Raised AE,
fronted AA, lowering of AO and EH, and backing of AH. To
further the comparison of the transcription methods, all three
transcription methods are plotted together in Figure 9B below.
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(Figure 4A, the transcription of the General North vowels, is
repeated below as 9a for comparison).

Next, we examine the difference in the NCS vowel transcription
statistically. As with the SVS above, we calculated Bhattacharyya’s
Affinity on Sphinx vs. ground truth andDeepSpeech vs ground truth,
and then performed a repeated-measures ANOVA test to determine
the effect of transcription and vowels on the BA. We used the same
ANOVA structure, with the reflected square root corrected BA as the
dependent variable, and vowels and type of transcription as
independent, within-subjects variables. There was a significant
interaction between vowels and transcription [F (13) � 2.9, p <
0.0005, η2 � 0.01] and there is a significant main effect for vowels [F
(13) � 9.5, p < 0.0005, η2 � 0.036]. This means that there are BA
differences between the vowels, and that some vowels benefit more
from theDeepSpeech transcription than others. Figure 10 shows that
vowels like AO have a high gain in BA in the DeepSpeech
transcription (BA � 0.92 for DeepSpeech but BA � 0.80 for
Sphinx). On the other hand, vowels like EY show practically no
difference in their Bhattacharyya’s affinity, regardless of the
transcription mechanism (BA � 0.93 for both DeepSpeech and
Sphinx).

There is also a main effect for type of transcription: vowels
transcribed with DeepSpeech show higher BAs with the ground
truth [F (1) � 29.0, p < 0.00005, η2 � 0.025]. In general, the median
affinity for DeepSpeech vowels is 0.93, while the median for Sphinx
vowels is 0.90. Also, as can be seen in Table 3, the vowels involved in
theNorthernCities Shift show improvement when transcripted using
DeepSpeech. Vowels like EH and AH show only modest differences,
whereas the vowel AO shows marked improvement.

Variationist Analysis of NCS Movements
Given the evidence that DeepSpeech is significantly better than
CMU Sphinx at transcribing vowels from the Northern Cities
Shift, we conducted a linear mixed-effects model analysis of the
vowels from the Inland North, comparing DeepSpeech against
the baseline ground truth. We use a similar linear mixed-
effects structure as in the Southern Vowel Shift above: The
fixed variables are Region, Transcription type, Year of birth,
Gender, Following environment and the interaction of Region
and Transcription type. The random effect structure was also
chosen through backward selection using the step procedure;

FIGURE 8 | Inland North (red) and General Northern speakers (blue) in the (A) ground truth transcription, and transcribed automatically by (C)DeepSpeech and (D)
Sphinx. Speaker vowel means for 225 speakers, 21,200 vowel tokens. Plotted in Lobanov-normalized units. (B) Schematic of the primary movements of the Northern
Cities Vowel Chain Shift (adapted from Nesbitt, 2018).
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the resulting models are shown in the Supplementary
Appendix.

Following the ANAE (Labov et al., 2006) and Labov (2013:40),
we quantify the Northern Cities Shift movements of AA, AH and
AO in terms of F2 to characterize fronting. For the diagonal
movement of AE along the front of the vowel trapezoid, we follow
the method in Labov et al. (2013) 40 of using the equation F2 -
(2 × F1) to create a single numerical value representing the raising
and fronting. We use the same equation to account for
movements of the other front vowel, EH, since the NCS
movement of EH may be either backing or lowering or both,
as seen above in Figure 8B. As with the models above, all of the
dependent variables were transformed (arcsin of the square root)
to meet the assumptions of linear mixed-effects models.

The results for Region and Transcription type are shown in
Figure 11 and Table 4A. For four out of five vowels, the

behaviour of DeepSpeech transcribed vowels is similar to that of
the vowels in the ground truth transcriptions. There is one vowel,
stage 1 AE, where both ground truth and DeepSpeech found
significant differences between General and Inland North vowels:
ground truth shows a difference of ΔRegionGT � 0.83 and
DeepSpeech shows a significantly smaller but non-zero difference
of ΔRegionGT � 0.65 [βGT:InlandNorth � −0.02 ± 0.008, t (256) � −2.0,
p < 0.05]. Even though the distance between General and Inland
North is smaller forDeepSpeech, it is significantly different from zero,
as shown by the post-hoc analysis (z � 4.8, p < 0.0001). On the other
hand, there are three vowels (stage 3 AO and stage 4 EH and stage 5
AH) where neither DeepSpeech nor the ground truth data could see
significant differences between General and Inland vowels. For
example, EH showed raising differences of ΔRegionGT � 0.21 and
ΔRegionGT � 0.18, but neither of these were significantly different
from zero (p � 0.88 and p � 1.0 respectively). In summary, for these

