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Incorporating constraints is a major concern in probabilistic machine learning. A wide

variety of problems require predictions to be integrated with reasoning about constraints,

from modeling routes on maps to approving loan predictions. In the former, we may

require the prediction model to respect the presence of physical paths between the

nodes on the map, and in the latter, we may require that the prediction model respect

fairness constraints that ensure that outcomes are not subject to bias. Broadly speaking,

constraints may be probabilistic, logical or causal, but the overarching challenge is to

determine if and how a model can be learnt that handles a declared constraint. To the

best of our knowledge, treating this in a general way is largely an open problem. In this

paper, we investigate how the learning of sum-product networks, a newly introduced

and increasingly popular class of tractable probabilistic models, is possible with declared

constraints. We obtain correctness results about the training of these models, by

establishing a relationship between probabilistic constraints and the model’s parameters.

Keywords: sum-product networks, constraints, tractable models, optimization, machine learning

1. INTRODUCTION

Incorporating constraints is a major concern in data mining and probabilistic machine learning
(Raedt et al., 2010; Kisa et al., 2014; Friedman and Van den Broeck, 2019). A wide variety of
problems require the prediction to be integrated with reasoning about various forms of constraints,
ranging from constraining the support of a distribution, such as when modeling routes on maps
(Shen et al., 2018; Xu et al., 2018), to enforcing certain independence relationships, such as when
approving loan predictions (Mahoney and Mohen, 2007). That is, when modeling routes, we may
require the prediction model to respect the presence of physical paths between nodes on the map,
in the sense of assigning zero probability to impossible or infeasible paths. Analogously, when
approving loans, we may have conditional constraints for eliminating bias, e.g., the prediction
should be independent of the applicant’s ethnicity or gender.

Broadly, background information may come in different forms, including independency (Zemel
et al., 2013; Zafar et al., 2015) constraints and logical formulas (Kisa et al., 2014; Xu et al., 2018), but
of course the challenge is if and how we are able to provide (or learn) a model that is able to handle
the declared constraint. To the best of our knowledge, this is largely an open problem, at least in
the sense of providing a general solution to a certain class of probabilistic models.

In addition to incorporating prior knowledge as constraints for training a probabilistic model, a
second and equally significant way to utilize constraints is in order to enforce a set of properties on
the resulting models. For example, historic data on college admissions exhibit a clear bias based on
gender or race (Leonard and Jiang, 1999; Silverstein, 2000). More generally, there is an abundance
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of data that reflect historical or cultural biases, prompting the
rapid development of the area of fair machine learning (Zafar
et al., 2015; Hardt et al., 2016). Roughly, the idea is to place
a constraint (e.g., a formalization that captures, for example,
demographic parity Zafar et al., 2015 or equality of opportunity
Hardt et al., 2016) on the predictions of the resulting model so
that biased behavior is not exhibited.

In this paper, we investigate the definability of constraints
while training/learning a probabilistic model. Note however
that performing inference on probabilistic models is a
computationally intractable problem (Bacchus et al., 2009),
requiring additional, often computationally intensive,
subroutines in order to approximate inference. This has
given rise to tractable probabilistic models (TPMs) (Poon
and Domingos, 2011; Kisa et al., 2014) where conditional or
marginal distributions can be computed in time linear in the
size of the model. Although initially limited to low tree-width
models (Bach and Jordan, 2002), recent tractable models,
such as sum product networks (SPNs) (Poon and Domingos,
2011; Gens and Domingos, 2013) and probabilistic sentential
decision diagrams (PSDDs) (Kisa et al., 2014; Liang et al., 2017)
are derived from arithmetic circuits (ACs) and knowledge
compilation approaches, more generally (Darwiche, 2002;
Choi and Darwiche, 2017), which exploit efficient function
representations and also capture high tree-width models. These
models can also be learnt from data (Gens and Domingos, 2013;
Liang et al., 2017) which leverage the efficiency of inference.
Consider that in classical structure learning approaches for
graphical models, once learned, inference would have to be
approximated, owing to its intractability. In that regard, such
models offer a robust and tractable framework for learning
and inferring from data. Owing to these properties and their
increasing popularity for a wide range of applications (Poon and
Domingos, 2011; Choi et al., 2015; Liang and Van den Broeck,
2019) and several extensions have been explored as well (Molina
et al., 2018; Shen et al., 2018). We focus on SPNs, over descrete
variables, in this work, but our approach could be extended to
other TPMs. We aim at targeting PSDDs in future work, since
they already allow for incorporating logical constraints, so an
extension to handling logical along with probabilistic and causal
constraints could be very significant.

We are organized as follows: we first review the recent
advances in constrained machine learning. Then we briefly
review SPNs, and some preliminaries on constrained
optimization. We then turn to our main results. Finally, we
conclude with discussions.

2. RELATED WORK AND CONTEXT

During the last years, there have been ongoing attempts to
address the problem of incorporating constraints during training
or in prediction. For example, Xu et al. (2018) examine
the problem of imposing certain structure in the outcome
of a classification algorithm. They approach this by adding
an additional term in the objective function, one accounting
for the probability of a state satisfying the given constraint.

Marquez Neila et al. (2017) consider the case of training a neural
network under some constraints. They create two variants of this
problem, one where results from optimization theory are utilized
in order to efficiently solve the problem, under hard constraints,
as well as a relaxation of this problem, with soft constraints (Gill
et al., 1981; Fletcher, 1987), where terms corresponding to the
constraints are added into the objective function.

