
ORIGINAL RESEARCH
published: 18 March 2021

doi: 10.3389/frai.2021.648579

Frontiers in Artificial Intelligence | www.frontiersin.org 1 March 2021 | Volume 4 | Article 648579

Edited by:

Hong Qin,

University of Tennessee at

Chattanooga, United States

Reviewed by:

Ramaraju Rudraraju,

University of Alabama at Birmingham,

United States

Zongliang Yue,

University of Alabama at Birmingham,

United States

*Correspondence:

Jingyi Zheng

jingyi.zheng@auburn.edu

Specialty section:

This article was submitted to

Medicine and Public Health,

a section of the journal

Frontiers in Artificial Intelligence

Received: 31 December 2020

Accepted: 22 February 2021

Published: 18 March 2021

Citation:

Li Y, Ge L, Zhou Y, Cao X and Zheng J

(2021) Toward the Impact of

Non-pharmaceutical Interventions and

Vaccination on the COVID-19

Pandemic With Time-Dependent SEIR

Model. Front. Artif. Intell. 4:648579.

doi: 10.3389/frai.2021.648579

Toward the Impact of
Non-pharmaceutical Interventions
and Vaccination on the COVID-19
Pandemic With Time-Dependent
SEIR Model
Yuexin Li 1, Linqiang Ge 2, Yang Zhou 3, Xuan Cao 4 and Jingyi Zheng 1*

1Department of Mathematics and Statistics, Auburn University, Auburn, AL, United States, 2 TSYS School of Computer

Science, Columbus State University, Columbus, GA, United States, 3Department of Computer Science and Software

Engineering, Auburn University, Auburn, AL, United States, 4Department of Mathematical Sciences, University of Cincinnati,

Cincinnati, OH, United States

The outbreak of COVID-19, caused by the SARS-CoV-2 coronavirus, has been declared

a pandemic by the World Health Organization (WHO) in March, 2020 and rapidly

spread to over 210 countries and territories around the world. By December 24, there

are over 77M cumulative confirmed cases with more than 1.72M deaths worldwide.

To mathematically describe the dynamic of the COVID-19 pandemic, we propose a

time-dependent SEIR model considering the incubation period. Furthermore, we take

immunity, reinfection, and vaccination into account and propose the SEVIS model. Unlike

the classic SIR based models with constant parameters, our dynamic models not only

predicts the number of cases, but also monitors the trajectories of changing parameters,

such as transmission rate, recovery rate, and the basic reproduction number. Tracking

these parameters, we observe the significant decrease in the transmission rate in the

U.S. after the authority announced a series of orders aiming to prevent the spread of

the virus, such as closing non-essential businesses and lockdown restrictions. Months

later, as restrictions being gradually lifted, we notice a new surge of infection emerges as

the transmission rates show increasing trends in some states. Using our epidemiology

models, people can track, timely monitor, and predict the COVID-19 pandemic with

precision. To illustrate and validate our model, we use the national level data (the U.S.)

and the state level data (New York and North Dakota), and the resulting relative prediction

errors for the infected group and recovered group are mostly lower than 0.5%. We also

simulate the long-term development of the pandemic based on our proposed models to

explore when the crisis will end under certain conditions.
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1. INTRODUCTION

On March 11, 2020, the World Health Organization (WHO)
declared that the outbreak of the novel coronavirus (COVID-19)
can be characterized as a pandemic. The COVID-19 outbreak
started in Wuhan, China in December, 2019. By the end of
January, 2020, the confirmed cases in China went up to 11, 791.
Only 1 month later, the number increased nearly seven-fold
to 80, 134 and the COVID-19 cases gradually showed up in
other countries. Starting from March, 2020, the outbreak
spread to more than 100 countries. By the end of 2020, the
pandemic has led to 77.5M confirmed cases and more than
1.72M fatalities worldwide. Figure 1 summarizes the percentage
of global confirmed cases contributed by each country. As of
December 24, the United States, India, and Brazil are the three
countries most impacted by the COVID-19 pandemic. The
trajectories of the confirmed cases in the three countries are
also displayed.

The COVID-19 virus has caused a great disruption to
the human health, social life, developments, and economics.
To stop the spread of COVID-19 virus, governments have
carried out numerous preventive measures such as stay-
at-home orders, travel restrictions, school closure, mask-
wearing mandate, and so forth. The impact on the society
came later in all aspects, including rising unemployment,
protests against restrictions, and psychological anxiety and
stress brought to the public. However, a significant decrease
in the transmission rate occurred, which proved that these
mitigation measures were effective. Months later, many states
in the U.S. have loosened their restrictions and lifted orders
to allow businesses to reopen to the public. Consequently, the
diagnoses of daily confirmed cases have displayed a consequential
increasing trend after the reopen in some states such as
Alabama. By looking at the numbers only, it is difficult to
assess what stage we are at in the COVID-19 pandemic
and when it is going to end. Hence, mathematical models
considering the epidemiological characteristics of COVID-19
become crucial and significant to track and forecast the trend of
the spread.

