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For decades, tuberculosis (TB), a potentially serious infectious lung disease, continues

to be a leading cause of worldwide death. Proven to be conveniently efficient and

cost-effective, chest X-ray (CXR) has become the preliminary medical imaging tool for

detecting TB. Arguably, the quality of TB diagnosis will improve vastly with automated

CXRs for TB detection and the localization of suspected areas, which may manifest

TB. The current line of research aims to develop an efficient computer-aided detection

system that will support doctors (and radiologists) to become well-informed when

making TB diagnosis from patients’ CXRs. Here, an integrated process to improve

TB diagnostics via convolutional neural networks (CNNs) and localization in CXRs via

deep-learning models is proposed. Three key steps in the TB diagnostics process

include (a) modifying CNN model structures, (b) model fine-tuning via artificial bee

colony algorithm, and (c) the implementation of linear average–based ensemble method.

Comparisons of the overall performance are made across all three steps among the

experimented deep CNN models on two publicly available CXR datasets, namely, the

Shenzhen Hospital CXR dataset and the National Institutes of Health CXR dataset.

Validated performance includes detecting CXR abnormalities and differentiating among

seven TB-related manifestations (consolidation, effusion, fibrosis, infiltration, mass,

nodule, and pleural thickening). Importantly, class activation mapping is employed to

inform a visual interpretation of the diagnostic result by localizing the detected lung

abnormality manifestation on CXR. Compared to the state-of-the-art, the resulting

approach showcases an outstanding performance both in the lung abnormality detection

and the specific TB-related manifestation diagnosis vis-à-vis the localization in CXRs.

Keywords: tuberculosis, chest X-ray, manifestations, localization, convolutional neural networks, artificial bee

colony algorithm, ensemble, class activation mapping

INTRODUCTION

Tuberculosis (TB), a highly contagious lung disease, is the leading cause of worldwide death
followed by malaria and HIV/AIDS. TheWorld Health Organization (World Health Organization,
2018) alludes that more than 95% of TB patients live in developing countries that lack adequate
healthcare funding and supporting medical infrastructure. In descending order, two-thirds or 67%
of newly TB-infected cases occur in eight developing nations beginning with India, followed by
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China, Indonesia, the Philippines, Pakistan, Nigeria, Bangladesh
(formerly, East Bengal of British India), and South Africa.
Statistics from 2000 to 2018 have projected a saving of 58
million lives via early TB diagnosis and timely treatment. Thus,
timeliness in TB diagnosis is critical when mitigating its spread,
improving TB preventive efforts and/or minimizing the TB
death rate.

Currently, computed tomography (CT) offers the best-
known TB detection method. For most earlier cases, however,
TB diagnosis is confirmed via chest X-rays (CXRs) given
the radiation dose, cost, availability, and the ability to
reveal the unsuspected pathologic alterations among TB
detection methods. For decades, researchers have focused
on developing a computer-aided detection (CAD) system
for the preliminary diagnosis of TB-related diseases via
medical imaging. In the early stages, CAD depends on rule-
based algorithms to select and extract useful pathogenic
features within images to yield meaningful quantitative
insight; yet, such methods are time-consuming, having to
rely chiefly on the artificial extraction of patterns with useful
information. As the manifestation of many diseases typically
covers an extremely small region of the entire image, the
challenge of the feature recognition process quickly becomes
compounded. Moreover, with cumulative medical image
data and evolving mutations of the disease, problems such
as poor transferability among different datasets and unstable
performance vis-à-vis newly generated data have stopped the
CAD system from formulating a well-grounded decision with
high accuracy.

With advances in deep learning, the convolutional neural
networks (CNNs) have consistently surpassed other traditional
recognition algorithms in achieving superordinate performance
for image-based classification and recognition problems. The
superlative ability to automatically extract useful features from
the inherent characteristics of data makes CNN the first
choice for complex medical problem solving. To date, CAD
systems embedded with deep-learning algorithms have worked
efficiently for medical disease detection by effectively generating
a range of high-quality diagnostic solutions while spotlighting
suspicious features.

RELATED WORK

Historically, the CAD system for disease diagnosis relies mainly
on feature extraction and pattern recognition technology. Khuzi
et al. (2009) employed the gray-level co-occurrence matrix, a
texture descriptor via the spatial relationship between different
pixel pairs, to identify masses from mammograms. In Yang
et al. (2013), presented a successful application of gray-scale
invariant features to detect tumor from breast ultrasound images.
Jaeger et al. (2014) proposed an automatic TB detection system
by computing texture and shape features from CXRs using
local binary pattern. The extracted features are then fed into
a binary classifier to produce normality-pathology diagnosis
with respective resulting accuracies of 78.3% and 80% on two
smaller datasets, namely (a) the local health department privately

permitted use of one dataset and (b) the publicly available
Shenzhen Hospital CXR dataset.

Lately, with the rising popularity of deep-learning models
coupled with the superb CNN performance within the computer
vision field, much research applying CNN models in disease
diagnosis via medical imaging has emerged. Anthimopoulos et al.
(2016), for example, introduced a deep CNN model with dense
structure and applied it to diagnose interstitial lung diseases
via CT images, generating a higher-density resolution view of
lung parts in either two-/three-dimensional formats compared
to CXRs. Interestingly, six different lung disease manifestations
together with healthy cases may be distinguished via their
proposed model with a demonstrable accuracy of >80%. Still, as
the dataset used in the study of Anthimopoulos et al. was limited
to only 120 CT images, the transferability and the generalizability
of their proposed model must now be further validated. In
Lakhani and Sundaram (2017), two deep CNN models, AlexNet
and GoogLeNet, were applied by Lakhani et al. to classify the
chest radiographs as pulmonary TB vs. healthy cases vis-à-vis the
Shenzhen Hospital CXR dataset and the Montgomery County
CXR dataset. Here, the complete datasets were apportioned
into training (68.0%), validation (17.1%), and testing (14.9%)
sets, respectively. Areas under the curve (AUCs) were used for
statistical analysis of overall performance; in their reports, the
researchers noted achieving the best classifier with AUC of 0.99.

More recently, Pasa et al. (2019) presented an automated
diagnosis with the localization of TB on the same two
datasets vis-à-vis a deep CNN with the shortcut connection.
Although not as good as the previously reported work in that
the best AUC achieved here is 0.925, the localization result
generated using saliency maps is, nevertheless, quite impressive.
Notwithstanding, while the CNN models all achieved satisfying
results on the detection of pulmonary TB in the previous two
experiments, the performance test on the more complicated
but practical task of diagnosing among multiple lung diseases
remains elusive. In Rajpurkar et al. (2018), proposed a 121-layer
dense CNN architecture and tested the model by training with
the currently largest publicly available chest radiography dataset,
the National Institutes of Health (NIH) CXR dataset, to detect
more than 10 different lung diseases. The performance achieved
by the CNN model has then been compared to that performed
by radiologists; accordingly, the proposed model achieves an F1
score of 0.435, which exceeds the average performance given
by human experts of >0.387. Even so, without knowing the
classification accuracy for each disease, the robustness of the
result of Rajpurkar et al. (2018) cannot yet be ascertained.
Rajaraman and Antani (2020) recently proposed a modality-
specific deep-learning model that evaluates the efficacy of
knowledge transfer gained through an ensemble of modality-
specific deep-learningmodels toward improving the state-of-the-
art in TB detection.