Alternative ways to utilize prior knowledge have been
proposed as well, such as Stewart and Ermon (2017). In this
work, the authors propose a framework for the semi-supervised
training of neural networks. The key insight is that pre-existing
knowledge can be used to create a regularizer, prompting the
network to satisfy this information.

Data mining is an other field that utilizes constraints. For
example, Raedt et al. (2010) attempt to develop a structured way
to apply constrained programming techniques in pattern mining
or rule discovery.

Introducing constraints as a way to control a model’s
complexity has been explored as well. Friedman and Van den
Broeck (2019) consider an approach where they constrain
the expected value of a quantity, modeled using open-world
probabilistic databases (Ceylan et al., 2016). By doing that, they
go on to show how this constraint strengthens the semantics of
such databases.

Incorporating constraints has also be explored in the context
of learning the structure of Bayesian models. For example, in
Chen et al. (2016), the authors investigate ways to impose
ancestral relationships between nodes. It is worth noting that,
conceptually, this approach could also be useful in enforcing
probabilistic constraints, since the graph’s topology is sufficient
to encode them. However, the amount of ancestral constraints
that have to be considered, renders a straightforward application
of this methodology infeasible for problems with relatively
high dimensionality. In our approach, we do not implement
independence through manipulating the paths between nodes,
but by forcing the parameters to take on values in such a way
that guarantees independence between variables.

Another line of research, can be found in Dechter et al. (1991),
where the authors consider ways to uncover feasible solutions
of problems with temporal constraints. Furthermore, in Dechter
(1999), a framework is presented, dealing, among others, with
the satisfiability of problems, under more general constraints.
We would just like to note that our work proposes a way to
design models with background probabilistic knowledge, while
works like the above, explore whether a constraint problem
has a solution.

Our contribution lies in introducing an approach for training
generative models under probabilistic constraints. We borrow
concepts from optimization theory and develop a paradigm
related to Marquez Neila et al. (2017). A key difference is that
their approach, although similar in spirit, takes into account
constraints that are expressed in terms of the model’s outcomes.
Thus, they correspond to functional relationships that the output
variables should respect, so, consequently, they are not of a
probabilistic nature. In contrast, our approach provides a way
for incorporating probabilistic constraints across all variables.
Indeed, in the following sections, we will provide insights about
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the link between these constraints and the system of equations
they induce.

In our proposed framework we suggest to utilize tractable
probabilistic models (Poon and Domingos, 2011; Kisa et al.,
2014), where conditional or marginal distributions can be
computed in time linear in the size of the model, so we can
efficiently answer the conditional or marginal queries that come
up when incorporating constraints. Specifically, we will base
our presentation on sum-product networks (SPNs) (Poon and
Domingos, 2011). SPNs are instances of arithmetic circuits (ACs)
(Choi and Darwiche, 2017) that compactly represent the network
polynomial (Darwiche, 2003) of a Bayesian network (BN).

In this paper we explore the following: can SPNs be used
in order to train generative models subject to probabilistic
and causal constraints? We demonstrate how to incorporate
various types of probabilistic relationships into the model,
specifically targeting hard and soft constraints. To do so, we
show how constraining the model’s parameters to satisfy a system
of equations, guarantees that the resulting model satisfies the
desired relationships.

3. BACKGROUND

In this section we will briefly review SPNs, some causality related
concepts, as well as some optimization approaches.

3.1. SPNs
SPNs are rooted directed graphical models that provide for
an efficient way of representing the network polynomial
(Darwiche, 2003) of a BN (Poon and Domingos, 2011), as a
multilinear function

∑
x f (x)

∏N
n=1 1xn . Here f (·) is the (possibly

unormalized) probability distribution of the BN, x is a vector
containing all the variables of the model, i.e., x1, · · · , xN , the
summation is over all possible states, and 1xn is the indicator
function. In this section, we are going to present the class of
binary SPNs, but it is immediate to extend the definitions to
discrete variables with an arbitrary number of values. Taking
this into account, the network polynomial contains 2N terms, in
its simplest form, but there is a wide array of problems, where
it is possible to obtain a factorized representation, that is not
exponential in the number of themodel’s variables. This is exactly
the idea behind SPNs, discovering a compact factorization of the
network polynomial, enabling inference to be performed in a
highly efficient manner.

An SPN S over Boolean variables x1, · · · , xN has leaves
corresponding to indicators 1x1 , · · · ,1xn and 1x̄1 , · · · ,1x̄n and
whose internal nodes are sums and products. Any edge exiting a
sum node has a non-negative weight assigned to it. The value of
a product node is the product of its children, while the value of
a sum node is a weighted sum of its children,

∑
uj∈Ch(ui)

wijSj(x),

where Ch(ui) is the set containing the children of node ui, and
Sj is the sub-SPN rooted at node uj. We can define an SPN,
as follows:

• Any tractable univariate distribution is an SPN (this
corresponds to the base case).

• The product of two SPNs with disjoint set of variables is also
an SPN (this can be seen as the factorization of independent
distributions).
• The weighted sum of two SPNs with the same set of variables

is an SPN, too (denoting a mixture of distributions).

There has been a number of algorithms developed for training
SPNs, such as in Poon and Domingos (2011), where SPNs
were firstly introduced. In this work, a dense SPN is initialized,
followed by iteratively updating its parameters, utilizing gradient
information, until a stopping criterion is met. Once the training
is completed, all edges having zero weights are pruned, and
all the nodes that become unreachable due to this are deleted,
uncovering the final structure of the SPN. Another approach can
be found in Gens and Domingos (2013), where the algorithm
starts with a single node representing the entire dataset, and
recursively adds product and sum nodes that divide the dataset
into smaller datasets until convergence. Product nodes are
created using group-wise independence tests, while sum nodes
are created performing clustering on the row instances. The
weights associated with sum nodes are learned as the proportion
of instances assigned to a cluster.