FIGURE 9 | (A) General North and (B) Inland North: speaker vowel means in all three transcription types. Blue: Ground truth (manual) transcription, Red: CMU
Sphinx transcription Green: DeepSpeech transcription. 58 speakers and a total of 14,414 vowel tokens. Plotted in Lobanov-normalized units.

FIGURE 10 | Inland North: vowel medians for the Bhattacharyya’s affinity by type of transcription. Red: DeepSpeech versus ground truth, Green � CMU Sphinx
versus ground truth. 58 speakers and a total of 14,414 vowel tokens.

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 66209714

Coto-Solano et al. DARLA Automated Sociophonetics Vowel Analysis

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


four vowels (AE, AO, EH, and AH) both systems show similar
patterns for both the General and Inland North speakers.

There is one vowel, stage 2 AA, where there is a significant
General/Inland North difference in the ground truth data
[ΔRegionGT � 0.15, t (94) � 2.9, p < 0.05], but there was no
significant difference in the DeepSpeech transcriptions
(ΔRegionGT � 0.07, p � 0.76). This is the one vowel where the
two transcription systems diverge. It should be noted that the
ground truth data showed differences in the stage 1 and 2 vowels,

the ones where the change is presumably more advanced, and it
failed to show differences in the subsequent stages 3 through 5. In
general, these results show that for most vowels the DeepSpeech
data and the manual transcription are similar in how they portray
the Northern Cities Shift: Either both of them show the vowel
shifts (as is the case for AE) or both of them fail to do so (as is the
case for AH, AO, and EH). Only in one of the vowels (AA) was
the DeepSpeech data less able to detect the shift.

Like in the case of the Southern Vowel Shift, there are well
established Northern Cities Shift linguistic patterns that are
visible in the data (Labov et al., 2006). Three out of five
vowels show significant differences due to the age of the
speakers (stage 1 AE, stage 2 AA, and stage 4 EH): In AE and
EH, younger speakers have greater shift; in AA, older speakers
have greater shift. Two of the vowels show differences due to
gender (stage 1 AE and stage 4 EH): male speakers show greater
shift than female speakers. Finally, two of the vowels show
differences in the vowel position due to the sounds that follow
them (stage 1 AE and stage 4 EH). Also, like in the Southern
Vowel Shift data, the R2 correlation coefficients in Table 4 show
that the random variable structure (individual speaker and word

TABLE 3 | Bhattacharyya’s Affinity for DeepSpeech versus ground truth and
Sphinx versus ground truth in Inland Northern speakers. BA score 1.0 �
perfectly overlapping distributions, 0.0 � completely non-overlapping.

NCS vowel Median BA for DS
vs. GT

Median BA for SPH
vs. GT

Δ(BA)

AA 0.916 0.869 0.047
AE 0.934 0.926 0.007
AH 0.931 0.903 0.028
AO 0.920 0.802 0.118
EH 0.907 0.891 0.016

FIGURE 11 | Vowels in the Northern Cities Shift, by Region (General North versus Inland North) and transcription type. In three of the vowels (AE, AA, AO) there are
significant differences between General North and Inland North measurements.
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TABLE 4 | LMER models for the Northern Cities Shift. The dependent variable is F2 for THOUGHT (AO), LOT (AA) and STRUT (AH), and F2-2xF1 for TRAP (AE) and DRESS (EH). R2 shows the marginal and conditional coefficients.
Deltas show the difference between the mean position of the Southern vowel and the mean position of the Northern vowel for each transcription type: AA shows divergence in GT/DS results; for the other vowels, either
both models detect a difference between Inland and General North or they do not.