The classic epidemiology model exhibits compelling results,
especially during the early period of the pandemic. The
compartmental models, which are the simplified versions

of mathematical models for infectious diseases, divide the
population into different compartments between which people

may progress. Different diseases are represented by different
compartmental models (Schmidt, 1981; Sharomi and Gumel,
2011; Gao et al., 2016). The Susceptible-Infectious-Recovered
(SIR) model, as one of the simplest and most classic

compartmental models, characterizes the dynamic changes in
each compartment using ordinary differential equations. There
are three compartments in this model: susceptible (S), infectious
(I), and recovered/deceased (R). The number of individuals in
each compartment varies over time. The deterministic SIR and
its derivatives are widely used to predict infectious deceases like
COVID-19 (Chen et al., 2020; Katul et al., 2020; Toda, 2020).
Besides compartmental models, statistical learning techniques
are also widely used in biomedical fields (Zheng et al., 2018,

2019; Hsieh and Zheng, 2019; Ganyani et al., 2020; Murray,
2020; You et al., 2020). For example, IHME team (Murray, 2020)
employed a statistical model to predict the number of deaths,
the demand of hospital beds, ICU beds and ventilators in a
few months.

In this paper, we develop a time-dependent Susceptible-
Exposed-Infectious-Recovered (SEIR) model with coefficients
estimated by Least Absolute Shrinkage and Selection Operator
(LASSO) regression. This model is inspired by the SIR model
and takes the existence of incubation period (the time from
exposure to development of symptoms) into consideration. The
individuals who have been infected but are not yet infectious
are labeled as exposed (E). Instead of the constant parameters
used in traditional SIR based models, we propose to model
the dynamic with time-dependent parameters. Additionally,
we extend our SEIR model to accommodate other crucial
factors such as immunity, reinfection, and vaccination cases into
account. With the epidemiology models, we aim at answering the
following questions:

• What is the trajectory of transmission rate, incubation rate,
and recovery rate?

• Has the inflection point been reached. If so, when?
• How does the reopen order affect the spread of the pandemic?
• How do reinfection and vaccination affect the pandemic?
• When will the mortality reach the peak?
• How many cases do we expect to have when the pandemic

is over?

The remainder of the paper is organized as follows: we build
the time-dependent SEIR model in section 2. Then we extend
the model to include the vaccinated group as well as analyze the
asymptotic stability of its disease-free equilibrium in section 3. To
validate our model, we perform numerical analysis, prediction,
and model simulation using national level data of the United
States, and the state level data of two selected states, New York
and North Dakota. The results are presented in section 4. Lastly,
we conclude this paper in section 5.

2. THE TIME-DEPENDENT SEIR MODEL

Our proposed SEIR model with time-dependent parameters
describes the transmission dynamic of an epidemic. It is assumed
that there are totally four states in which an individual would
experience: susceptible, exposed, infected, and recovered. In the
susceptible state, the individual does not have the disease but
can be infected by someone infectious through an effective
contact. Once being infected, the individual moves to the
exposed state. The exposed individual is not able to infect others
until the incubation period is over. Eventually, the infected
individual recovers from the disease. Altogether the four groups
of individuals at different states compose the entire population
and we denote the number of individuals in each group at time
t by S(t),E(t), I(t), and R(t). In this model, a person is assumed
to be immune to the virus after recovery and will not return to
the susceptible state. Accordingly, the number of deaths caused
by the disease is also counted in the recovered group R(t) since
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FIGURE 1 | Countries most impacted by COVID-19, updated by 2020-12-24.

neither of the recovered and dead has any more impact on the
spread of the virus.

The differential equations that govern the trajectories of the
four compartments are formulated as:

dS

dt
= −

βtS(t)I(t)

N
, (1)

dE

dt
=

βtS(t)I(t)

N
− σtE(t), (2)

dI

dt
= σtE(t)− γtI(t), (3)

dR

dt
= γtI(t), (4)

with a constant total population N,

N = S(t)+ E(t)+ I(t)+ R(t), (5)
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and therefore, we have:

dS

dt
+

dE

dt
+

dI

dt
+

dR

dt
= 0. (6)

Three time-dependent parameters, the transmission rate βt , the
transition rate σt , and the recovery rate γt are introduced in this
model, which are all assumed to vary with respect to time. The
descriptions and empirical ranges are listed in Table 1.

The proportion of susceptible and infected individuals in the

population at time t are S(t)
N and I(t)

N , respectively. Given the
transmission rate βt , which describes the flow of susceptible
becoming exposed to the virus, and the total population N, the

number of newly exposed people is βtS(t)I(t)
N . Later, the exposed

individuals make the transition to the infected state at the
transition rate σt , which is the inverse of the incubation period.
The number of exposed individuals who complete the transition
at time t is σtE(t). Similarly, people recovered at time t is γtI(t),
given the recovery rate γt , which is the number of individuals
recover from the infected state per person per time.