Lopez-Garnier et al. (2019) trained and evaluated a CNN
for automatic interpretation of Microscopic Observed Drug
Susceptibility (MODS) cultures digital images. The MODS is a
test to diagnose TB infection and drug susceptibility directly
from a sputum sample in 7–10 days with a low cost and high
sensitivity and specificity, based on the visual recognition of
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specific growth cording patterns of Mycobacterium tuberculosis
in a broth culture. Despite its advantages, MODS is still limited in
remote, low-resource settings, because it requires permanent and
trained technical staff for the image-based diagnostics. Hence, it
is important to develop alternative solutions, based on reliable
automated analysis and interpretation of MODS cultures.

Liu et al. (2017) proposed a novel method using CNN to
deal with unbalanced, less-category X-ray images. Their method
improves the accuracy for classifying multiple TB manifestations
by a large margin. They explored the effectiveness and efficiency
of shuffle sampling with cross-validation in training the network
and find its outstanding effect in medical images classification.
They achieved an 85.68% classification accuracy in a large TB
image dataset from Peru, surpassing any state-of-art classification
accuracy in this area. Their methods and results show a
promising path for more accurate and faster TB diagnosis in
healthcare facilities in low- and middle-income countries.

Norval et al. (2019) investigated the accuracy of two methods
to detect pulmonary TB based on the patient CXR images using
CNNs. Various image preprocessing methods were tested to
find the combination that yields the highest accuracy. A hybrid
approach using the original statistical CAD method combined
with neural networks was also investigated. Simulations were
carried out based on 406 normal images and 394 abnormal
images. The simulations showed that a cropped region of interest
coupled with contrast enhancement yielded excellent results.
When images were further enhanced with the hybrid method,
even better results were achieved. They used Shenzhen Hospital
X-ray set and Montgomery County X-ray set.

MATERIALS AND METHODS

Datasets and Preprocessing
Two public CXR datasets, the Shenzhen Hospital CXR dataset
and the NIH CXR dataset, have been used in our study to
test the performance of deep CNN models processed via our
proposed methodology.

The Shenzhen Hospital CXR dataset (Candemir et al.,
2013; Jaeger et al., 2014; Wang et al., 2017) is compiled
by the Shenzhen No. 3 People’s Hospital and Guangdong
Medical College in China. The dataset comprises 662 frontal
posteroanterior CXR images in various sizes, among which 326
have been diagnosed as normal cases, whereas the other 336 as
having TB manifestations. The NIH CXR dataset (Shin et al.,
2016b) is by far one of the largest public CXR datasets. This
dataset is extracted from the clinical PACS database at the NIH
Clinical Center, comprising 112,120 frontal view (posteroanterior
and anteroposterior) CXR images with 14 thoracic pathologies
(atelectasis, consolidation, infiltration, pneumothorax, edema,
emphysema, fibrosis, effusion, pneumonia, pleural thickening,
cardiomegaly, nodule, mass, and hernia). As it is not anticipated
for the original radiology report to be shared publicly, the disease
information and labels for CXRs had to be text-mined via natural
language processing techniques with accuracy of >90%. Owing
to the massive amount of data, detailed annotations, and wide
range of thorax diseases covered by this dataset, many researchers

studying thorax disease detection vis-à-vis the deep-learning area
have used it.

To improve the general quality of the NIH CXR dataset, all
CXR images have been enhanced using contrast limited adaptive
histogram equalization (CLAHE) (Pizer et al., 1987) with the clip
limit number equals 1.25; similarly, to improve the processing
speed, all CXR images have also been resized from their original
size to 512 × 512. Also, in diagnosing TB-related manifestations
on the NIH CXR dataset, as the distribution of CXRs under
each TB-related disease class presents a strongly biased trend,
models trained on this dataset will tend to perform with a
strong preference for their conforming predictions. As such, data
augmentation techniques such as horizontal flip, rotate, contrast
adjustment, and position translation have been perspicaciously
implemented to increase the number of images under the classes
with fewer CXRs, thereby propagating an evenly distributed data
to eliminate the interference.

Methodology
In this section, a CAD system driven by deep CNN models for
TB diagnostics and localization from CXR images with the use
of unified approaches to improve the accuracy-stability of the
disease detection process is proposed. As shown in Figure 1, we
divide the TB diagnostic task into four subprocesses: (i) CXR
image preprocessing; (ii) preliminary detection of the suspected
TB patients via abnormality checking; (iii) identification of the
specific TB manifestation [consolidation (Adler and Richards,
1953), effusion (Vorster et al., 2015), fibrosis (Chung et al.,
2004), infiltration (Mishin et al., 2006), mass (Cherian et al.,
1998), nodule (Kant et al., 2007), and pleural thickening (Gil
et al., 1994)]; and (iv) localization of the suspicious diseased area
on CXRs.

For each process, all deep CNN models used herein have
been improved by structural modification, the implementation
of artificial bee colony (ABC) algorithm during fine-tuning,
and the amalgamation of an ensemble model. Unlike standard
object detection task encapsulating bounding box information,
the localization of TB manifestations is achieved primarily via
class activation mapping; essentially, this entails the production
of an attention map over the image to spotlight all the detected
suspicious areas instead of predicting edges of bounding boxes.

Specifically, we analyze the overall performance of the
experimented deep CNN models on two publicly available CXR
datasets, namely, the Shenzhen Hospital (CXR) Dataset and
the NIH CXR dataset. For all datasets, our analysis emphasizes
the binary classification of CXR images to differentiate among
the TB abnormalities, while performing a further diagnosis and
localization of specific TB-related manifestation on the NIH
CXR dataset.

Compared to typical performance results from just a plain
application of the original deep CNN models, our quantitative
results of the proposed methodology achieve a staggering
improvement of >30% points during the identification of TB
manifestation, aside from outstanding prediction accuracy with
an average improvement of over >8% points on the abnormality
detection. For qualitative results, not only can our model
provide the attention map that fully encapsulates the suspicious
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FIGURE 1 | TB diagnosis pipeline.

diseased regions vis-à-vis the diagnostic results, but the model
also can successfully distinguish among diseases caused by
similar reason(s). Additionally, for spatially spread out TB-
related manifestations, regardless of their sizes, the model can
often localize the abnormalities successfully.