A. Results for region and transcription type; R2 for entire model

Vowels Region by Transcription Region Transcription Post-hoc ΔRegionGT Post-hoc ΔRegionDS R2

AA (n � 1901) p � 0.08 p � 0.29 p � 0.50 Δ � 0.15
t (94) � 2.9, p < 0.05

Δ � 0.07 p � 0.76 0.01
0.72

AE (n � 3433) βGT:InlandNorth � −0.02 ± 0.01
t (256) � −2.0, p < 0.05

βInlandNorth � −0.05 ± 0.01
t (312) � −4.8, p < 0.0001

p � 0.47 Δ � 0.83
z � 6.8, p < 0.0001

Δ � 0.65 z � 4.8, p < 0.0001 0.27
0.67

AH (n � 3388) p � 0.13 p � 0.24 βGT � −0.02 ± 0.007
t (2703) � −3.0, p < 0.005

Δ � 0.12
p � 0.07

Δ � 0.06 p � 0.64 0.02
0.54

AO (n � 1049) p � 0.72 p � 0.12 p � 0.15 Δ � 0.18
p � 0.58

Δ � 0.16 p � 0.46 0.03
0.74

EH (n � 4016) p � 0.31 p � 0.98 p � 0.12 Δ � 0.21
p � 0.88

Δ � 0.18 p � 1.0 0.03
0.48

B. Results for other social and linguistic variables in the model

Vowels Year of birth Gender Following environment (Nasal vs. voiced obstruent) Following environment (Nasal versus voiceless obstruent)

AA (n � 1901) β � −0.01 ± 0.004,
t (137) � −2.5, p < 0.05

p � 0.68 p � 0.68 p � 0.41

AE (n � 3433) β � 0.02 ± 0.004,
t (192) � −3.9, p < 0.0005

βmale � 0.02 ± 0.007,
t (191) � 2.5, p < 0.05

βNas/+VoicedObs � −0.12 ± 0.01,
t (219) � −8.3, p < 0.00001

βNas/-VoicedObs � −0.17 ± 0.01,
t (359) � −14.9, p < 0.00001

AH (n � 3388) p � 0.08 p � 0.25 p � 0.80 p � 0.06
AO (n � 1049) p � 0.17 p � 0.20 p � 0.15 p � 0.58
EH (n � 4016) β � 0.01 ± 0.004,

t (172) � −3.8, p < 0.0005
βmale � 0.02 ± 0.008,

t (172) � 3.1, p < 0.005
p � 0.42 βNas/-VoicedObs � −0.04 ± 0.01,

t (310) � −3.4, p < 0.001
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variation) explains significant amounts of the variation found in
the dataset: the correlation from the fixed variables ranges from
R2 � 0.01 to R2 � 0.27, while the R2 for the data including the
random variable greatly increases (up to R2 � 0.74 in the case of
AO). The summary of the variance explained by each of the
random variables is in the Supplementary Appendix.

In summary, this section provides further evidence that the
DeepSpeech data can detect phonetic differences in a manner
similar to human-transcribed data. The majority of the vowels
involved in the Northern Cities Shift, four out of five, showed a
similar behavior in both transcriptions. This matches the pattern
we saw with the vowels in the Southern Vowel Shift, where eight
out of nine vowels also behaved in a similar manner across both
transcription methods.

CONCLUSION

Manual transcription has long been a bottleneck in sociophonetic
vowel research. In this paper we have used a large audio dataset of
North American English (352 speakers in the International Accents
of English Archive) to show that automated speech recognition
algorithms (ASR) can be an effective way to perform sociophonetic
work for some types of large-scale research questions. We find that
end-to-end deep learning based speech recognition algorithms (e.g.,
DeepSpeech) provide transcriptions that are closer to hand-
transcribed data than in prior sociophonetic work. Furthermore,
we find that sociophonetic analyses based on these fully automated
transcription methods are effective in showing classic sociophonetic
patterns of North American English, such as the Southern Vowel
Shift (SVS) and the Northern Cities Shift (NCS), with significantly
less effort and time invested than manual transcription approaches.

While these DeepSpeech transcriptions are not perfect, we find
that they can still be used to gain valuable sociophonetic
information. The sociophonetic results derived from the
DeepSpeech transcriptions show that the Southern Vowel Shift
and the Northern Cities Shift can in fact be graphically observed
with these completely automated methods, even as the fine-
grained statistical analyses show the ways in which
DeepSpeech still lacks the higher degree of precision that can
be obtained in analyses based on ground truth (manual)
transcription. It also shows that there have been gains in areas
relevant to sociolinguistic research, such as the improved
transcription of female speech relative to previous ASR
methods, as well as the similarity in transcription quality
between the standard dialect of North American English and
other regional dialects like Southern English.