2.1. Discrete Time-Dependent SEIR Model
Since the COVID-19 case report is updated daily, we revise
the differential Equations (1)–(4) into discrete time difference
equations as follows:

S(t + 1)− S(t) = −
βtS(t)I(t)

N
, (7)

E(t + 1)− E(t) =
βtS(t)I(t)

N
− σtE(t), (8)

I(t + 1)− I(t) = σtE(t)− γtI(t), (9)

R(t + 1)− R(t) = γtI(t), (10)

with the four variables satisfying (5) and

S(t + 1)− S(t)+ E(t + 1)− E(t)+

I(t + 1)− I(t)+ R(t + 1)− R(t) = 0.
(11)

Assuming historical data for a certain time period 0 ≤ t ≤ T
is available, i.e., we have {S(t),E(t), I(t),R(t)|0 ≤ t ≤ T}. By
deduction from (7) to (10), we can compute historical values
of the parameter series {βt , σt , γt|0 ≤ t ≤ T − 1} using the
following formulas:

βt =
N(E(t + 1)− E(t)+ I(t + 1)− I(t)+ R(t + 1)− R(t))

S(t)I(t)
,

(12)

σt =
I(t + 1)− I(t)+ R(t + 1)− R(t)

E(t)
, (13)

γt =
R(t + 1)− R(t)

I(t)
. (14)

Now predicting future values of the parameters {βt , σt , γt|t ≥ T}
given historical values can be converted to a regression problem.

2.2. Tracking the Transmission Rate βt,
Transition Rate σt, and Recovery Rate γt
There are several approaches predicting future values of the time-
dependent parameters. For instance, we can use linear models
(e.g., linear regression), nonlinear methods (e.g., spline), or time
series models (e.g., autoregressive model), etc. In this subsection,
we fit the following LASSO regression models:

β̂t+1 = a0 +

I
∑

i=1

aiβt−i, (15)

σ̂t+1 = b0 +

J
∑

j=1

ajσt−j, (16)

γ̂t+1 = c0 +

K
∑

k=1

akγt−k, (17)

where I, J, and K are the orders of the autoregressive process, and
{ai|0 ≤ i ≤ I}, {bj|0 ≤ j ≤ J} and {ck|0 ≤ k ≤ K} are the
regression coefficients.

These coefficients are determined byminimizing the following
loss functions, which are composed of the residual sums of
squares (RSS) and regularization terms:

L(β) =

T−1
∑

t=I+1

(βt − a0 −

I
∑

i=1

aiβt−i)
2 + λβ

I
∑

i=0

|a2i |, (18)

L(σ ) =

T−1
∑

t=J+1

(σt − b0 −

J
∑

j=1

bjσt−j)
2 + λσ

J
∑

j=0

|b2j |, (19)

L(γ ) =

T−1
∑

t=K+1

(γt − c0 −

K
∑

k=1

ckγt−k)
2 + λγ

K
∑

k=0

|c2k|, (20)

λβ , λσ , and λγ are the regularization parameters deciding
the penalty to the flexibility of model, and all regularization
parameters can be optimized by cross-validation.

2.3. Estimating the Exposed Ê(t), Infections

Î(t), and Recovered R̂(t) Groups
Given the historical data {S(t),E(t), I(t),R(t), 0 ≤ t ≤ T}, we first
compute the time-dependent parameter series {βt , σt , γt , 0 ≤ t ≤
T − 1} introduced in section 2.1. Then we predict future values
{β̂t , σ̂t , γ̂t , t ≥ T} using the model built in section 2.2. According
to (8), (9), (10), and (5), we can further predict the number of
cases for the future as follows:

Ê(t + 1) = Ê(t)+
β̂t Ŝ(t)Î(t)

N
− σ̂tÊ(t), t ≥ T + 1, (21)
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TABLE 1 | Model parameters.

Parameter Description Empirical range References

βt Transmission rate (effective contact rate) at a given time 0.5–1.5 day−1 Ngonghala et al., 2020; Read et al., 2020; Shen et al., 2020

σt Transition rate from exposed to infections at a given time 1
5.1 Fairoza Amira et al., 2020; Ngonghala et al., 2020

γt Recovery rate at a given time 1
10 Fairoza Amira et al., 2020; Ngonghala et al., 2020

vt Fraction of susceptible individuals vaccinated at a given time

w Fraction of infections gain immunity after recovery

Î(t + 1) = Î(t)+ σ̂tÊ(t)− γ̂t Î(t), t ≥ T + 1, (22)

R̂(t + 1) = R̂(t)+ γ̂t Î(t), t ≥ T + 1, (23)

Ŝ(t+ 1) = N− Ê(t+ 1)− Î(t+ 1)− R̂(t+ 1), t ≥ T+ 1, (24)

Note that for the special case when estimating
{Ŝ(t), Ê(t), Î(t), R̂(t)|t = T + 1}, i.e., the numbers of cases
at t = T+ 1, we use the true values of {S(t),E(t), I(t),R(t)|t = T}
instead of using the estimated values {Ŝ(t), Ê(t), Î(t), R̂(t)|t = T}
as in the formulas (21), (22), (23), and (24). The detailed steps of
the entire procedure are summarized in Algorithm 1.

Algorithm 1: Tracking discrete time time-dependent SEIR
model

Input: {E(t), I(t),R(t)|0 ≤ t ≤ T}, regularization
parameters λβ , λσ and λγ , orders of autoregressive
process I, J,K, prediction window tw.