Models and Architecture
CNN-Based Classification Model
CNN, a discriminative classifier developed from multilayer
perceptron, is designed to recognize specific patterns directly
from image pixels with minimal preprocessing. Owing
to its hierarchical structure in propagating shift-invariant
classification, CNN is also known as shift-invariant artificial
neural networks (Zhang et al., 1988). Its unfailing ability to
extract global features and contextualize information from the
inherent characteristics of data makes CNN among the first
choice for handling those most challenging scenarios.

Traditional CAD systems using machine-learning methods
such as support vector machines and other techniques (e.g.,
K-nearest neighbors) have aided radiologists to improve their
diagnostic accuracy; however, many of these earlier methods
need to extract disease features manually. Moreover, the
evolving nature and multifaceted features of lesions make
features extracted in previous studies non-trivial when trying
to reapply them to new patient data. Accordingly, traditional
machine-learning methods are not suited for long-term effective
solutions. Nowadays, the workload of radiologists has increased
significantly alongside new advances in the radiology medical
equipment and technology, big data diagnostics, and massive
number of medical images being generated daily. In this sense,
instead of traditional methods, the application of CNN in various
diagnostic modalities appears to be both effective and efficient
because of its ability to automatically extract from the image
data complex pathological features while satisfying the intrinsic
requirement of massive volumes of data.

In exploring the multiple and more popular deep CNN
models for TB diagnosis and localization, we examined VGGNet
(Boureau et al., 2011), GoogLeNet Inception Model (Szegedy
et al., 2015), and ResNet (He et al., 2016), all of which varies
in their modular structure, as well as the number of layers

being considered for the image classification, competing to
achieve superordinate performance vis-à-vis the recognition of
daily objects. By encapsulating a unified modification to the
structure of the last few layers of these models before the output,
we also augmented their performance by inserting an extra
fine-tuning step to the training process. Finally, amalgamating
an ensemble model based on enhanced CNN models can
heighten the diagnostic accuracy and the overall stability of
the CAD system. All the CNN models we studied have been
implemented in PyTorch and trained via Adam optimizer
(Kingma and Ba, 2014).

Basic CNN Structure
A complete CNN architecture is composed of convolutional,
pooling, and fully connected layers. As the core CNN building
block, the convolutional layers work throughout the dataset
to extract common patterns hidden within the local regions
of the input image (Zeiler and Fergus, 2014). Here, outputs
obtained from the process represent the combination of features
extracted from the receptive field, with their relative position
remaining unchanged. Other higher-level layers with weight
vectors will then detect larger patterns from the original image
to further process these outputs. Altogether, the shared weight
vector provides a strong response on short snippets of data with
specific patterns.

Pooling layers, typically placed after the convolutional layers,
provide a method of non-linear down-sampling. They divide
the output from the convolutional layers into disjoint regions,
providing a single summary for each region to showcase the
convolution characteristics. Before generating the classification
result, one or more fully connected layers are typically placed at
the very end of a CNNmodel. The fully connected layer structure
develops a shallow multilayer perceptron, which purposes to
integrate the local feature information previously extracted with
categorical discrimination for classifying the input data.

Transfer Learning
Transfer learning, a process that stores the knowledge learned
previously to be applied to a correlated task (Shin et al., 2016a),
aims at leveraging previous learning to build accurate models for
new specific tasks more efficiently (Pan and Yang, 2009).
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In the computer vision field, deep, and complicated model
structures are expensive to train because of the dataset size
requirement and expensive hardware such as graphics processing
units. Moreover, it can take weeks or longer to train a model from
scratch; hence, using a pretrained model developed with internal
parameters and well-trained feature extractors will often improve
the model’s overall performance to solve similar problems on
relatively smaller datasets.

Accordingly, all CNN models used in our experiments are
pretrained on the ImageNet dataset (Deng et al., 2009) to classify
daily objects in 1,000 categories. Features learned from each layer
have been extracted as the startup baseline for TB detection
purposes. Not having to train from scratch, a lot of time will be
saved. ImageNet is a state-of-the-art architecture used by several
researchers (Jaeger et al., 2014; Hwang et al., 2016; Lakhani and
Sundaram, 2017; Lopes and Valiati, 2017; Pasa et al., 2019) for
pretraining the deep CNNs as it is already trained on 1.2 million
everyday color images that consisted of 1,000 categories, before
learning from the chest radiographs in this study. Anthimopoulos
et al. (2016) work is well-documented to deploy in disease
prediction based on CNN model, although it faces the problem
of generalization and transferability. Similarly, Rajpurkar et al.
(2018) tried with increasing number of layers in their work for
increasing the accuracy, which is also not a foolproof approach,
thus signifying the importance and necessity of developing the
efficient hybridized, ensemble, and optimized model for better
classification efficiency through faster convergence, which is yet
to be addressed.

Structure Modification
Regardless of the integrated modules that execute the main
feature extraction work, different CNN models vary in their
general structures. For example, GoogLeNet Inception models
do not have fully connected layer prior to generating the
output whereas VGGNet and ResNet do. Similarly, ResNet
models implement average pooling at the very last pooling
layer, whereas VGGNet and GoogLeNet Inception models use
max pooling. Simply put, to boost the performance of different
deep CNN models and better utilize their internal parameters,
a unified modification for the part that lies between the main
modules and the output of original CNN architectures is needed
(Parmaksizoglu and Alçi, 2011).

As Figure 2 illustrated, such a modification entails having the
very last pooling layer to be changed from the default settings
of either max or average pooling into the parallel concatenation
of adaptive max and average pooling. By integrating both
maximized and averaged feature maps, it helps to accumulate
more high-level information learned from the task dataset,
ultimately generating more useful, and comprehensive details for
future prediction. After adaptive pooling, two fully connected
layers are added before the final output to generate a deep
NN structure for better capturing and organization of the
encapsulated information. Moreover, each fully connected layer
has been embedded with both batch normalization and dropout
functions. Whereas, batch normalization helps to eliminate the
internal covariate shift of the activation values in feature maps so
that the distribution of the activations remains the same during

training, the dropout functions aim to prevent the overfitting
problem caused by the overcomplicated structures.