Much future work remains in order to automatize
sociophonetic transcriptions. For example, work needs to be
done on whether the method presented here would also detect
consonantal sociophonetic variation, given that consonants
might not be recognized as reliably as vowels due to their
shorter duration. Work also needs to be done on whether
this method can be applied to other regional dialects and
ethnolects. It is known that English dialects outside of North
America, such as New Zealand and Scottish English, are
transcribed less accurately (Tatman, 2017), so this method

might not be able to detect vowel differences within those
dialects. Also, as mentioned above, 79% of the sample was
white, and therefore these statistical models might not
accurately reflect how the method would perform when
transcribing North American ethnolects like Black English,
which are not well represented in ASR training corpora
(Koenecke et al., 2020). We expect the accuracy of the ASR
to be highly variable depending on the types of training input
that it received and this could limit the broader application of
this method to more diverse datasets. Finally, semi-automated
methods like forced alignment have been fruitfully used to
phonetics and sociophonetics in languages with extremely
small datasets like Yoloxóchitl Mixtec (DiCanio et al., 2013),
so there is the potential to apply speech recognition to describe
linguistic variation in those languages as well.

Our results suggest that the technology for completely
automated methods in vowel sociophonetics is closer to the
point where such methods can reliably generate results that
are similar to, if not quite the same as, results obtained by the
painstaking process of manual transcription. After all, in any
scientific endeavor, there is a tradeoff between accuracy and
speed, and each research project can determine what type of
approach is appropriate. For some sociolinguistic
applications and large-scale research questions, such as
“big data” analyses of huge sets of audio recordings, it may
now be possible to use completely automated methods for
reasonably reliable results.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: https://www.dialectsarchive.com. The code to
process the data is available at: https://github.com/rolandocoto/
darla-sociophonetics-2021.

ETHICS STATEMENT

Ethical review and approval was not required for the study on
human participants in accordance with the local legislation and
institutional requirements. Written informed consent for
participation was not required for this study in accordance with
the national legislation and the institutional requirements.

AUTHOR CONTRIBUTIONS

RC-S installed Deep Speech in the DARLA system, processed
the IDEA recordings through DARLA, conducted quantitative
and graphical analyses, contributed computational and
statistical knowledge, and wrote the majority of the text of
the paper. JS contributed quantitative and graphical analyses,
contributed information about U.S. sociophonetics/dialects to
the project, and wrote text in the paper. SR designed and built
the original DARLA system and contributed her computational
knowledge, corrections, and text to the paper.

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 66209717

Coto-Solano et al. DARLA Automated Sociophonetics Vowel Analysis

https://www.dialectsarchive.com
https://github.com/rolandocoto/darla-sociophonetics-2021
https://github.com/rolandocoto/darla-sociophonetics-2021
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


FUNDING

For this project, we used Dartmouth-internal funding sources to
pay for the license to use IDEA recordings and to pay for student
research assistants.

ACKNOWLEDGMENTS

The authors would like to thank the editor and the reviewers for
their help in improving the paper. We would also like to thank
Dagger Bishop, Polina Chesnokova, Catharine Herrera, Rachel

Hsu, Cameron Meier, Paul Meier, Veronica Quidore, Andrew
Schaeffer, Prof. Monica Williams and Prof. Samantha Wray for
their help during the project. Finally, we would like to thank the
Dean of Faculty of Dartmouth College for their funding of the
project.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/frai.2021.662097/
full#supplementary-material

REFERENCES

Ardila, R., Branson,M.,Davis,K.,Henretty,M.,Kohler,M.,Meyer, J., et al. (2019).Common
Voice: A Massively-Multilingual Speech Corpus. arXiv preprint arXiv:1912.06670

Barr, D. J., Levy, R., Scheepers, C., and Tily, H. J. (2013). Random Effects Structure
for Confirmatory Hypothesis Testing: Keep it Maximal. J. Mem. Lang. 68 (3),
255–278. doi:10.1016/j.jml.2012.11.001

Barreda, S. (2021). Perceptual Validation of Vowel Normalization Methods for
Variationist Research. Lang. Variation Change 33 (1), 27–53.

Barreda, S. (2020). Vowel Normalization as Perceptual Constancy. Language 96
(2), 224–254. doi:10.1353/lan.2020.0018

Bates, D., Mächler, M., Bolker, B., and Walker, S. (2015). Fitting Linear Mixed-
Effects Models Usinglme4. J. Stat. Soft. 67 (1), 1–48. doi:10.18637/jss.v067.i01

Boersma, P., and Weenink, D. (2011). Praat: Doing Phonetics by Computer.
Available at: www.praat.org.