The non-factorized representation of a network polynomial,∑
x f (x)

∏N
n=1 1xn , is also called the canonical polynomial, and it

is unique, in the sense that two SPNs with the same canonical
polynomial are identical (Darwiche, 2003). Having said that,
these representations are mostly theoretical tools, since they
require exponential space, rendering them impractical for most
applications. This is why structure learning algorithms have
focused on obtaining factorized representations of the underlying
canonical polynomial, in order to reduce the space complexity.
However, there can be multiple ways to factor a canonical
polynomial, meaning that the compactness of the resulting
factorization has a great impact on the performance of the
resulting SPN. Figure 1 contrasts a SPN that directly encodes
the canonical polynomial of the distribution of four independent
variables to one that takes the independence assumption into
account. Both SPNs have the same output for any given
assignment, but the SPN in (1b) is clearly more compact.

3.2. Causality
Causal inference is an approach where, apart from probabilistic
information, extra information about the mechanism governing
the variables’ interactions are encoded into themodel. This allows
reasoning about more complex queries, such as interventions and
counterfactuals (Pearl, 2009b). These queries extend standard
probabilistic reasoning (marginalization and conditioning) with
the ability to infer what happens if a variable is forced to attain a
value, by an external intervention, or what would happen had a
variable obtained a different value from the one it obtained in the
actual world.

The usual setting is to represent the set of probabilistic
dependencies through a BN, but on top of that encode the specific
mechanism that determines the value of each variable, too. In
this sense, it is more general than just having a BN, since we
not only possess a distribution over the variables, but also a set
of equations.
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FIGURE 1 | A naive implementation of a SPN vs. a SPN that takes into account the independence among the variables. (A) An unfactorized SPN. (B) A factorized

SPN.

FIGURE 2 | An example of optimizing a function, while constraining the

solution to lie on the shaded part.

An interesting remark is that, although the structural
equations connecting the variables are essential for the
specification of the model, it turns out that specifying
the variables’ distribution, alone, is sufficient for answering
interventional queries (Pearl, 2009a). In our approach we are
going to utilize the following formula to compute the effect of
intervening on a variable, A, on the rest of the model’s variables,
X−A (Pearl, 2009b):

Pr(X−A|do(A = α)) =
Pr(X−A,A = α)

Pr(A = α|paA)

where paA denotes the set of A’s parents.

3.3. Optimization
Constrained optimization is a discipline concerned with
developing techniques allowing for optimizing functions under
a set of constraints. For example, Figure 2 depicts the problem of
minimizing a function, while requiring the solution to belong to
the shaded area. One of the most common ways to address that, is
to transform the objective function, so it takes the constraints into
account. The problem of interest is to maximize the likelihood of
a model (with a vector of parameters w), L(w) under constraints
Ci(w) = 0, 1 ≤ i ≤ N, so:

maxwL(w), s.t.C1(w) = 0, · · · ,CN(w) = 0

The transformed objective function, 3, introduces a number
of auxiliary variables, as many as the constraints, λ1, · · · , λN ,
and takes the following form 3(w, λ1, · · · , λN) = L(w) +∑N

n=1 λnCn(w). It can be shown that all of the solutions of the
original problem correspond to stationary points of the new
objective function (Protter and Morrey, 1985).

There are various numerical methods to solve this problem,
such as projected gradient descent, where an initial vector w(0) is
updated incrementally, and then gets projected onto the surface
defined by the constraints, until it converges to a solution of the
problem. Furthermore, in cases where the objective function is in
a special form, such as a quadratic polynomial, other approaches
might be more efficient. See Marquez Neila et al. (2017) for a
more extensive discussion on the subject.

Alternative ways to address constraint optimization problems
include recent advances, such as Cotter et al. (2019a,b), where
the optimization objective is formulated as a game between
two players. Approaches like these can be readily incorporated
within our framework, since we are going to make use of only
differentiable constraints, as we will see in what follows.

Optimization problems like the above require all of the feasible
solutions to satisfy the constraints. These constraints are referred
to as hard. Alternative formulations of the problem could yield
feasible solutions not satisfying the constraints. These constraints
are called soft, because instead of demanding the solutions to
adhere to them, we introduce a penalty term in the objective
function, for each time they get violated. For example, if all of the
Ci(w) = 0, 1 ≤ i ≤ N were treated as soft constraints, then after
setting λ1, · · · , λN to some value reflecting the cost of violating
the corresponding constraint, the soft version of the problem
would be to maximize the function L(w) +

∑N
n=1 λnCn(w), so

each time some Ci is not equal to zero, it induces a penalty. In this
case, all λi are treated as hyperparameters, so they are specified
before the optimization takes place. Furthermore, now we are
interested in the maxima of this function, as opposed to the case
of hard constraints, where we were interested in the stationary
points of the transformed function.

4. MAIN RESULTS

The majority of contemporary machine learning models rely on
maximum likelihood (ML) estimation for setting the values of
their parameters. The approaches we discussed earlier transform
the optimization objective, enhancing the resulting model with
additional properties. One limitation, in such a setting, is that
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the constraints are expressed in terms of the parameters, directly
(Marquez Neila et al., 2017). This is useful in situations where
we require some parameters to be equal to each other, or their
difference to exceed some threshold. However, in most models it
is not clear how probabilistic relationships can be expressed in
term of the parameters, making it difficult to utilize the existing
approaches in order to achieve our goal.