Output: {βt , σt , γt|0 ≤ t ≤ T − 1},
{β̂t , σ̂t , γ̂t|T ≤ t ≤ T + tw − 1},
{Ê(t), Î(t), R̂(t)|T + 1 ≤ t ≤ T + tw}.

Compute {βt , σt , γt|0 ≤ t ≤ T − 1} using (12), (13), and
(14);
Train the LASSO regression models using
{βt , σt , γt|0 ≤ t ≤ T − 2} as the predictors and
{βt1 , σt2 , γt3 |I + 1 ≤ t1 ≤ T − 1, J + 1 ≤ t2 ≤
T − 1,K + 1 ≤ t3 ≤ T − 1} as the response;
while T ≤ t ≤ T + tw − 1 do

Predict β̂t , σ̂t and γ̂t using (15), (16), and (17);

Estimate Ê(t + 1), Î(t + 1) and R̂(t + 1) using (21), (22),
and (23), respectively;

3. SEIR VARIATION CONSIDERING
IMMUNITY, REINFECTION, AND
VACCINATION

The human immune system protects the body against
diseases with two parts. The first part, known as the innate

immune response, includes the release of chemicals that cause
inflammation and white blood cells that can destroy infected
cells. It is always ready to take actions as soon as any foreign
invader is detected inside the body. However, this part is not
specific to coronavirus. It will not learn and develop immunity
to the virus. Instead, the second part: the adaptive immune
response produces targeted antibodies that can stick to the virus
and stop the spread to the body. The T cells1 would attack the
cells infected by the virus.

Existing research shows that most COVID-19 patients had an
antibody response at 10 days or later after onset of symptoms (To
et al., 2020). If the adaptive immune response is powerful enough,
it could leave a lasting memory of the infection that will provide
protection in the future. Other findings also suggest that strong
responders (with higher antibody level) are significantly higher
in severe patients, while it is unclear whether the asymptomatic
or mildly symptomatic patients will develop sufficient adaptive
immune response and gain immunity to the disease after
recovery (Tan et al., 2020). In fact, there have been several
reported cases of COVID reinfection in China, Hong kong,
Belgium, the Netherlands, and the U.S. (Tan et al., 2020), and the
reinfection case are indeed increasing. This implies the necessity
of taking reinfection into consideration.

On the other hand, the worldwide endeavor to create a safe
and effective COVID-19 vaccine is beginning to bear fruit. A
wide variety of vaccines has already been authorized around the
globe while many more remain in development. According to
the U.S. CDC, as of December 13, 2020, the Pfizer-BioNTech
COVID-19 vaccine has been authorized and large-scale (Phase
3) clinical trials are in progress or being planned for three other
vaccines in the United States. Currently the supply of COVID-
19 vaccine in the U.S. is limited, but it will increase in the
upcoming weeks and months. Once large quantities are available,
the increasingly large-scale vaccination will have a substantial
impact on the pandemic.

3.1. The Time-Dependent SEVIS Model
To take the factors of immunity, reinfection, and vaccination
into account, we modify the proposed SEIR model by removing
the recovered group R(t) and adding a vaccinated group V(t),
which represents the vaccinated individuals. In this susceptible,
exposed, vaccinated, and infected modeling framework, the
previous assumption for the SEIR model that an infected

1T cells are one of the important white blood cells of the immune system, and play

a central role in the adaptive immune response.
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individual will not become susceptible again after recovery is
no longer employed. Instead, we assume that a fraction of
the infected individuals gain immunity after recovery through
producing antibodies while the rest return to the susceptible
state. The former is counted in the V(t) group along with the
vaccinated individuals since, epidemiologically speaking, both
are immune to the virus and can no longer be infected. The new
SEVIS model is governed by the following differential equations:

dS

dt
= −

βtS(t)I(t)

N
− vtS+ (1− w)γtI(t), (25)

dE

dt
=

βtS(t)I(t)

N
− σtE(t), (26)

dV

dt
= vtS+ wγtI(t), (27)

dI

dt
= σtE(t)− γtI(t), (28)

with a constant total population N,

N = S(t)+ E(t)+ V(t)+ I(t), (29)

and therefore, we have:

dS

dt
+

dE

dt
+

dV

dt
+

dI

dt
= 0. (30)

The parameter settings of the transmission rate βt , the transition
rate σt , and the recovery rate γt remain the same as in the SEIR
model. The vaccination rate vt is low at the beginning of vaccine
administration and gradually increasing as supply is growing.
w ∈ [0, 1] is the fraction of infected cases that become immune
after recovery. In addition, we assume it to be constant in this
model. Hence, the number of infected individuals recover at time
t is γtI(t), and wγtI(t) join the V(t) group while (1−w)γtI(t) fail
to gain immunity and return to the susceptible state S(t).