Calenge, C. (2006). The Package "adehabitat" for the R Software: A Tool for the
Analysis of Space and Habitat Use by Animals. Ecol. Model. 197, 516–519.
doi:10.1016/j.ecolmodel.2006.03.017

D’Onofrio, A., and Van Hofwegen, J. (2020). “Nisei Style: Vowel Dynamism in a
Second-Generation Japanese American Community,” in Speech in the Western
States Volume 3. Editors V. Fridland, A. Wassink, L. Hall-Lew, and T. Kendall
(Publication of the American Dialect Society), 105, 79–94.

DiCanio, C., Nam, H., Whalen, D. H., Timothy Bunnell, H., Amith, J. D., and
García, R. C. (2013). Using Automatic Alignment to Analyze Endangered
Language Data: Testing the Viability of Untrained Alignment. The J. Acoust.
Soc. America 134 (3), 2235–2246. doi:10.1121/1.4816491

Evanini, K., Isard, S., and Liberman, M. (2009). Automatic Formant Extraction for
Sociolinguistic Analysis of Large Corpora. Proceedings of Interspeech. Available at:
http://www.isca-speech.org/archive/interspeech_2009/i09_1655.html.

Fridland, V., and Bartlett, K. (2006). The Social and Linguistic Conditioning of
Back Vowel Fronting across Ethnic Groups in Memphis, Tennessee. English
Lang. Linguistics 10 (1), 1–22. doi:10.1017/s1360674305001681

Fridland, V., and Kendall, T. (2019). “5. On the Uniformity of the Low-Back-
Merger Shift in the U.S. West and beyond,” in The Low-Back-Merger Shift:
Uniting the Canadian Vowel Shift, the California Vowel Shift, and Short Front
Vowel Shifts across North America. Editor K. Becker (Publication of the
American Dialect Society), 104, 100–119. doi:10.1215/00031283-8032957

Fridland, V., Kendall, T., and Farrington, C. (2014). Durational and Spectral
Differences in American English Vowels: Dialect Variation within and across
Regions. J. Acoust. Soc. America 136, 341–349. doi:10.1121/1.4883599

Godfrey, J., and Holliman, E. (1993). Switchboard-1 Release 2 LDC97S62.
Philadelphia: Linguistic Data Consortium.

Grama, J., and Kennedy, R. (2019). “2. Dimensions of Variance and Contrast in the
Low Back Merger and the Low-Back-Merger Shift,” in The Low-Back-Merger
Shift: Uniting the Canadian Vowel Shift, the California Vowel Shift, and Short
Front Vowel Shifts across North America. Editor K. Becker (Publication of the
American Dialect Society), 104, 31–55. doi:10.1215/00031283-8032924

Hofmann, M. (2014). Mainland Canadian English in Newfoundland. PhD
Dissertation. Chemnitz University of Technology.

Hannun, A. Y., Case, Carl., Casper, J., Bryan, C., Diamos, G., Elsen, E., et al. (2014).
Deep Speech: Scaling Upend-To-End Speech Recognition. ArXiv abs/1412.5567.

Johnson, D. E. (2015). Quantifying Vowel Overlap with Bhattacharyya’s Affinity. Presented
at NWAV44. Available from: https://danielezrajohnson.shinyapps.io/nwav_44/.

Johnson, D. E. (2009). Getting off the Goldvarb Standard: Introducing Rbrul for
Mixed-Effects Variable Rule Analysis. Lang. Linguistics Compass 3 (1),
359–383. doi:10.1111/j.1749-818x.2008.00108.x

Kendall, T., and Fridland, V. (2021). Sociophonetics. Cambridge: Cambridge University Press.
Kendall, T., and Joseph, F. (2014). Towards Best Practices in Sociophonetics (With

Marianna DiPaolo). Chicago: New Ways of Analyzing Variation NWAV-43.
Kendall, T., andThomas, E. (2010). Vowels: VowelManipulation,Normalization, andPlotting

in R. [R Package]. Available from cran.r-project.org/web/packages/vowels/index.html.
Kendall,T., andFridland,V. (2012).Variation inPerceptionandProductionofMidFrontVowels

in the U.S. Southern Vowel Shift. J. Phonetics 40, 289–306. doi:10.1016/j.wocn.2011.12.002
Koenecke, A., Nam, A., Lake, E., Nudell, J., Quartey, M., Mengesha, Z., et al. (2020).

