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Background: Pancreatic Ductal Adenocarcinoma (PDAC) is one of the most aggressive

cancers with an extremely poor prognosis. Radiomics has shown prognostic ability in

multiple types of cancer including PDAC. However, the prognostic value of traditional

radiomics pipelines, which are based on hand-crafted radiomic features alone is limited.

Methods: Convolutional neural networks (CNNs) have been shown to outperform

radiomics models in computer vision tasks. However, training a CNN from scratch

requires a large sample size which is not feasible in most medical imaging studies. As an

alternative solution, CNN-based transfer learning models have shown the potential for

achieving reasonable performance using small datasets. In this work, we developed and

validated a CNN-based transfer learning model for prognostication of overall survival in

PDAC patients using two independent resectable PDAC cohorts.

Results: The proposed transfer learning-based prognostication model for overall

survival achieved the area under the receiver operating characteristic curve of 0.81 on

the test cohort, which was significantly higher than that of the traditional radiomics model

(0.54). To further assess the prognostic value of the models, the predicted probabilities

of death generated from the two models were used as risk scores in a univariate Cox

Proportional Hazard model and while the risk score from the traditional radiomics model

was not associated with overall survival, the proposed transfer learning-based risk score

had significant prognostic value with hazard ratio of 1.86 (95% Confidence Interval:

1.15–3.53, p-value: 0.04).

Conclusions: This result suggests that transfer learning-basedmodels may significantly

improve prognostic performance in typical small sample size medical imaging studies.
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INTRODUCTION

Pancreatic Ductal Adenocarcinoma (PDAC) is one of the most
aggressive malignancies with poor prognosis (Stark and Eibl,
2015; Stark et al., 2016; Adamska et al., 2017). Evidence suggested
that surgery can improve overall survival in resectable PDAC
cohorts (Stark et al., 2016; Adamska et al., 2017). However, the 5-
year survival rate of patients who went through surgery is still low
(Fatima et al., 2010). Thus, it is important to identify high-risk
and low-risk surgical candidates so that healthcare providers can
make personalized treatment decisions (Khalvati et al., 2019a).
In resectable patients, clinicopathologic factors such as tumor
size, margin status at surgery, and histological tumor grade have
been studied as biomarkers for prognosis (Ahmad et al., 2001;
Ferrone et al., 2012; Khalvati et al., 2019a). However, many of
these biomarkers can only be assessed after the surgery and thus,
the opportunity for patient-tailored neoadjuvant therapy is lost.
Recently, quantitative medical imaging biomarkers have shown
promising results in prognostication of the overall survival for
cancer patients, providing an alternative solution (Kumar et al.,
2012; Parmar et al., 2015; Lambin et al., 2017).

As a rapidly developing field in medical imaging, radiomics
is defined as the extraction and analysis of a large number of
quantitative imaging features from medical images including CT
and MRI (Kumar et al., 2012; Lambin et al., 2012; Khalvati et al.,
2019b). The conventional radiomic analysis pipeline consists
of four steps as shown in Figure 1. Following this pipeline,
several radiomic features have been shown to be significantly
associated with clinical outcomes including overall survival or
recurrence in different cancer sites such as lung, head and
neck, and pancreas (Aerts et al., 2014; Coroller et al., 2015;
Carneiro et al., 2016; Cassinotto et al., 2017; Chakraborty et al.,
2017; Eilaghi et al., 2017; Lao et al., 2017; Zhang et al., 2017;
Attiyeh et al., 2018; Yun et al., 2018; Sandrasegaran et al.,
2019). Using these radiomic features, patients can be categorized
into low-risk or high-risk groups guiding clinicians to design
personalized treatment plans (Chakraborty et al., 2018; Varghese
et al., 2019). Although limited work has been done in the context
of PDAC, recent studies have confirmed the potential of new
quantitative imaging biomarkers for resectable PDAC prognosis
(Eilaghi et al., 2017; Khalvati et al., 2019a).

Despite recent progress, radiomics analytics solutions have
a major limitation in terms of performance. The performance
of radiomics models relies on the amount of information that
radiomics features can capture from medical images (Kumar
et al., 2012). Most radiomics features represent morphology,
first order, or texture information from the regions of interest
(Van Griethuysen et al., 2017). The equations of these radiomic
features are often manually designed. This is a sophisticated and
time-consuming process, requiring prior knowledge of image
processing and tumor biology. Consequently, a poor design of

Abbreviations:ROC, Receiver operating characteristic; AUC, Area under the ROC

curve; CT, Computed tomography; CI, Confidence interval; CNN, Convolutional

neural network; GLCM, Gray-Level Co-occurrence matrix; NSCLC, Non-small-

cell lung cancer; PDAC, Pancreatic ductal adenocarcinoma; ROI, Region of

interest; SMOTE, Synthetic minority over-sampling technique.

the feature bank may fail to extract important information from
medical images, having a significant negative impact on the
performance of prognostication. In contrast, the ability of deep
learning for automatic feature extraction has been proven and
shown to achieve promising performances in different medical
imaging tasks (Shen et al., 2017; Yamashita et al., 2018; Yasaka
et al., 2018).