Model Fine-Tuning via ABC
Mohd Aszemi and Dominic (2019) have suggested the use
of genetic algorithm in tuning the hyperparameters in CNN.
In another study, Serizawa and Fujita (2020) have proposed
linearly decreasing weight particle swarm optimization for
hyperparameters optimization of CNN. Parmaksizoglu and Alçi
(2011) have proposed using the ABC algorithm for parameter
tuning in CNN based edge detection in images. ABC, a
metaheuristic algorithm (Karaboga, 2005), was inspired by
the foraging behavior of bees; it has been abstracted into a
mathematical model to solve multidimensional optimization
problems (Karaboga and Basturk, 2007). Simply put, this
algorithm represents solutions in multidimensional search space
as food sources; more specifically, it maintains a population of
three types of bees (scout, employed, and onlooker) to search
for the best food source (Bullinaria and AlYahya, 2014). Horng
(2017) proposed addressing the issue of properly fine-tuning
parameters of deep belief networks by means of ABC algorithm.
Hence, we have been encouraged to deploy the ABC optimization
method for the tuning of parameters such as learning rate
(LR), batch size, image subset, etc., for better classification
accuracy. Certainly, there is a trade-off between exploitation and
exploration while looking for solution (Hamed Mozaffari and
Lee, 2020). Xu et al. (in press) have proposed the modified ABC
(ABC-ISB) optimization algorithm for automatically training
the parameters of feed-forward artificial neural networks. This
clearly indicates the case of customization and variable behavior
of the type of methods used in optimization. Generally, the
biological data set has the inherent property of features variability
where the behavior prediction is very tedious; hence, an
optimized approach may be possibly the best solution.

In the early stage of collecting nectar, scout bees go out to
find food sources by either exploring with the prior knowledge
or via random search. Once the search task is over, the scout bee
turns into an employed bee. Employed bees are mainly in charge
of locating the nectar source and collecting nectar back to the
hive. After that, based on specific requirements, they will proceed
with the selection from continuing collecting nectar, dancing to
attract more peers to help or give up the current food source
and then change their roles either to scout or onlooker bees. The
job of onlooker bees is to decide whether to participate in nectar
collection based on the dance performed by employed bees.

Leveraging on the power of the ABC algorithm to obtain the
globalized optimal solution, the ABC is applied in our study to
fine-tune the fully connected layers of pretrained CNN models
on CXR datasets to improve the resulting diagnostic accuracy.
Essentially, the fine-tuning process may be regarded as searching
for the appropriate parameters that could further minimize the
total loss in the CNN model. Starting with randomly generated
solutions, the ABC algorithm will iterate for better solutions by
searching the nearby regions of the current best solution and
abandoning those less desired solutions.

Initially, a solution vector that contains a specific number of
possible solutions is created. Drawing on the previous training
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FIGURE 2 | Modifications on CNN architecture.

results, the first element of the solution vector is set with weights
and biases taken from the trained CNN model. Multiplying the
first solution vector with a random number between 0 and 1
generates the other elements nearby obtained weights and bias
in the given space:

sol_vec =
(

w (t)1,w (t)2, . . . ,w (t)n
)

w (0)1 = (nn.W, nn.b)

w (0)i = rand (0, 1) × w (0)1, i = 2, 3, . . . , n

where t represents the total number of iterations needed during
the whole fine-tuning process,

n denotes the number of possible solutions, and nn.W and
nn.b are weights and biases of the CNN model, which are used
as the baseline of other initialized solutions.

During optimization, not only will generalizing
multiple solutions leverage the parameters from the
trained model, but it will also prevent the model from
iterating into local optimal points. Searching for the
nearby solutions, v

(

k
)

i
, will then be started based on the

initialized vectors:

gen_vec =
(

v (t)1, v (t)2, . . . , v (t)n
)

v
(

k
)

i
= w

(

k− 1
)

1
+ ϕi

(

w
(

k− 1
)

i
− w

(

k− 1
)

j

)

, i 6= j

where k represents the k-th iteration of the optimization process,
and ϕ is a random number that is uniformly distributed in the
interval [0, 1].

Once the new solution nearby the initialized one is found,
fitness value measuring the quality of solutions will be computed
to compare between old and new solutions as per the
following equation:

fit
(

w
(

k
)

i

)

=
1

1+ E
(

w
(

k
)

i

)

where E
(

w
(

k
)

i

)

, a non-negative value always, is the loss function
of the CNN model, which is the target function that needs
to be optimized. In our study, the loss function used is the
cross-entropy loss (Zhang and Sabuncu, 2018):
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(

k
)

i

)

= −
1

n

n
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i=1

[

yi ln
(

o
(

k
)
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+
(
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)
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(

1− o
(

k
)

i

)]

where yi is the expected output of the i-th sample within the
training batch, and o

(

k
)

i
is the actual output of this sample from

the k-th iteration.
The selection of a better solution will then proceed based on

the calculated probability of the fitness values:

p
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=
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(
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∑
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(
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)
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Here, for each generated solution, the smaller the loss, the larger
the fitness value, and there will be a greater probability to be
selected as the final solution.

The Ensemble Model
Drawing on the idea of ensemble learning (Oza and Tumer,
2008), which integrates multiple classifiers and generates the final
output based on results provided by the integrated classifiers
to achieve better performance, an ensemble model is built.
Classifiers used for ensemble purposes need tomaintain sufficient
diversity to capture different features from the same target.
More generally, structuring an ensemble model requires two
critical steps: (a) generate a distribution of simple models via
the original data and (b) aggregate the distribution into a
single model.

The underlying conceptualization is to learn data in a more
unbiased way based on the knowledge learned by different
classifiers. For instance, if a classifier learns a wrong feature
pattern from the dataset, then a classification error for the new
data having the similar feature may result; however, the tier-
2 classifier of the ensemble model may learn things correctly
by organizing the knowledge from all participating classifiers
in an unbiased way to compensate for the individual classifier
weaknesses, thereby generating the right classification result. This
ability to provide a trade-off between bias and variances among
base models as well as reducing the risk of overfitting makes the
ensemble model superior to any other single structure (Kuncheva
and Whitaker, 2003).

Figure 3 illustrates the structure of our proposed ensemble
model for TB diagnosis and localization. Here, the ensemble
model is derived from computing the linear average of outputs
from the component classifiers.

Localization Scheme
In a CNN model, the inner connection between the probability
of classification result and the weights of the last few
layers will shuffle to seek regions from the image that are
correlated to the prediction results. As proposed by Zhou
et al. (2016), the disease localization is established via class
activation mapping.

Figure 4 illustrates localization in a CNNmodel that contains
a global average pooling layer. Here, feature maps that are
generated from the last convolutional layers are processed with
global average pooling to generate a vector. The obtained vector
will then be used to compute the weighted summation with
the parameters of the fully connected layers to generate the
output that can be used for classification. Hence, the weights
from the last layer before the output can be projected back
to the feature maps by connecting with the pooling layer to
identify areas in which the model computed as exhibiting the
important information.

The foregoing method fully utilized the pattern recognition
and localization capabilities that exist in CNN models to
attention map the target image. Importantly, by simply
processing the internal parameters within a CNN, two different
functions, image classification and object localization, on
the same model can be successfully integrated. During the

classification process, the generated attention map based on the
input image identifies the regions that become the model’s main
predicting criteria.