Racial Disparities in Automated Speech Recognition. Proc. Natl. Acad. Sci. USA
117 (14), 7684–7689. doi:10.1073/pnas.1915768117

Labov, W., Ash, S., and Boberg, C. (2006). The Atlas of North American English
(ANAE). Berlin: Mouton.

Labov, W. (1996). The Organization of Dialect Diversity in North America. Fourth
International Conference on Spoken Language Processing. Available from:
https://www.ling.upenn.edu/phono_atlas/ICSLP4.html.

Labov, W., Rosenfelder, I., and Fruehwald, J. (2013). One Hundred Years of Sound
Change in Philadelphia: Linear Incrementation, Reversal, and Reanalysis.
Language 89, 30–65. doi:10.1353/lan.2013.0015

Ladefoged, P. (2003). Phonetic Data Analysis: An Introduction to Fieldwork and
Instrumental Techniques. Oxford: Blackwell.

Lamere, P., Singh, R., Walker, W., and Wolf, P.Evandro Gouv (2003). “The CMU
Sphinx4 Speech Recognition System,” in IEEE Intl. Conf. On Acoustics,Speech
and Signal Processing (ICASSP 2003) (IEEE).

Lenth, R. V. (2021). Emmeans: Estimated Marginal Means, Aka Least-Squares Means. R
package version 1.6.0. Available at: https://CRAN.R-project.org/package�emmeans.

Lobanov, B. M. (1971). Classification of Russian Vowels Spoken by Different
Speakers. J. Acoust. Soc. America 49, 606–608. doi:10.1121/1.1912396

McAuliffe, M., Socolof, M., Mihuc, S., Wagner, M., and Morgan, S. (2017).
“Montreal Forced Aligner: Trainable Text-Speech Alignment Using Kaldi,”
in Proceedings of the 18th Conference of the International Speech
Communication Association. doi:10.21437/interspeech.2017-1386

Nesbitt, M. (2018). Economic Change and the Decline of Raised TRAP in Lansing,
MI. Linguistics 24 (2), 9, 2018 . Available from https://repository.upenn.edu/
pwpl/vol24/iss2/9.

Nesbitt, M. (2021). The Rise and Fall of the Northern Cities Shift: Social and
Linguistic Reorganization of TRAP in Twentieth Century Lansing, Michigan.
Am. Speech 96 (3), 332–370.

Panayotov, V., Chen, G., Povey, D., and Khudanpur, S. (2015). “Librispeech: an
ASR Corpus Based on Public Domain Audio Books,” in 2015 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP) (IEEE), 5206–5210. doi:10.1109/icassp.2015.7178964

R Core Team (2021). R: A Language and Environment for Statistical Computing. Vienna,
Austria: R Foundation for Statistical Computing. URL https://www.R-project.org/.

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 66209718

Coto-Solano et al. DARLA Automated Sociophonetics Vowel Analysis

https://www.frontiersin.org/articles/10.3389/frai.2021.662097/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frai.2021.662097/full#supplementary-material
https://doi.org/10.1016/j.jml.2012.11.001
https://doi.org/10.1353/lan.2020.0018
https://doi.org/10.18637/jss.v067.i01
www.praat.org
https://doi.org/10.1016/j.ecolmodel.2006.03.017
https://doi.org/10.1121/1.4816491
http://www.isca-speech.org/archive/interspeech_2009/i09_1655.html
https://doi.org/10.1017/s1360674305001681
https://doi.org/10.1215/00031283-8032957
https://doi.org/10.1121/1.4883599
https://doi.org/10.1215/00031283-8032924
https://danielezrajohnson.shinyapps.io/nwav_44/
https://doi.org/10.1111/j.1749-818x.2008.00108.x
http://cran.r-project.org/web/packages/vowels/index.html
https://doi.org/10.1016/j.wocn.2011.12.002
https://doi.org/10.1073/pnas.1915768117
https://www.ling.upenn.edu/phono_atlas/ICSLP4.html
https://doi.org/10.1353/lan.2013.0015
https://CRAN.R-project.org/package=emmeans
https://CRAN.R-project.org/package=emmeans
https://doi.org/10.1121/1.1912396
https://doi.org/10.21437/interspeech.2017-1386
https://repository.upenn.edu/pwpl/vol24/iss2/9
https://repository.upenn.edu/pwpl/vol24/iss2/9
https://doi.org/10.1109/icassp.2015.7178964
https://www.R-project.org/
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Reddy, S., and Stanford, J. (2015b). “AWebApplication forAutomatedDialect Analysis,”
in Proceedings of the North American Association for Computational Linguistics
2015 Conference (NAACL-HLT 2015), 71–75. doi:10.3115/v1/n15-3015