3.2. Baseline Epidemiological Parameters
In previous studies, the transmission rate, β (as a constant),
ranges from around 0.5 to 1.5 per person per day (Ngonghala
et al., 2020; Read et al., 2020; Shen et al., 2020) and decreases as
time goes. Based on existing literature, the incubation period (the
time from exposure to development of symptoms) of COVID-19
and other coronaviruses ranges from 2 to 14 days. On average,
symptoms show up in the newly exposed person about 5.1 days
after contact (Fairoza Amira et al., 2020; Ngonghala et al., 2020).
Thus, the transition rate, which is the inverse of the incubation
period, is estimated to be 1

5.1 .

3.3. Basic Reproduction Number and
Asymptotic Stability of Disease-Free
Equilibrium
In this subsection we give the closed-form expression for the
time-dependent basic reproduction number of the SEVIS model
using the next generation operator method (Diekmann et al.,

1990; van den Driessche and Watmough, 2002). The basic
reproduction number R0 is defined as the average number of
secondary infections caused by a single infectious individual who
enters an entirely susceptible population. That actually is the
special case where all parameters and compartments are at their
initial state at time t = 0. Since we propose the parameters to be
time-dependent in our model, we revise the basic reproduction
number to a time-dependent version Rt as well. When Rt > 1,
the infection will be able to start spreading in the population and
develop into an epidemic. Generally speaking, it is more difficult
to control the epidemic with the larger the value of the basic
reproduction number.

Let X be the vector of infected classes and Y be the vector of
uninfected classes. For the SEVIS model (25)–(28), we have:

X =

[

E
I

]

,Y =

[

S
V

]

.

Next we define the matrix of new infection terms F , which only
includes the flow from X to Y , and matrix of all other terms V ,
which includes flows within X and flows leaving the system. For
each compartment, in-flow in V is negative and out-flow in V

is positive.

F =

[

βtSI
N
0

]

,V =

[

σtE
−σtE+ γtI

]

.

The next generation matrix is defined as FV−1 where:

F =
∂F

∂X

∣

∣

∣

∣

DFE

,V =
∂V

∂X

∣

∣

∣

∣

DFE

.

The disease-free equilibrium (DFE) of the SEVIS model is given
by: (S∗,E∗,V∗, I∗) = (N, 0, 0, 0), and we have

F =

[

0 βt

0 0

]

,V =

[

σt 0
−σt γt

]

.

Therefore, the next generation matrix is:

FV−1 =

[

βt/γt βt/γt
0 0

]

.

Rt , the basic reproduction number at time t, is given by the
dominant eigenvalue of FV−1:

Rt =
1

2
(
βt

γt
+

√

βt

γt
(
βt

γt
+ 4)). (31)

Similarly, we can obtain the same basic reproduction number
for the time-dependent SEIR model. The DFE is locally
asymptotically stable ifRt < 1, and unstable ifRt > 1.

4. NUMERICAL RESULTS, PREDICTIONS,
AND SIMULATIONS

In this section, we will give the numeric results obtained by
implementing Algorithm 1 on the national level data of the
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FIGURE 2 | U.S. COVID-19 map.

FIGURE 3 | Cumulative numbers of COVID-19 confirmed cases, recoveries,

and deaths in the United States.

United States (US) as well as the state level data of a few
representative states.

In spring 2020, the New York Metropolitan Area experienced
the largest COVID-19 outbreaks. As thousands of cases were
being confirmed daily in New York, the state was the epicenter
of the nation’s crisis and on a different scale than the rest

of the country. Though some new batches of hotspots have
emerged across the country during the past months, the state
of New York (NY) is still a region worth studying. On the
other hand, as of December 24, a pack of northern states
close to the Canada-US border have the highest percentages
of cumulative confirmed cases in their populations as shown
in Figure 2. The top one, North Dakota, has 11.94% of its
population infected cumulatively, followed by South Dakota
(10.69%), Wisconsin (8.61%), and some other nearby states. In
this case, as a representative of this particular area, we take North
Dakota (ND) as another example to illustrate our algorithm. We
used the dataset that was collected from the COVID-19 data
repository by the Center for Systems Science and Engineering
(CSSE) at Johns Hopkins University (Dong et al., 2020) and the
nCov2019 R package (Wu et al., 2020). The dataset contains time
series of the numbers of confirmed cases, recovered cases and
deaths up to December 24, 2020. The starting date of the training
set used for model training varies according to the actual spread
of the pandemic in each of the three regions: US, NY, and ND.
For each region, a different start date of training set is chosen
for model fitting according to the time when a relatively clear
trend emerges.

Figures 3, 4 presents the cumulative numbers of COVID-19

confirmed cases, recoveries and deaths reported in US, NY, and

ND. The data starts at the beginning of the pandemic for US

and ND, but it starts a while after the initial point for NY. The
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FIGURE 4 | Cumulative numbers of COVID-19 confirmed cases, recoveries, and deaths in (A) New York, (B) North Dakota.

reason is that, back when the pandemic first started, a series
of well-recorded numbers of recoveries were not available for
many states, including NY. To obtain complete data on the three
type of cases for computation, a cut-off is made. Therefore, the
starting point of the data we collected for NY is about 2 months
later than the actual date when the first case of COVID-19
was confirmed.