Our approach is motivated from such formulations, but
appeals on the following idea: identifying a class of models where
it is feasible to uncover a correspondence between parameters
and probabilities would enable the use of constrained optimization
approaches, in order to equip the model with additional properties.
The modeler would provide the constraints in terms of the
variables modeling the domain, i.e., the random variable in a
generative model; arguably, this is a natural and intuitive way to
express domain knowledge.

Most probabilistic constraints are expressed as an equality
between probabilities. For example, if we want to incorporate the
assumption that “A is independent of B,” we have to ensure that
the equality Pr(A,B) = Pr(A) Pr(B) holds in the trained model.

4.1. Conditional Constraints
We will start with presenting the case of constraining the
likelihood so it enforces equality between various conditional
distributions. Formally, assume a variable Y , a variable A, whose
values we would like to condition on, and a set of variables, X.
We are interested in modeling the joint distribution of these
variables, but we would also like to incorporate some background
knowledge into the model, specifically we would like it to satisfy
the condition Pr(Y|A = α,X) = Pr(Y|A = α′,X), where
we assume that A is a binary variable, in order to make the
presentation easier to follow. In this equation we do not explicitly
specify the values of the variables in X, rather we want the
condition to hold regardless of their specific instantiation. We
could also be interested in constraints of the form Pr(Y|A =
α) = Pr(Y|A = α′), where in this case we do not condition
on X. Constraints similar to this appear in the fair AI literature
(Zemel et al., 2013; Zafar et al., 2015; Grgić-Hlača et al., 2016;
Hardt et al., 2016), where the objective is to eliminate bias, such
as racial discrimination, from predictive models, by enforcing an
appropriate set of conditions. For example, Y could represent
the outcome of a loan application, while A could represent
the applicant’s ethnicity. The goal of a conditional constraint,
then, would be to make sure that the probability of granting a
loan application is the same for all ethnic groups. We should
also note that such properties cannot be imposed at inference
time, since even the marginal distribution of Y might have
been affected by information regarding the protected attribute,
which leaked during training. This situation could arise under a
variety of circumstances, such as when training a model using an
imbalanced dataset (Sapiezynski and Valentin Kassarnig, 2017;
Mehrabi et al., 2019), in which case conditional constraints can
be utilized to impede such information leakage from happening.

An additional remark about the flexibility of expressing
constraints in this form can be seen when considering context-
specific properties (Zhang and Poole, 1999). In the above
formulation we left the values of X unspecified, but there might

be cases where it is known that some properties hold only
when some of the remaining variables acquire specific values.
To take such information into account we should just adapt the
constraint so some or all of the variables in X are set to their
corresponding values, for example, such a constraint could look
like Pr(Y|A = α,X = x) = Pr(Y|A = α′,X = x).

As we have stated above, we are going to use SPNs to model
the data, due to their provable tractability and applicability in
a wide range of problems and the fact that a clean connection
between probabilistic queries and the model’s parameters can be
established. This is crucial for our approach, since, in general,
it is not clear how to achieve this connection. However, the
polynomial representation of SPNs allow us to uncover it and use
it to train such a model under a set of probabilistic constraints.
The only essential requirement for our results is that there should
be no a priori parameter tying assumptions, in the SPN, since
that would affect the degree of the obtained system of equations.
Arguably, this is not a major restriction, since no SPN learning
algorithm makes this assumption. To our knowledge, the only
case where parameter tying is used in SPNs, is to encode head-
to-head structures, when transforming a BN into a SPN (Peharz
et al., 2015). However, in practice SPNs are learnt from data,
not by transforming an underlying BN, so this kind of situation
does not usually arise. Nevertheless, it should still be possible
to establish a connection between constraints and the SPN’s
parameters, in this case as well, although we are not going to
consider this case in this work.

The following results establishes the relationship between
probabilistic constraints and the parameters of an SPN,
w (An analogous statement applies to the other variants
discussed above).

Theorem 1. Let S be an SPN representing the joint distribution
of variables X1, · · · ,Xn. Let Xi,Xj be two binary variables, then
the constraint Pr(Xi|Xj = 0) = Pr(Xi|Xj = 1) is equivalent
to a multivariate linear system of two equations on the SPN’s
parameters.

Proof: Let S(x) =
∑

x f (x)
∏N

n=1 1xn be the network polynomial
of an SPN. The equality Pr(Xi|Xj = 1) = Pr(Xi|Xj = 0) can be
rewritten as follow:

Pr(Xi|Xj = 1) = Pr(Xi|Xj = 0) H⇒
Pr(Xi,Xj = 1)

Pr(Xj = 1)
(1)

=
Pr(Xi,Xj = 0)

Pr(Xj = 0)
H⇒ Pr(Xi,Xj = 1) · Pr(Xj = 0)

= Pr(Xi,Xj = 0) · Pr(Xj = 1)

Next, we express the above probabilities in terms of S (where X
corresponds to the assignment X = 1, and ¬X to X = 0):

Pr(Xi,Xj = 1) =
∑

x : xi ,xj

f (x)1xi +
∑

x :¬xi ,xj

f (x)1¬xi

Pr(Xi,Xj = 0) =
∑

x : xi ,¬xj

f (x)1xi +
∑

x :¬xi ,¬xj

f (x)1¬xi

Pr(Xj = 1) =
∑

x : xj

f (x)
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Pr(Xj = 0) =
∑

x :¬xj

f (x)

We now substitute these equations to (2) to get that:

∑

x :¬xj

f (x) ·
∑

x : xi ,xj

f (x)1xi +
∑

x :¬xj

f (x) ·
∑

x :¬xi ,xj

f (x)1¬xi =

∑

x : xj

f (x) ·
∑

x : xi ,¬xj

f (x)1xi +
∑

x : xj

f (x) ·
∑

x :¬xi ,¬xj

f (x)1¬xi

This is an equality between polynomials, meaning that the
coefficients must be equal, so:

∑

x :¬xj

f (x) ·
∑

x : xi ,xj

f (x) =
∑

x : xj

f (x) ·
∑

x : xi ,¬xj

f (x)

∑

x :¬xj

f (x) ·
∑

x :¬xi ,xj

f (x) =
∑

x : xj

f (x) ·
∑

x :¬xi ,¬xj

f (x)

These constraints are expressed in terms of the model’s
parameters and they are multivariate linear polynomials, since in
each equation there are two products, so if we look, for example,
at the ones in the first equation,

∑
x : xi ,xj

f (x) ·
∑

x :¬xj
f (x) and∑

x : xi ,¬xj
f (x) ·

∑
x : xj

f (x), the terms that appear in one factor

don’t appear on the other one, since the summation is performed
over disjoint sets.

At this point, we should note that although the above result is
stated for binary SPNs, to make the flow of the proof easier to
follow, it holds for discrete SPNs, in general. For example, if
Xi ∈ {0, 1} and Xj ∈ {0, 1, · · · , k− 1}, then the desired constraint
takes the from Pr(Xi|Xj = 0) = Pr(Xi|Xj = 1) = · · · =
Pr(Xi|Xj = k − 1). These multiple equalities are equivalent to
the following system of k − 1 equations: Pr(Xi|Xj = 0) =
Pr(Xi|Xj = 1), Pr(Xi|Xj = 1) = Pr(Xi|Xj = 2), . . . , Pr(Xi|Xj =

k − 2) = Pr(Xi|Xj = k − 1). The main observation here, is that
each equation involves Xi and only two states of Xj, so (a slight
modification of) Theorem 1 applies to each equation, meaning
that each of them induces 2 (multivariate linear) equations, so
the overall number of equations in the system is 2(k − 1). The
same reasoning can be extended to the general case, where Xi ∈

{0, 1, · · · ,m − 1} and Xj ∈ {0, 1, · · · , k − 1}, resulting into a
system of m(k − 1) equations, indicating that the number of
equations scale linearly with respect to the product of the ranges
of both variables.

4.2. Interventional Constraints
A more complex class of distributions, used extensively in causal
modeling (Pearl, 2009a), are interventional ones. They represent
the probability of a variable after an external intervention on
another variable. It is not always possible to estimate them using
observational distributions, but when assuming that all of the
model’s variables are observed, then it is possible to express
the interventional distribution in terms of the observational one
(Pearl, 2009b). For the rest of this section we will make the
closed-world assumption, meaning that there are no unobserved
confounders between the variables. Incidentally, causal modeling

concepts have gained prominence in the machine learning
literature (Zhang et al., 2017; Pearl, 2018).

The new objective is to train a model while incorporating
constraints of the form Pr(X−A|do(A = α)) = Pr(X−A|do(A =
α′)), where X−A denotes the set of all the model’s variables,
excluding A. Constraints of this kind have powerful implications
regarding the causal mechanisms between A and the rest of
the variables. This could be seen clearly when considering
similar constraints to the one above, such as Pr(X−A|do(A =
α)) = Pr(X−A), which means that setting A to a certain value
does not influence the distribution of the rest of the variables.
Intuitively, this means that A has no causal influence on any of
the remaining variables.

As we have mentioned in a previous section, we will base our
approach on a well-known formula connecting the interventional
to the observational distribution (Pearl, 2009b):

Pr(X−A|do(A = α)) =
Pr(X−A,A = α)

Pr(A = α|paA)

Depending on the application, it is possible there is enough
background knowledge available to specify paA. There might be
other applications though, where this is not an option, due to the
complexity of the problem or insufficient a priori information.
In these cases, methods from the field of feature selection (Guyon
and Elisseeff, 2003) could be utilized. The aim of these methods is
to identify the Markov Blanket of a set of variables, so it is closely
related to specifying the parents of a variable. Conditioning on
the Markov Blanket, instead of just the parents, can serve as an
approximation of the desired distribution, so there is a wide range
of methods (Zhang et al., 2011; Peters et al., 2016; Zheng et al.,
2018) for performing this step. Assuming we possess the parents
of the variable of interest, we can show the following:

Theorem 2. Let S be an SPN representing the joint distribution
of variables X1, · · · ,Xn. Let Xi be a binary variable, then the
constraint Pr(X−i|do(Xi = 0)) = Pr(X−i|do(Xi = 1)) is
equivalent to amultivariate linear system of equations on the SPN’s
parameters.

Proof: We will prove this, following the same reasoning as in the
previous proof, so we first need to rewrite the given constraint:

Pr(X−i|do(Xi = 0)) = Pr(X−i|do(Xi = 1))

⇒
Pr(X−i,Xi = 0)

Pr(Xi = 0|paXi )
=

Pr(X−i,Xi = 1)

Pr(Xi = 1|paXi )

⇒ Pr(X−i,Xi = 0) · Pr(Xi = 1|paXi )

= Pr(X−i,Xi = 1) · Pr(Xi = 0|paXi )

⇒ Pr(X−i,Xi = 0) · Pr(Xi = 1, paXi )

= Pr(X−i,Xi = 1) · Pr(Xi = 0, paXi )

The next step is to express these probabilities in terms of the
network polynomial and substitute them to the above expression.
Since these computations are lengthy and routine, we will not
present them here. The important observation is that it is not
difficult to see that we end up with a system of multivariate
polynomials, in this case, too. To prove they are linear ones
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as well, it suffices to note that in both products Pr(X−i,Xi =

0) ·Pr(Xi = 1, paXi ) and Pr(X−i,Xi = 1) ·Pr(Xi = 0, paXi ), the set
of parameters involved in the first factor is disjoint with the one
appearing in the second factor, since the parameters that remain
after setting Xi = 0 vanish when setting Xi = 1 (and vice versa).