Reddy, S., and Stanford, J. (2015a). DARLA Dartmouth Linguistic Automation:
Online Tools for Linguistic Research. Web address: darla.dartmouth.edu.

Reddy, S., and Stanford, J. N. (2015c). Toward Completely Automated Vowel Extraction:
Introducing DARLA. Linguistics Vanguard 1 (1), 15–28. doi:10.1515/lingvan-2015-0002

Rosenfelder, I., Fruehwald, J., Evanini, K., andYuan, J. (2011). FAVE (ForcedAlignment
and Vowel Extraction) Program Suite. Available at: http://fave.ling.upenn.edu.

Russell, V. L. (2021). Emmeans: Estimated Marginal Means, Aka Least-Squares Means.
version 1.5.3. Available at: https://CRAN.R-project.org/package�emmeans.

Stanley, Joey. (2018). Calculating Vowel Overlap. Available from: https://
joeystanley.com/blog/a-tutorial-in-calculating-vowel-overlap.

Strelluf, C. (2016). Overlap Among Back Vowels before/l/in Kansas City. Lang.
Change 28 (3), 379–407. doi:10.1017/s0954394516000144

Tatman, R. (2017). “Gender and Dialect Bias in YouTube’s Automatic Captions,”
in Proceedings of the First ACL Workshop on Ethics in Natural Language
Processing, 53–59. doi:10.18653/v1/w17-1606

Tatman, R., and Kasten, C. (2017). “Effects of Talker Dialect, Gender & Race on
Accuracy of Bing Speech and YouTube Automatic Captions,” in Interspeech
2017, 934–938. doi:10.21437/interspeech.2017-1746

Thomas, E., and Kendall, T. (2007). NORM: The Vowel Normalization and
Plotting Suite. Online Resource. Available from: http://lingtools.uoregon.
edu/norm/norm1_methods.php.

Thomas, E. (2011). Sociophonetics: An Introduction. Basingstoke: Palgrave
Macmillan.

Warren, P. (2018). Quality and Quantity in New Zealand English Vowel Contrasts.
J. Int. Phonetic Assoc. 48 (3), 305–330. doi:10.1017/s0025100317000329

Yuan, J., and Liberman, M. (2008). Speaker Identification on the SCOTUS Corpus.
J. Acoust. Soc. America 123, 3878. doi:10.1121/1.2935783

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Coto-Solano, Stanford and Reddy. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 66209719

Coto-Solano et al. DARLA Automated Sociophonetics Vowel Analysis

https://doi.org/10.3115/v1/n15-3015
http://darla.dartmouth.edu
https://doi.org/10.1515/lingvan-2015-0002
http://fave.ling.upenn.edu
https://CRAN.R-project.org/package=emmeans
https://CRAN.R-project.org/package=emmeans
https://joeystanley.com/blog/a-tutorial-in-calculating-vowel-overlap
https://joeystanley.com/blog/a-tutorial-in-calculating-vowel-overlap
https://doi.org/10.1017/s0954394516000144
https://doi.org/10.18653/v1/w17-1606
https://doi.org/10.21437/interspeech.2017-1746
http://lingtools.uoregon.edu/norm/norm1_methods.php
http://lingtools.uoregon.edu/norm/norm1_methods.php
https://doi.org/10.1017/s0025100317000329
https://doi.org/10.1121/1.2935783
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

	Advances in Completely Automated Vowel Analysis for Sociophonetics: Using End-to-End Speech Recognition Systems With DARLA
	Introduction
	Methods
	Results
	Character Error Rate
	Sociophonetic Results From the Southern Vowel Shift
	Improvements in Sociophonetic Analysis
	Variationist Analysis of SVS Movements

	Northern Cities Shift Results
	Improvements in Sociophonetic Analysis
	Variationist Analysis of NCS Movements


	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