Due to the unavailability of the numbers of the exposed
individuals E(t) in any of these regions, we substitute our model
in section 2.1 with a simplified version as in Chen et al. (2020) that
only includes the other three compartments S(t), I(t), and R(t).
To validate our algorithm, we compare the prediction results
with known data to see how well it performs, or how large
the prediction errors are. Then we implement the algorithm
again to predict how the COVID-19 pandemic will spread in
the future.

At the end of this section, we simulate the long-term
development of the pandemic based on the epidemiology models
proposed in sections 2, 3 by constructing certain conditions and
assigning assumed values to the parameters listed in Table 1.
Based on the results, we discuss what they indicate as well
as what differences we expect to see in reality compared to
the simulation.

4.1. Parameter Tracking and Prediction
First we compute the true values of the transmission rate βt

and the recovery rate γt using (12), (13), and (14). Then
starting from the sixth day in the parameter series, we take
the value of a time-dependent parameter for each day as
a subject for testing and a 5-day window before it as a
corresponding observation used for training, i.e., I,K = 5
in section 2.2. By doing this, we construct the training and
testing sets for model fitting. The R package glmnet is used
to fit the LASSO regression models and choose the optimal
values of λβ and λγ that yield the minimum mean cross-
validated errors.

Figures 5, 6 depict the true values {βt , γt|0 ≤ t ≤ T − 1} and
predicted values {β̂t1 , γ̂t2 |I+1 ≤ t1 ≤ T−1,K+1 ≤ t2 ≤ T−1}

FIGURE 5 | Parameter tracking and prediction for the United States.

of both the transmission rate and the recovery rate of US, NY, and
ND, respectively. The 95% prediction intervals are shown as the
gray bands above and below the curves.

For the U.S. case, there was a sharp decrease in the
transmission rate from mid-March to May, just about 1 week
after the spread of the virus started. This was an evidence
that the social distancing measures and community lockdowns
implemented across the country have effectively and significantly
slowed down the spread of the pandemic. It kept decreasing
for about a month before a surge appeared in July, which is
possibly caused by the nationwide celebration of Independence
Day. In the fall, starting from early September, the transmission
rate slowly rose again with increasingly larger oscillations,
which showed consistency with the surge in the fall that
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FIGURE 6 | Parameters tracking and prediction for (A) New York (B) North Dakota.

pushed the total number of confirmed cases in US past
11M. This could be a result of a series of events prior to
that (e.g., school opening, Halloween), and a prelude to the
upcoming large gathering (e.g., Thanksgiving, Black Friday,
Christmas). We expect this increase in the transmission rate
to continue toward early 2021 and start to gradually decrease
after the vaccination is administrated at a large scale in
U.S. The recovery rate also had an slight increase around
the same time in July but not as large as the one in
the transmission rate. Overall, the recovery rate of U.S. is
relatively steady and does not show any significant increasing or
decreasing trend.

Similar to the US case, the transmission rate of NY started
high and then reduced rapidly in the next few weeks. The trend
maintained stationary for about 3 months until a rise appeared in
late September and kept increasing toward the end. By December,
the transmission rate is nearly as high as when it first started. The
recovery rate of NY also had a large initial value followed by a 2-
month-long decrease, but no clear trend was shown after a small
spike at the beginning of July.

As for the ND case, the recovery rate started with a mild
increase in the first 2 month. Later on, it remained steady just
like the previous two regions. For the transmission rate, the
overall trend is much more stationary compared to the results
of US and NY and no significant change could be observed.
However, the true values of the two parameters of ND have
the greatest oscillations, i.e., the largest ranges of oscillations,
among the three regions. Note the two unusually acute spikes
in the transmission rate respectively in May and December
and one in the recovery rate in December that deviate from
the entire curves. In the absence of any pre or post trend, we
consider these points as outliers in this paper and exclude them
in model training.

4.2. Algorithm Validation and Relative
Percentage Errors
In this section, we use the computed values of the parameters to
estimate the three variables S(t), I(t), and R(t) as in section 2.3.
Instead of directly predicting future values for t > T, we use the
historical data {I(t),R(t)|T − tw ≤ t ≤ T − 1} and the predicted
parameter series {β̂t , γ̂t|T − tw ≤ t ≤ T − 1} to estimate the last
tw days of the entire period of time by which the data is covered,
i.e., predict {Î(t), R̂(t)|T − tw + 1 ≤ t ≤ T}. Moreover, we also
compare the proposed model with the classic SIR model with
constant parameters by replacing the time-dependent parameter
series with their means.

We evaluate the model performance using the relative
percentage errors (RPE) of the prediction for the infected group
I(t) and the recovered group R(t) as follows:

RPEI =
|I(t)− Î(t)|

I(t)
, T − tw + 1 ≤ t ≤ T, (32)

RPER =
|R(t)− R̂(t)|

R(t)
, T − tw + 1 ≤ t ≤ T. (33)

To assess the predictions of the proposed method and compare
with the classic SIR model, we compute the RPE series for the
past week (i.e., tw = 7) for the two models. The RPE series for
US, NY, and ND are displayed in Figures 7, 8 respectively, with
their means summarized in the top-left corner of each figure.
Using the proposed model with time-dependent parameters, the
mean relative percentage errors for I(t) and R(t), i.e., RPEI and
RPER, are 2.35 and 0.39% for US, 0.2 and 0.2% for NY, and 4.67
and 0.09% for ND, respectively. Using the classic SIR model with
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FIGURE 7 | Relative prediction errors for the United States.