Statistical Analysis
The performance parameters accuracy, specificity, recall, F1
score, and AUC were determined using 10-fold cross-validation.
Further, different training-to-validation ratios of 7:3, 8:2, and
9:1 were used for statistically significant differences between
the models using unpaired t-test for 95% confidence (P <

0.05) interval using R programming language. Generally,
using 10-fold cross-validation violates the independence
assumption due to resampling. McNemar test and 5 × 2
cross-validation (Dietterich, 2000) are commonly used to
determine significant differences in the models; 10 × 10-fold
cross-validation with the Nadeau and Bengio correction to the
paired Student t-test was recommended by Witten and Hall
(2011) to achieve good replicability. Latter strategy was used
in this research. The overfitting problem is also addressed by
the cross-validation.

RESULTS

Experiment Settings
In our study, a binary classification of CXR images for
lung abnormality diagnosis is performed for six different
CNN models (VGG16, VGG19, Inception V3, ResNet34,
ResNet50, and ResNet101). Again, both the Shenzhen Hospital
CXR dataset and the NIH CXR dataset were evaluated. A
further diagnosis and localization among seven TB-related
manifestations are performed separately on the NIH CXR
dataset. Ratio comparison for each disease identification task is
also performed.

During experimentation, a certain amount of CXR images
from the dataset is set aside for testing the final performance
of a trained CNN model, whereas the rest of the dataset is split
into training–validation sets at the patient level with the ratios of
9:1, 8:2, and 7:3, respectively. To achieve parallel comparisons of
the trained CNN models on the same dataset, CXRs reserved for
testing purposes in each dataset remain the same regardless of the
variations in training–validation distribution.

Detailed separation of CXRswith different training–validation
ratios within each dataset for the basic abnormality detection is
given in Table 1.

The original number of CXRs in the NIH CXR dataset used
for specific TB manifestations and diagnosis is given in Table 2.

Clearly, the distribution of CXRs under each class presents a
strongly biased trend. Models trained on this dataset perform a
strong preference in their predictions; thus, data augmentation
has been implemented to increase the number of images
under the classes with fewer CXRs, thereby creating an evenly
distributed data to eliminate the interference. Table 3 presents
the distribution of CXRs after data augmentation. Note that
images in the testing set have not been augmented in order to
ensure the high quality of results via the testing of the models’
performance on transfer learning.
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FIGURE 3 | Proposed ensemble model structure used for TB diagnosis and localization.

FIGURE 4 | TB localization using class activation mapping.

TABLE 1 | CXR separations for lung abnormality diagnosis.

CXR dataset Train/valid ratio = 9:1 Train/valid ratio = 8:2 Train/valid ratio = 7:3 9:1/8:2/7:3

Training Valid Training Valid Training Valid Testing

set set set set set set set

Shenzhen hospital Normal 270 30 240 60 210 90 6

CXR dataset Abnormal 285 35 250 70 225 95 16

with TB

Chest X-Ray8 Normal 29,250 3,250 26,000 6,500 22,750 9,750 1,831

dataset Abnormal 18,760 2,090 16,680 4,170 14,590 6,260 464

with TB
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TABLE 2 | Original CXR distribution of 7 TB-related manifestations in NIH CXR dataset.

Consolidation Effusion Fibrosis Infiltration Mass Nodule Pleural thickening

324 2,035 641 5,133 1,313 1,888 851

TABLE 3 | Augmented CXR distribution in NIH CXR dataset for TB-related manifestations diagnosis.

TB manifestations Train/valid ratio = 9:1 Train/valid ratio = 8:2 Train/valid ratio = 7:3 9:1/8:2/7:3

Training Valid Training Valid Training Valid Testing

set set set set set set set

Consolidation 4,460 500 3,970 990 3,470 1,490 14

Effusion 4,500 500 4,000 1,000 3,500 1,500 85

Fibrosis 4,460 500 3,970 990 3,470 1,490 21

Infiltration 4,500 500 4,000 1,000 3,500 1,500 133

Mass 4,500 500 4,000 1,000 3,500 1,500 63

Nodule 4,500 500 4,000 1,000 3,500 1,500 88

Pleural thickening 4,500 500 3,980 1,000 3,480 1,500 21

Disease Detection
Disease Identification via Single Models
Our initial experiment is to explore if our proposedmodifications
on deep CNN model structures with the application of ABC
algorithm during model fine-tuning actually improve the
accuracy of a single CNN model on detecting TB abnormality
and identifying TB manifestations. For each CNN model
classifying a specific dataset with different training/validation
ratios, three stages of processing are included: (a) training with
the original CNN architecture, (b) training with the modified
CNN architecture, and (c) fine-tuning the trained modified CNN
model via ABC.

At the beginning stage, all parameters within the CNN model
that has the original architecture are fixed except for the last
two layers, which are trained on the target CXR dataset for
three epochs with an LR, 1e-3. As all CNN models used in our
research are pretrained, features learned from previous layers
must eventually transit from general to specific by the last two
layers of the model that will have a direct influence on the final
output. Only training the last two layers of a CNNmodel on new
datasets for certain number of epochs in the beginning stages
would reduce the time for the model to converge on a new task.
Once the parameters of the CNN model have been trained on
the last two layers, the entire model is then trained on the target
datasets for 12 epochs with an LR, 1e-4. At the ending stage, the
fully connected layer of each trained CNN model with modified
architecture are fine-tuned via ABC algorithm to further improve
the model’s overall accuracy.

Figures 5–7 show the bar graphs to compare accuracy
of the six deep CNN models for TB abnormality and
manifestation detection on both the validation/testing datasets
with training/validation ratios of 7:3, 8:2, and 9:1, respectively.

According to data portrayed by the bar charts, the modified
CNN models generally present a significant improvement
in the diagnostic accuracy on both validation/testing set of
the two datasets with different training/validation ratios as

compared to the original models. For the TB abnormality
detection, the largest improvement in accuracy achieved is
40.91%, which has been observed in VGG19 on the Shenzhen
Hospital CXR dataset with training/validation ratio 8:2. The
improvement of diagnostic accuracy vis-à-vis the detection
of specific TB-related manifestations is even more significant
with an average improvement of >30% among all models on
both the validation and testing set. With the extra fine-tuning
step via ABC algorithm, the disease identification accuracy is
further augmented. Although the enhancement is insignificant
compared to that via structural modification, it did assist the
CNNmodels to reach their best performance, generally achieving
the highest accuracy across all models.

Disease Identification via the Ensemble Model
Following training and process improvement on individual
CNN models, the linear average-based ensemble method
is then implemented to further enhance the overall
diagnostic performance.

Statistically, the following measures are used to evaluate the
quality of the diagnostic performance, as well as the robustness
of the model: accuracy, specificity, recall, F1 score, and AUC
(the area under the receiver operating characteristic curve) score.
High values for all of these evaluation metrics will be anticipated
for an ideal classifier.