Following the discussion about extending the binary case to the
general case, after Theorem 1, it should not be surprising that
the same holds true for Theorem 2 as well. The main observation
is the same, that enforcing an interventional constraint for the
non-binary case can be transformed into a system of equations
which can be addressed using Theorem 2, resulting in a system of
multivariate linear equations. For example, the same argument
that was presented in the previous section, ensures that if Xi ∈

{0, 1, · · · , k−1} then the number of equations is scaled by a factor
of k− 1.

4.3. Independence Constraints
The last kind of constraints we will present are those enforcing
independence between variables. There are some already existing
approaches, such as Xu et al. (2018), allowing for incorporating
rules expressed as propositional formulas within the model, in
order for example to impose certain structure to the outcome
variable, but doing the same with probabilistic ones still poses a
major challenge.

Using reasoning analogous to the previous cases, it is possible
to incorporate conditional independence or context specific
information within the model. Although similar in spirit, since
usually both of them relies on conditioning, each one provides
different insights about the problem at hand. So, for example,
conditional constraints could be of the form: if we know the
value of a variable, Z, then A and B are independent. On the
other hand, context specific independence is stronger, since it
might state that only when Z = z we know that A and B
are independent. However, it is not difficult to see that each
of these independencies can be expressed as Pr(A,B|Z) =
Pr(A|Z) Pr(B|Z) and Pr(A,B|Z = z) = Pr(A|Z = z) Pr(B|Z =
z), respectively.

Assuming, as before, that the objective is to train an SPN
satisfying constraints like the above, we can show that it amounts
to optimizing a function over a set of multivariate quadratic
polynomial constraints.

Theorem 3. Let S be an SPN representing the joint distribution
of variables X1, · · · ,Xn. Let Xi,Xj be two binary variables,
then the constraint Pr(Xi,Xj) = Pr(Xi) · Pr(Xj) is equivalent
to a multivariate quadratic system of four equations on the
SPN’s parameters.

Proof: To prove this result it is not necessary to rewrite the given
constraint, so we can start with expressing these probabilities in
terms of S :

Pr(Xi,Xj) =
∑

x : xi ,xj

f (x)1xi1xj +
∑

x :¬xi ,xj

f (x)1¬xi1xj

+
∑

x : xi ,¬xj

f (x)1xi1¬xj +
∑

x :¬xi ,¬xj

f (x)1¬xi1¬xj

Pr(Xi) =
∑

x : xi

f (x)1xi +
∑

x :¬xi

f (x)1¬xi

Pr(Xj) =
∑

x : xj

f (x)1xj +
∑

x :¬xj

f (x)1¬xj

Next, we substitute these quantities to the constraint’s equation,
so we get that:

∑

x : xi ,xj

f (x)1xi1xj +
∑

x :¬xi ,xj

f (x)1¬xi1xj +
∑

x : xi ,¬xj

f (x)1xi1¬xj

+
∑

x :¬xi ,¬xj

f (x)1¬xi1¬xj =
∑

x : xi

f (x) ·
∑

x : xj

f (x)1xi1xj

+
∑

x : xi

f (x) ·
∑

x :¬xj

f (x)1xi1¬xj +
∑

x :¬xi

f (x) ·
∑

x : xj

f (x)1¬xi1xj

+
∑

x :¬xi

f (x) ·
∑

x :¬xj

f (x)1¬xi1¬xj

Equating the coefficients we get the following system of
equations:

∑

x : xi ,xj

f (x) =
∑

x : xi

f (x) ·
∑

x : xj

f (x)

∑

x :¬xi ,xj

f (x) =
∑

x :¬xi

f (x) ·
∑

x : xj

f (x)

∑

x : xi ,¬xj

f (x) =
∑

x : xi

f (x) ·
∑

x :¬xj

f (x)

∑

x :¬xi ,¬xj

f (x) =
∑

x :¬xi

f (x) ·
∑

x :¬xj

f (x)

Each of these equations correspond to a multivariate polynomial,
as in all the previous cases, but this time they are quadratic,
instead. This is because, in each equation, the sums appearing on
the right hand side have some terms in common. For example,
looking at the first equation, the assignment setting all the
variables equal to 1 is compatible with both summations, so
the term f (x1, · · · , xn) appears in both of them. Clearly, by
multiplying them we end up with a squared parameter.

Concluding this section, we should note that Theorem 3 can be
extended to the general case, too. Following the same arguments,
and assuming that Xi ∈ {0, 1, · · · ,m − 1},Xj ∈ {0, 1, · · · , k −
1}, then enforcing an independence constraint results in a
multivariate quadratic system ofmk equations.