FIGURE 8 | Relative prediction errors for (A) New York (B) North Dakota.

constant parameters, RPEI and RPER are 10.18 and 0.62% for US,
3.64 and 0.53% for NY, and 15.84 and 0.3% for ND, respectively.
All errors are significantly larger than the former, which clearly
shows the proposed time-dependent model yields better results
in predicting the spread of the pandemic than the traditional SIR
model with fixed parameters. Details of the model training and
validation process are summarized in Table 2.

4.3. One-Day Prediction for I(t), R(t), and
Basic Reproduction Numbers
Next we implement Algorithm 1 to predict the number of

infected I(t) and recovered individuals R(t) for the future

{Î(t), R̂(t)|T + 1 ≤ t ≤ T + tw}. We reset the prediction

window tw to be 30, as we are to predict the spread of COVID-
19 pandemic in the next 30 days after December 24, 2020. The

results of 1-day prediction for US, NY, and ND are shown in
Figures 9, 10, respectively. For NY, the sharp increase in the
infected group since November is predicted to continue toward
the next year, due to the oscillatory rise in the transmission
rate shown in Figure 6. On the other hand, the growth of the
recovered group remains slow. For ND, the number of infected
will stay low after the small surge was contained in November,
while the rapid growth in the recovered group is expected to
be continuous but might slow down. For US, the prediction
shows that both curves will keep climbing at a high rate, which
indicates that there will still be a long way to go before the
pandemic finally ends. The prediction results are summarized
in Table 3.

To assess the spread of COVID-19, we also obtain the
1-day prediction for the time-dependent basic reproduction
number Rt using (31). The results for the three regions
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TABLE 2 | Modeling training and validation.

Region Start date of training data Size of training set Order Prediction window tw Mean RPEI (%) Mean RPER (%)

United States 2020− 03− 07 287 5 7 2.35 0.39

New York 2020− 04− 28 235 5 7 0.2 0.2

North Dakota 2020− 04− 12 251 5 7 4.67 0.09

FIGURE 9 | One-day prediction of 30 days for the United States.

FIGURE 10 | One-day prediction of 30 days for (A) New York (B) North Dakota.

are presented in Figures 11, 12, with horizontal lines
representing Rt = 1. As discussed in section 3.3, the
virus will decline and gradually die out when Rt < 1.
Otherwise, it will continue to spread. According to the
results shown in Figures 11, 12, only very few points fall
below the horizontal line, while the majority lies above
it. For NY, the surge in fall, 2020 and some scattered
large values agree with the increasing trends in both the
confirmed cases and the transmission rate we see in Figures 4,
6, respectively.

The basic reproduction numbers Rt for each of the next 30
days are estimated to be >1 for all three regions. The means
of predicted values are found to be 2.48 for US, 22.28 for NY
and 1.68 for ND, which suggests the inflection point, where Rt

stabilizes below 1 afterwards, has not been reached yet, especially
for the NY case, where instead of having a decreasing trend, an
increasing Rt actually emerges over time. For US and ND, the
curves gradually approaching the horizontal lines of Rt < 1
indicates that the measures taken to tackle the pandemic are
taking effect, but at this point it is sill too early to relax them.

Frontiers in Artificial Intelligence | www.frontiersin.org 11 March 2021 | Volume 4 | Article 648579

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Li et al. COVID-19 With Interventions and Vaccination

TABLE 3 | Prediction results.

Region Total confirmed cases on last day Prediction window tw Î(t) R̂(t) Predicted total confirmed cases

United States 18,829,816 30 9,723,682 15,971,038 25,694,720

New York 891,270 30 1,111,117 153,277 1,264,394

North Dakota 90,947 30 1,760 95,016 96,776

FIGURE 11 | Time-dependent basic reproduction number for the United States.

FIGURE 12 | Time-dependent basic reproduction number for (A) New York (B) North Dakota.

4.4. Simulation Results for the SEIR and
SEVIS Models
We also simulate the long-term development of the COVID-19
pandemic based on SEIR and SEVIS models. March 17, 2020,
the first day in our US data, is chosen as the starting date of the
pandemic in the simulations.

For the SEIR model, we set the transition rate to σt =
1
5.1 according to Table 1. To simulate as close to the reality

as possible, we set the transmission rate βt and the recovery
rate γt to the means of their true value series obtained in

section 4.1. To construct the initial conditions of the system,

we use the initial values I(0) = 311 and R(0) = 27 obtained

from the data as well. In previous studies, the average Infected-
Suspected ratio in China, one of the earliest hot spots of the
global COVID-19 outbreak, was found to be 2.399 (e.g., Fairoza
Amira et al., 2020). In this simulation, due to the lack of data
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FIGURE 13 | Simulation based on the SEIR Model for the U.S.

of the exposed group, we use the same ratio to initialize E(t),
i.e., E(0) = 1

2.399 I(0) ≈ 130. According to the U.S. and
World Population Clock (United States Census Bureau, 2020),
the U.S. population is N = 329, 227, 746. Using (5), we have:
S(0) = N − E(0)− I(0)− R(0) ≈ 329, 227, 278.