Whereas, specificity, recall, and F1 score are normally used
to measure the performance on binary classification, accuracy
pertains to measuring the proportion of correctly predicted cases
among all input samples. Importantly, specificity reveals how
many healthy people are correctly identified as not having TB-
related manifestation. Recall aims at evaluating howmany people
who developed TB are correctly identified as having the TB-
related manifestation. Finally, the statistical interpretation of
AUC is that if choosing a case under a certain class randomly,
what would be the probability that the selected class outranks
other classes? This value is independent of the threshold set
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FIGURE 5 | Diagnosis results on chest X-rays by the proposed ensemble model for detection of TB abnormality on Shenzhen Hospital Chest X-Ray dataset.

FIGURE 6 | Diagnosis results on chest X-rays by the proposed ensemble model for detection of TB abnormality on NIH Chest X-Ray dataset.

for the classification task because it only considers the rank of
each prediction.

Tables 4, 5 highlight the comparison of the overall
performance between the ensemble model and its component

CNN models for the TB abnormality detection on the Shenzhen

Hospital CXR dataset and the NIH CXR dataset, respectively.

The performance of each component CNN model varies on each
dataset with different training/validation ratios. Interestingly, as
the number of images in the training set increases, the statistical
measures of the ensemble model and its component CNNmodels
improve likewise. Although the recall provided by the ensemble
model is not the highest in most cases, overall, it presents better
performance with the highest accuracy, specificity, F1 score,
and AUC score. In our evaluation of the Shenzhen Hospital
CXR dataset, the ensemble model provides the best diagnostic
accuracy ranging from 94.59 to 98.46%, specificity from 95.57

to 100%, F1 score from 0.947 to 0.986, and AUC from 0.986 to
0.999 for the different training/validation ratios. For the NIH
CXR dataset, the ensemble model provides the best diagnostic
accuracy ranging from 89.56 to 95.49%, specificity from 96.69 to
98.50%, F1 score from 0.855 to 0.940, and AUC from 0.934 to
0.976 for the different training/validation ratios.

Table 6 compares accuracy and AUC score between the
ensemble model and its component CNN models for the
diagnosis of the seven TB-related manifestations on the

NIH CXR dataset with different training/validation ratios,

respectively. In general, the ensemble model achieves the highest

diagnostic accuracies among all TB-related manifestations. The
only exception is for consolidation, when training/validation
ratio is 8:2; here, the accuracy provided by the ensemble
model is 82.93%, only 0.20% less than the highest one.
More specifically, our ensemble model presents an outstanding
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FIGURE 7 | Diagnosis results on chest X-rays of the proposed ensemble model for detection of TB-relared manifestations on NIH Chest X-Ray dataset.

performance on the diagnosis of effusion, infiltration, mass,
and nodule with an overall accuracy of around 90% and AUC
score of >0.988. The other three TB-related manifestations,
including consolidation, fibrosis, and pleural thickening, have a
relatively lower probability to be correctly detected, but still
achieve an accuracy of >80%. Additionally, the consistency
of providing both high AUC scores and prediction accuracies
indicates that the model has an outstanding performance vis-
à-vis the automatic ranking of patterns and the selection of
threshold. Moreover, with an average AUC score of >0.975
on all TB-related manifestations, the ensemble model outranks
the others by providing a robust performance, as well as
a better probability of generating the prediction on the
right disease.

Disease Localization
In studying disease localization, the class activation mapping is
implemented on the ensemble model to offer visualization on
the location of the detected TB-related manifestations. Figure 8
shows some exemplary localization results on various test cases
for each TB-related manifestation. Areas highlighted in red and
yellow, which have been used to assist doctors and radiologists
for more in-depth examination during the clinical practice, are
the suspicious candidate regions.

Multiple physicians and radiologists have affirmed that our
diagnostic and localization results are consistent with the clinical
TB manifestation signs. Intuitively, we see that the attention map
generated by our ensemble model, which relates to the predicted
TB manifestations, covers >97% of the diseased area. As an
example, during the diagnosis of consolidation, a disease caused
by the disappearance or reduction of the gas in the alveolar cavity,
not only can our model locate the suspicious regions that contain
the compressed lung tissue, but the model also can distinguish
it from other diseases with similar appearance (i.e., infiltration)
or caused by similar reasons (i.e., effusion). Similarly, during the
localization of lung nodules, even for a small focal density that

covers an extremely small region (≤3 cm in diameter) of the
entire CXR, our model will still provide satisfying performance
by spotlighting the specified area containing the suspected
symptoms. For diseases (i.e., effusion, mass) that may appear at
multiple places within the lung areas, the generated attention
map can mark all regions with the detected manifestations.

DISCUSSION

Our experiments investigated both the detection of lung
abnormality and the diagnosis of specific TB manifestations
among seven TB-related lung diseases (consolidation, effusion,
fibrosis, infiltration, mass, nodule, and pleural thickening) from
CXR images via deep CNN models. Different training/validation
ratios (7:3, 8:2, and 9:1) have been used to find the optimal model.

For detecting lung abnormality, apart from accuracy and
AUC score, the most commonly used performance measures
include specificity, recall, and F1 score, all of which have also
been used to provide an overall analysis on both the diagnostic
accuracy and the robustness of the models. Among all deep CNN
models evaluated, our proposed ensemble model achieves the
best accuracy of 98.46%, a specificity of 100%, an F1 score of
0.986, and AUC of 0.999 with a training/validation ratio of 9:1,
as well as the best recall of 98.76% with a training/validation
ratio of 8:2 on the Shenzhen Hospital CXR dataset. For the same
dataset, Lakhani and Sundaram (2017) achieved the best AUC
of 0.99, whereas Pasa et al. (2019) achieved the best AUC of
0.925. Our results not only showcase a significant improvement
on the AUC score, but also provide a more comprehensive
estimation measures, viz., accuracy, specificity, F1 score,
and recall.

Table 7 shows a comparison of the state-of-the-art results on
the Shenzhen TB CXR dataset with our ensemble model. Results
show that the proposed method gives superior results compared
to the state-of-the-art.
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TABLE 4 | Accuracy, specificity, recall, F1 score, and AUC scores comparison between single improved CNN models and the ensemble model for the detection of TB

abnormality on Shenzhen Hospital CXR dataset when train/valid ratio equals 7:3, 8:2, and 9:1, respectively.