5. APPLYING THE FRAMEWORK

In this section we will demonstrate how to derive the system
of equations that correspond to a single constraint. Let’s
assume we would like to train an SPN, S , over three binary
variables, X1,X2,X3, satisfying the property that X1 and X2 are
independent. The canonical polynomial of S (Darwiche, 2003) is:

S(X1,X2,X3,¬X1,¬X2,¬X3) = θ1X1X2X3 + θ2¬X1X2X3
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Algorithm 1: Training with soft constraints

Input: SPN structure S , dataset D, constraints Cn,
hyperparameters αn, learning rate γ

Output: An SPN with parameters w
1 Initialize w;
2 repeat;
3 Sample a mini batchM, from D;
4 for all m ∈ M do;

5 w(k)← w(k−1) + γ (∇wS(m) +
∑

n αn∇wCn);
6 end for;
7 until convergence

8 S← NormalizeWeights(S);
9 return S

+ θ3X1¬X2X3 + θ4¬X1¬X2X3 + θ5X1¬X2¬X3 + θ6¬X1X2¬X3

+ θ7X1X2¬X3 + θ8¬X1¬X2¬X3 (2)

where each θi is equal to the probability of the specific
configuration of X1,X2,X3 following it, so, for example, in the
term θ5X1¬X2¬X3, θ5 = Pr(X1,¬X2,¬X3)

The joint probability of, say, X1,X2 is given by
the above, after substituting both X3,¬X3 by 1, so
Pr(X1,X2) = S(X1,X2, 1,¬X1,¬X2, 1). In the same
way, Pr(X1) = S(X1, 1, 1,¬X1, 1, 1) and Pr(X2) =

S(1,X2, 1, 1,¬X2, 1).
At this point, it is time to utilize the condition we would

like to enforce, Pr(X1,X2) = Pr(X1) Pr(X2). Substituting
these probabilities by the corresponding polynomial, yields the
following:

(θ1 + θ7)X1X2 + (θ3 + θ5)X1¬X2 + (θ2 + θ6)¬X1X2

+ (θ4 + θ8)¬X1¬X2 = (θ1 + θ3 + θ5 + θ7) · (θ1 + θ2

+ θ6 + θ7)X1X2 + (θ1 + θ3 + θ5 + θ7) · (θ3 + θ4 + θ5 + θ8)

X1¬X2 + (θ2 + θ4 + θ6 + θ8) · (θ1 + θ2 + θ6 + θ7)

¬X1X2 + (θ2 + θ4 + θ6 + θ8) · (θ3 + θ4 + θ5 + θ8)¬X1¬X2

This is an equivalence between polynomials, so all the coefficients
must be equal, meaning that:

θ1 + θ7 = (θ1 + θ3 + θ5 + θ7) · (θ1 + θ2 + θ6 + θ7),

θ3 + θ5 = (θ1 + θ3 + θ5 + θ7) · (θ3 + θ4 + θ5 + θ8)

θ2 + θ6 = (θ2 + θ4 + θ6 + θ8) · (θ1 + θ2 + θ6 + θ7),

θ4 + θ8 = (θ2 + θ4 + θ6 + θ8) · (θ3 + θ4 + θ5 + θ8)

Each θi in the resulting equations has probabilistic semantics,
so we could perform a sanity check, by rewriting the system in
terms of these probabilities. This will provide some insights on
the underlying constraints, as well as some hints on alternative
ways to incorporate the constraints in the model.

θ1 + θ7 = Pr(X1,X2), θ2 + θ6 = Pr(¬X1,X2),

θ3 + θ5 = Pr(X1,¬X2), θ4 + θ8 = Pr(¬X1,¬X2)

θ1 + θ3 + θ5 + θ7 = Pr(X1), θ1 + θ2 + θ6 + θ7 = Pr(X2),

θ3 + θ4 + θ5 + θ8 = Pr(¬X2), θ2 + θ4 + θ6 + θ8 = Pr(¬X1)

Substituting all these quantities to the original system, we get the
following constraints:

Pr(X1,X2) = Pr(X1) · Pr(X2), Pr(X1,¬X2) = Pr(X1) · Pr(¬X2),

Pr(¬X1,X2) = Pr(¬X1) · Pr(X2), Pr(¬X1,¬X2)

= Pr(¬X1) · Pr(¬X2) (3)

At this point, it might appear like the proposed framework
can only be applied when having a non-factorized, canonical,
polynomial representation, such as S. However, a closer
inspection of Equation (3), hints at a way to treat the factorized
case as well. The main insight is that the only essential
requirement is to be able to compute all the probabilities in (3).
Furthermore, SPNs can compute these probabilities regardless
of whether they encode the canonical polynomial or one of its
factorized representations. Of course, the more compact a SPN is,
the more efficient is inference utilizing it, but it is always possible
to infer these probabilities. After obtaining all the necessary
quantities (each one requiring a single pass over the SPN), we can
substitute them into the equations in (3). This process leads to the
final system of equations, which is expressed entirely in terms of
the SPN’s parameters.

The same reasoning can be extended to all the considered
constraints, not only the independence ones. Taking a look at
the proofs, we see that all of them share a central argument;
that is, substituting the probabilistic quantities appearing in a
constraint with the corresponding SPN outcomes, thus obtaining
a system involving only the SPN’s parameters. As discussed in
the preceding paragraph, all the necessary probabilities can be
inferred, when using a SPN. For example, enforcing a conditional
constraint of the form Pr(X1|X2) = Pr(X1|¬X2), requires
computing Pr(X1,X2), Pr(X1,¬X2), Pr(X2), Pr(¬X2) (using a
SPN) and substituting them into the equation Pr(X1,X2) ·
Pr(¬X2) = Pr(X1,¬X2) · Pr(X2). The final equation involves
only the SPN parameters, so we are now ready to proceed to the
optimization step.