With the aforementioned parameter settings and initial
conditions, we simulate the COVID-19 pandemic for the US.
As shown in Figure 13, the number of infected people reaches
a peak in early July, 2020, and the pandemic gradually dies out
in summer 2021. It is important to note that the simulation
is only theoretical and restricted by given conditions. These
conditions can be dramatically different in realty. Moreover, no
mitigation measure of any kind that can possibly prevent or
limit the spread of the virus is considered in the simulation,
such as wearing facial coverings, social distancing, community
lockdowns, and work-from-home policies. Being free of the
influences of such factors indicates that the pandemic might
develop slower in the simulation than in reality. Since many
states of the U.S. are following the strict guidelines set by
CDC, the pandemic is highly likely to end earlier than the
simulation result.

Next, we take immunity, reinfection and vaccination into
account, and simulate the pandemic according to the SEVIS
model proposed in section 3.1. The parameter settings of βt ,
σt , and γt remain the same as in the SEIR simulation. For the
vaccination rate vt , we clarify a starting date of vaccination tv.
Before the vaccination starts, i.e., for t < tv, vt = 0. When
t ≥ tv, vt becomes positive and based on the discussion in
section 3, we assume vt to start at a low value in realty and
exponentially increase as time goes on. Here, we simplify this
process by assuming the mean of {vt|t ≥ tv} to be 1% per day and
assigning it to vt , and let the vaccination start on January 1, 2021.
As for the last parameter w in Table 1, the fraction of infected
cases that become immune after recovery is currently unknown.
In this simulation, we assume w to be 0.5.

Figure 14 shows the simulation result with the vertical dashed
line representing t = tv, (i.e., the first day of 2021). We
notice that the trajectories obtained from the SEVIS model
before the vaccination are nearly identical to the previous SEIR
simulation. Once vaccination begins, the growth of the immunity
group V(t) and the decrease of the infected group I(t) clearly
accelerate. However, different from SEIR model which assumes
no reinfection, the SEVIS model does allow reinfection, which
leads to a longer time for the virus to die out. To speed up the
process, we can employ a larger value for w, i.e., increased flows
from I(t) to V(t) and reduced flows from I(t) to S(t).

5. CONCLUSION

Considering the incubation period of COVID-19, we first
proposed a time-dependent SEIRmodel with the time-dependent
parameters estimated by LASSO regression. The proposed model
is validated using the national level data (the United States)
and state level data (New York and North Dakota). Overall,
our proposed model outperforms the SIR model with smaller
prediction errors. Furthermore, by taking immunity, reinfection,
and vaccination into account, we proposed a time-dependent
SEVIS model without assuming guaranteed immunity after
recovery as in the SEIR model. Simulations are performed using
the proposed two models to predict the spread of COVID-19
pandemic for the United States.

With the daily recorded data in the U.S., our algorithm
predicts that the numbers of the infected and recovered
individuals will keep increasing at a high rate in the short future.
The total number of confirmed cases in the U.S. is estimated to
reach close to 25.7M by late January, 2021, while North Dakota
and New York will face 1.26 and 0.96M total confirmed cases,
respectively. Given the historical transmission and recovery rate
of the COVID-19, the simulation of SEVIS model predicts that
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FIGURE 14 | Simulation based on the SEVIS Model for the U.S.

the pandemic will die down in fall 2021, assuming the mean
vaccination rate to be 1% per day and the probability of gaining
immunity after recovery to be 50%. Note that this prediction
is subject to change with more accurate parameters chosen
according to the real data once vaccination starts.

In addition, it is crucial to understand that neither of the
prediction and simulation takes anymitigationmeasures that can
prevent or limit the growth of the pandemic into consideration,
such as social distancing, facial covering, lockdown restrictions,
and closing non-essential businesses. As a result, the end of
the pandemic in reality is highly likely to come earlier than
the numeric outcome. However, at this point the spread of the
pandemic is still ongoing and has not been contained yet, as the
time-dependent basic reproduction number for US is still steadily
positive. Also, in some particular parts of US (e.g., New York),
a new surge in the transmission rate was detected as the end of
the year 2020 approaches. These all could serve as an alert that it
is too early to relax the measures already implemented to tackle
the pandemic. Fortunately, these measures have been proven
effective by evidences. We expect them to continue taking effect
over time and suggest the necessity of bring in more. Hopefully,

with effort made by people around the world and the upcoming
release of vaccine, we will be able to conquer this global crisis in
no time.

Another limitation of the proposed time-dependent SEVIS
model is that, it assume absolute immunity to the virus
after vaccination, while in reality, the effectiveness of the
vaccine is not 100% guaranteed. For example, as reported
by the BBC news, a single dose of the Moderna vaccine
can provide 80.2% protection. When a second dose is
injected after a period of time, the effectiveness rise to
95.6%. In the future, we would like to extend the model
by factoring in changing effectiveness at different stage of
the vaccination.
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