Ratio Model Accuracy (%) Specificity (%) Recall (%) F1 score AUC

7:3 VGG16 92.43 91.11 93.66 0.927 0.975

VGG19 93.51 93.33 93.66 0.937 0.973

Inception V3 91.89 90.00 93.66 0.922 0.963

ResNet34 92.43 94.39 90.52 0.925 0.974

ResNet50 94.05 94.39 93.66 0.942 0.964

ResNet101 92.97 91.11 94.71 0.933 0.979

Ensemble 94.59 95.57 93.66 0.947 0.986

8:2 VGG16 92.31 93.33 91.42 0.928 0.964

VGG19 93.08 93.33 92.94 0.935 0.978

Inception V3 93.08 91.78 94.33 0.936 0.973

ResNet34 96.15 96.78 95.75 0.964 0.985

ResNet50 95.39 93.33 97.12 0.958 0.986

ResNet101 96.92 95.00 98.67 0.972 0.988

Ensemble 97.69 96.78 98.67 0.979 0.991

9:1 VGG16 93.85 96.66 91.42 0.941 0.976

VGG19 95.38 96.66 94.33 0.957 0.976

Inception V3 93.85 90.00 97.12 0.944 0.980

ResNet34 96.92 93.33 100.00 0.972 0.990

ResNet50 96.92 100.00 94.33 0.971 0.991

ResNet101 98.46 100.00 97.12 0.986 0.994

Ensemble 98.46 100.00 97.12 0.986 0.999

Statistics shown in bold font indicates the best results within each train/valid ratio group.

TABLE 5 | Accuracy, specificity, recall, F1 score, and AUC scores comparison between single improved CNN models and the ensemble model for the detection of TB

abnormality on NIH CXR dataset when train/valid ratio equals 7:3, 8:2, and 9:1, respectively.

Ratio Model Accuracy (%) Specificity (%) Recall (%) F1 score AUC

7:3 VGG16 87.97 95.00 77.01 0.834 0.920

VGG19 88.06 93.89 78.85 0.838 0.924

Inception V3 88.74 96.42 76.94 0.842 0.924

ResNet34 88.42 96.21 76.30 0.873 0.927

ResNet50 88.84 96.08 77.58 0.845 0.928

ResNet101 88.69 94.83 79.18 0.846 0.929

Ensemble 89.56 96.69 78.52 0.855 0.934

8:2 VGG16 91.15 97.13 81.92 0.879 0.951

VGG19 90.86 95.00 84.45 0.878 0.950

Inception V3 91.49 95.52 85.24 0.887 0.952

ResNet34 91.40 94.86 86.00 0.887 0.955

ResNet50 90.96 96.31 82.73 0.877 0.948

ResNet101 90.97 97.00 81.67 0.876 0.948

Ensemble 92.07 97.00 84.45 0.891 0.958

9:1 VGG16 93.82 97.62 87.94 0.918 0.965

VGG19 94.16 97.70 88.71 0.922 0.968

Inception V3 94.48 97.03 90.62 0.928 0.974

ResNet34 94.81 97.84 90.14 0.931 0.972

ResNet50 94.61 97.84 89.60 0.929 0.970

ResNet101 94.12 96.12 91.12 0.924 0.969

Ensemble 95.49 98.50 90.91 0.940 0.976

Statistics shown in bold font indicates the best results within each train/valid ratio group.
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TABLE 6 | Accuracy and AUC score comparison between single improved CNN models and the ensemble model for the diagnosis of specific TB manifestations on NIH

CXR dataset when train/valid ratio equals 7:3, 8:2, and 9:1, respectively.

Ratio Model Consolidation Effusion Fibrosis Infiltration Mass Nodule Pleural thickening

7:3 VGG16 Accuracy 78.46% 74.27% 83.29% 89.00% 81.13% 91.40% 80.87%

AUC 0.959 0.979 0.963 0.978 0.984 0.981 0.965

VGG19 Accuracy 81.95% 70.93% 79.73% 84.27% 91.07% 83.33% 83.73%

AUC 0.962 0.980 0.964 0.977 0.983 0.982 0.965

Inception V3 Accuracy 74.97% 80.20% 86.58% 82.07% 90.53% 83.47% 81.87%

AUC 0.950 0.982 0.968 0.973 0.982 0.979 0.962

ResNet34 Accuracy 79.19% 86.27% 81.93% 90.20% 89.47% 80.40% 77.27%

AUC 0.967 0.980 0.971 0.975 0.986 0.979 0.966

ResNet50 Accuracy 81.81% 84.53% 81.01% 85.13% 87.80% 77.80% 80.53%

AUC 0.964 0.981 0.968 0.975 0.980 0.978 0.969

ResNet101 Accuracy 74.83% 89.67% 81.74% 88.93% 87.80% 84.87% 79.47%

AUC 0.954 0.982 0.967 0.976 0.985 0.981 0.972

Ensemble Accuracy 84.32% 89.87% 87.25% 93.93% 93.47% 91.80% 86.73%

AUC 0.975 0.990 0.979 0.988 0.993 0.993 0.982

8:2 VGG16 Accuracy 79.39% 88.60% 84.85% 88.40% 84.20% 94.60% 83.70%

AUC 0.957 0.987 0.978 0.981 0.987 0.989 0.973

VGG19 Accuracy 82.02% 90.50% 81.82% 86.00% 89.10% 90.20% 87.00%

AUC 0.973 0.986 0.978 0.978 0.987 0.989 0.972

Inception V3 Accuracy 78.79% 88.20% 77.37% 88.50% 85.80% 94.40% 86.10%

AUC 0.970 0.986 0.978 0.979 0.984 0.988 0.972

ResNet34 Accuracy 81.31% 89.90% 80.20% 87.30% 90.20% 87.20% 86.30%

AUC 0.962 0.987 0.971 0.983 0.988 0.988 0.974

ResNet50 Accuracy 79.19% 88.00% 83.54% 86.40% 83.10% 87.20% 81.30%

AUC 0.946 0.981 0.968 0.977 0.958 0.974 0.971

ResNet101 Accuracy 83.13% 84.20% 81.92% 86.10% 90.00% 87.20% 86.20%

AUC 0.970 0.984 0.976 0.979 0.985 0.987 0.977

Ensemble Accuracy 82.93% 93.40% 86.36% 94.50% 92.50% 96.00% 88.00%

AUC 0.979 0.993 0.984 0.990 0.993 0.996 0.985

9:1 VGG16 Accuracy 79.20% 90.20% 86.40% 87.40% 92.40% 90.60% 85.60%

AUC 0.960 0.985 0.972 0.984 0.988 0.990 0.963

VGG19 Accuracy 79.20% 88.00% 88.40% 89.80% 87.80% 91.20% 84.20%

AUC 0.945 0.984 0.970 0.987 0.987 0.988 0.974

Inception V3 Accuracy 79.40% 89.00% 86.00% 95.20% 94.20% 91.20% 87.00%

AUC 0.973 0.987 0.970 0.988 0.989 0.992 0.969

ResNet34 Accuracy 80.40% 89.40% 86.20% 89.00% 83.80% 91.60% 84.60%

AUC 0.964 0.987 0.970 0.983 0.985 0.989 0.969

ResNet50 Accuracy 79.20% 86.40% 81.20% 91.20% 89.80% 91.40% 85.80%

AUC 0.963 0.984 0.970 0.983 0.983 0.985 0.974

ResNet101 Accuracy 79.80% 87.40% 86.00% 86.20% 87.40% 87.00% 81.20%

AUC 0.948 0.982 0.966 0.975 0.982 0.983 0.967

Ensemble Accuracy 81.20% 93.60% 89.80% 96.40% 95.60% 95.20% 88.00%

AUC 0.976 0.991 0.985 0.994 0.992 0.996 0.979

Statistics shown in bold font indicates the best results within each train/valid ratio group.