6. MODEL TRAINING

The previous sections introduced the connection between the
network polynomial of an SPN and various probabilistic queries.
In this section we are going to discuss how to utilize these
insights in order to train SPNs that incorporate probabilistic
constraints. Many recent approaches (Gens and Domingos, 2013;
Rooshenas and Lowd, 2014; Adel et al., 2015) attempt to learn
both the structure and the parameters of a SPN. The tuning of the
parameters’ values is usually achieved using a heuristic, such as
the proportion of the training instances in a sum node. However,
as noted in Zhao et al. (2016), first learning the structure, using
some of the aforementioned approaches, and then fitting the
parameters, yields better results. In our presentation we are going
to follow the latter approach, since our focus is on learning the
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model’s parameters. In what follows we are going to assume that
the SPN structure is known, obtained using some of the existing
algorithms, such as Gens and Domingos (2013).

Incorporating soft constraints is equivalent to adding new
terms in the objective function. In our case, all of these terms
are differentiable, since they are polynomials, so any standard
optimization algorithm could be utilized to train the model.
Algorithm 1 describes a pipeline for carrying out this procedure.
Apart from including the extra terms in the objective function,
we also allow for a hyperparameter, α, so it is possible to
adjust the relative importance of each constraint. Furthermore,
we would like to note that it is not necessary to explicitly
compute the constraints in terms of the parameters, since the
algorithm only utilizes their gradient. In turn, the fact that each
constraint involves probabilistic quantities, which correspond to
sub-SPNs, leads to the observation that all derivatives can be
readily computed by combining the chain rule and the remarks
about SPN differentiation in Darwiche (2003) and Poon and
Domingos (2011). The result of the optimization routine is an
unormalized SPN, so the last step in Algorithm 1 is to normalize
it, as described in Peharz et al. (2015).

In contrast, if they are treated as hard constraints, projected
gradient descent or approaches like the one developed in
Marquez Neila et al. (2017) would need to be used to train the
SPN. Algorithm 2 is a variation of Algorithm 1, adapted to train
an SPN under hard constraints. The modification lies on the
fact that after the weights are updated, then they are projected
on the space defined by the constraints, using the PC1 ,...,Cn (·)
operator, see Zhao et al. (2016) andMarquezNeila et al. (2017) for
different projection techniques and their effect on the resulting
solutions. For this variant our results are essential, since the
equations cannot be handled implicitly, as was possible with soft
constraints. Our approach, as seen in this example, provides a
way to recover exactly these equations, so training with hard
constraints can be made possible. Furthermore, although the
discussion has focused on the binary case, the same holds true in
the general case as well. The only adjustment needed would be to
incorporate more equations into the system. However, we should
note that while the added equations would, of course, lead to a
larger system for the optimization routine to solve, the scaling
factor is only moderate, as discussed in section 4. Furthermore,
the degree of the resulting equations is not affected by extending
the results to the general case, meaning it is quadratic, at most.
In our opinion, although incorporating hard constraints is more
involving, it is worth exploring this approach, since using soft
constraints, as in Xu et al. (2018), does not guarantee the resulting
model will satisfy them.

7. CONCLUSIONS

In the previous sections we presented an approach allowing to
train SPNs under probabilistic constraints. SPNs are tractable
models, meaning that probabilistic inference is efficient, since
marginal or conditional queries can be computed in time linear
in its size. This is an appealing property, because otherwise

Algorithm 2: Training with hard constraints

Input: SPN structure S , dataset D, constraints Cn,
hyperparameters αn, learning rate γ

Output: An SPN with parameters w
1 Initialize w;
2 repeat;
3 Sample a mini batchM, from D;
4 for all m ∈ M do;

5 w(k)← PC1 ,...,Cn (w
(k−1) + γ∇wS(m));

6 end for;
7 until convergence

8 S← NormalizeWeights(S);
9 return S

additional steps, such as MCMC sampling, would be necessary in
order to perform inference. Taking that into account, SPNs can
not only incorporate probabilistic assumptions, but they can also
easily compute such queries in polynomial time.

An other interesting point is that our work could be seen as
related to the work that has been done in the field of Fairness
in AI, but from a generative modeling point of view. The
main objective in the field is to formalize criteria leading to
fair predictions, and train models satisfying these criteria. For
example, enforcing a condition, such as Pr(ŷ = 1|a = 0) =
Pr(ŷ = 1|a = 1), where a is a protected binary attribute and
ŷ is the model’s prediction, has been proposed (Zemel et al.,
2013). In our setting there is no predicted variable, so this
condition cannot be applied. However, an analogous condition
could be utilized when dealing with generative modeling, such
as Pr(y = 1|a = 0) = Pr(y = 1|a = 1).

In this work we provided a way to equip SPNs with
background information. This adds to the growing literature on
constraints and machine learning that is emerging recently. The
key difference in our results is that it is proven for generative
models, unlike the majority of the existing work, as well as it
exhibits how the model’s intrinsic architecture can be utilized
to do so, allowing us to recover a system of equations. We
hope the results of this paper will lead to a new range of
applications making use of tractable generative models that allow
the incorporation of non-trivial probabilistic prior knowledge.

There is a number of promising directions regarding future
research. In our presentation we only consider probabilistic
constraints, so extending our results to account for propositional
background knowledge is an immediate next step. Furthermore,
we only consider discrete SPNs in this work, but it may be
possible to extend these results to continuous SPNs, perhaps
utilizing distribution selectors, as in Peharz et al. (2015).
Exploring ways to incorporate inequality constraints as well,
makes for another interesting open question. One of our
future endeavors is to utilize the Convex Concave Procedure
interpretation of the SPN parameter learning, given in Zhao et al.
(2016), and combine it with prior work in the field dealing with
inequality constraints, such as Lipp and Boyd (2016).
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