AUTHOR=Biggio Luca , Kastanis Iason TITLE=Prognostics and Health Management of Industrial Assets: Current Progress and Road Ahead JOURNAL=Frontiers in Artificial Intelligence VOLUME=3 YEAR=2020 URL=https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2020.578613 DOI=10.3389/frai.2020.578613 ISSN=2624-8212 ABSTRACT=
Prognostic and Health Management (PHM) systems are some of the main protagonists of the Industry 4.0 revolution. Efficiently detecting whether an industrial component has deviated from its normal operating condition or predicting when a fault will occur are the main challenges these systems aim at addressing. Efficient PHM methods promise to decrease the probability of extreme failure events, thus improving the safety level of industrial machines. Furthermore, they could potentially drastically reduce the often conspicuous costs associated with scheduled maintenance operations. The increasing availability of data and the stunning progress of Machine Learning (ML) and Deep Learning (DL) techniques over the last decade represent two strong motivating factors for the development of data-driven PHM systems. On the other hand, the black-box nature of DL models significantly hinders their level of interpretability,