Altogether, our analysis shows how the model performs in
classifying the input CXRs; importantly, the model correctly
identifies the healthy cases as no abnormality vs. those sick
people as having lung abnormalities. The model is robust with
the capability of distinguishing the input case to a target class.
As for the lung abnormality detection performed on the NIH
CXR dataset, our ensemble model achieves the best accuracy of

95.49%, a specificity of 98.50%, an F1 score of 0.940, and AUC
of 0.976 with training/validation ratio of 9:1. The highest recall
achieved by the ensemblemodel is 90.91%, that is, 0.21% less than
the best recall provided by ResNet101.

To the best of our knowledge, research on the binary
classification for detecting lung abnormality vis-à-vis the NIH
CXR dataset is lacking. In this area, our work provides a baseline
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FIGURE 8 | Visualization of disease localization on test images for each TB-related disease by class activation mapping and attention maps.

via a state-of-the-art algorithm. In diagnosing the specific TB
manifestations among seven TB-related lung diseases from CXR
images in the NIH CXR dataset, our proposed ensemble model
achieves an accuracy range of 81.20 to 84.32% and AUC in
the range of 0.975–0.979 for the diagnosis of consolidation, an
accuracy range of 89.87–93.60%, and AUC in the 0.990–0.993
range for the diagnosis of effusion, an accuracy range of 86.36–
89.80% and AUC in the range of 0.979–0.985 for the diagnosis
of fibrosis, an accuracy range of 93.33–96.40% and AUC in the

range of 0.988–0.994 for diagnosing infiltration, an accuracy
range of 92.50–95.60% and AUC in the range of 0.992–0.993
for diagnosing mass, an accuracy range from 91.80–96.00% and
AUC in the range of 0.993–0.996 for diagnosing nodule, and
an accuracy range of 86.73–88.00% and AUC in the range of
0.979–0.985 for diagnosing pleural thickening. Rajpurkar et al.
(2018) reported AUC score of 0.7901 on consolidation, 0.8638 on
effusion, 0.8047 on fibrosis, 0.7345 on infiltration, 0.8676 onmass,
0.7802 on nodule, and 0.8062 on pleural thickening on the NIH
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TABLE 7 | Comparison between state-of-the-art and the best results of our ensemble model for the detection of TB abnormality on Shenzhen Hospital CXR dataset.

State-of-the-art literature Accuracy (%) Specificity (%) Recall (%) F1 score AUC

Jaeger et al. (2014) 84 0.900

Hwang et al. (2016) 83.7 0.926

Lopes and Valiati (2017) 84.7 0.926

Lakhani and Sundaram (2017) 0.990

Pasa et al. (2019) 0.925

Rajaraman and Antani (2020) 94.1 95.7 92.6 94.1% 0.990

Proposed method 98.46 100.00 97.12 0.986 0.999

Statistics shown in bold font indicates the best results.

CXR dataset. Apparently, our results significantly outperform
this baseline, whereas our analysis provides a comprehensive
diagnostic prediction measures on the detection of TB-related
manifestations on CXRs from the NIH CXR dataset as compared
to those of Rajpurkar et al. (2018). Unlike most of the research
work that only focuses on AUC scores during the diagnosis
of multiple diseases, we provide the diagnostic accuracy, recall,
specificity, F1 score, and AUC for each disease to better analyze
the overall performance of our model.

Class activation mapping is implemented to localize

suspicious regions that contain the detected TB-related

manifestations. The capability to highlight the suspicious
diseased area via an attention map provides an efficient

interpretation of the diagnostic results generated by CNN.

Clinically verified by radiologists, our model provides an

impressive performance on distinguishing one TB-related
disease from other diseases with similar appearance or caused

by similar reasons. Finally, the model has the ability to generate

the attention map that covers multiple areas with the suspected

disease (e.g., effusion, mass) and even with only tiny little

abnormality that takes only 1/10,000 of the entire CXR image
(e.g., nodule). Liu et al. (2019) proposed an end-to-end CNN-
based locating model for pulmonary TB diagnosis in radiographs
on datasets provided by Huiying Medical Technology (Beijing)
Co., Ltd. With labels marked by cross-validation of expert
doctors, and the seconds one was selected and provided by
Henan Provincial Chest Hospital. However, this study did
not provide localization of TB-related manifestations. Luo
et al. (2019) proposed a RetinaNet based CNN pipeline to
automatically detect, localize, and subclassify suspected TB on
chest radiographs under its three main pulmonary presentations
(cavitary, infiltrate, and miliary) on a prior pneumonia dataset,
the RSNA Pneumonia Detection Challenge. Xue et al. (2018)
proposed a method based on CNNs for locating TB in CXRs to
classify the superpixels generated from the lung area consisting
of four major components: lung ROI extraction, superpixel
segmentation, multiscale patch generation/labeling, and patch
classification. Their method was tested on a publicly available
TB CXR dataset, which contains 336 TB images showing various
manifestations of TB. The TB regions in the images were marked
by radiologists. To date, our work is among the first that has
presented localization of TB-related manifestations via attention
maps on the NIH CXR dataset.

CONCLUSIONS

In summary, a unified modification to the deep CNN model
structure and fine-tuning of the model via the ABC algorithm
during the model training process have been proposed to
accurately predict the diagnosis of TB-related diseases and
localization of specific disease manifestation. Multiple deep CNN
models (VGG16, VGG19, Inception V3, ResNet34, ResNet50,
ResNet101) varying in the structure of modules as well as
the number of layers had been applied to test our proposed
methodology. A linear average–based ensemble model composed
of those improved CNN models is implemented and applied to
further improve the overall performance.

Our results show that with the superimposition of the
improvement steps, the overall performance of deep CNN
models keeps getting better. Among the three steps, structure
modifications generate the largest increment on the prediction
accuracy for single CNN models. The fine-tuning step applying
the ABC algorithm helps to improve performance slightly.
By assembling the individual CNN models, the classification
accuracy of CXRs is further improved. Moreover, each model
presents an unstable and unpredictable performance on
different datasets and for different classification tasks; with
the employment of the ensemble models, the classification
accuracy reaches the highest, and the robustness has been
greatly improved. Even for the disease localization task, our
proposed ensemble model can present satisfying result by
accurately providing an attention map to spotlight regions of the
suspicious diseased lung area. Both quantitative and qualitative
results demonstrate that our methodology offers an outstanding
performance compare to other state-of-the-art algorithms.
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