A convolutional neural network (CNN) (Schmidhuber, 2014;
LeCun et al., 2015) performs a series of convolution and pooling
operations to get comprehensive quantitative information from
input images (LeCun et al., 2015). Compared to hand-crafted
radiomic features that are predesigned and fixed, the coefficients
of CNNs are modified in the training process. Hence, the final
features generated from a successfully trained CNN are tuned
to be associated with the target outcomes (e.g., overall survival,
recurrence). It has been shown that CNN architectures are
effective in different medical imaging tasks such as segmentation
for head and neck anatomy and diagnosis for the retinal disease
(Dalmiş et al., 2017; De Fauw et al., 2018; Nikolov et al., 2018;
Irvin et al., 2019).

However, to train a CNN from scratch, millions of parameters
need to be tuned. This requires a large sample size which is not
feasible to collect in most medical imaging studies (Du et al.,
2018). As an alternative solution, CNN-based transfer learning
is more suitable for medical imaging tasks since it can achieve
a comparable performance using a limited amount of data (Pan
and Yang, 2010; Chuen-Kai et al., 2015).

CNN-based transfer learning is defined as taking images from
a different domain such as natural images (e.g., ImageNet) to
build a pretrained model and then apply the pretrained model to
target images (e.g., CT images of lung cancer) (Ravishankar et al.,
2017). The idea of transfer learning is based on the assumption
that the structure of a CNN is similar to the human visual cortex
as both are composed of layers of neurons (Pan and Yang, 2010;
Tan et al., 2018). Top layers of CNNs can extract general features
from images while deeper layers are able to extract information
that is more specific to the outcomes (Yosinski et al., 2014).

Transfer learning utilizes this property, training top layers
using another large dataset while finetuning deeper layers using
data from the target domain. For example, the ImageNet dataset
contains more than 14 million images (Russakovsky et al.,
2015). Hence, pretraining a model using this dataset would help
the model learn how to extract general features using initial
layers. Given that many image recognition tasks are similar, top
(shallower) layers of the pretrained network can be transferred to
another CNN model. In the next step, deeper layers of the CNN
model can be trained using the target domain images (Torrey and
Shavlik, 2009). Since the deeper layers are more target-specific,
finetuning them using the images from the target domain may
help the model quickly adapt to the target outcome, and hence,
improve the overall performance.

Inmedical imaging, the target dataset is often so small that it is
impractical to properly finetune the deeper layers. Consequently,
in practice, a pretrained CNN can be used as a feature extractor
(Hertel et al., 2015; Lao et al., 2017). Given that convolution layers
can capture high-level and informative details from images,
passing the target domain images through these layers allows
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FIGURE 1 | Conventional radiomics analytics pipeline.

extractions of features. These features can be further used to
train a classifier for the target domain, enabling building a high-
performance transfer learning model using a small dataset.

In this study, using two independent small sample size
resectable PDAC cohorts, we evaluated the prognosis
performance of a transfer learning model and compared its
performance to that of a traditional radiomics model. The goal
of the prognostication was to dichotomize PDAC patients who
were candidates for curative-intent surgery to high-risk and
low-risk groups. We found that the transfer learning model
provides better prognostication performance compared to
the conventional radiomics model, suggesting the potential
of transfer learning in a typical small sample size medical
imaging study.

METHODS

Dataset
Two cohorts from two independent hospitals consisting of
68 (Cohort 1) and 30 (Cohort 2) patients were enrolled in
this retrospective study. All patients underwent curative intent
surgical resection for PDAC from 2007–2012 to 2008–2013
in Cohort 1 and Cohort 2, respectively, and they did not
receive other neoadjuvant treatment. Preoperative portal venous
phase contrast-enhanced CT images were used. Overall survival
(including survival as duration and death as the event) was
collected as the primary outcome and it was calculated as the
duration from the date of preoperative CT scan until death. To
exclude the confounding effect of postoperative complications,
patients who died within 90 days after the surgery were excluded.
Institutional review board approval was obtained for this study
from both institutions (Khalvati et al., 2019a).

An in-house developed Region of Interest (ROI) contouring
tool (ProCanVAS Zhang et al., 2016) was used by a radiologist
with 18 years of experience who completed the contours blind to
the outcome (overall survival). Following the protocol, the slices
were contoured with the largest visible 2D cross-section of the
tumor on the portal venous phase. When the boundary of the
tumor was not clear, it was defined by the presence of pancreatic
or common bile duct cut-off and the review of pancreatic phase

FIGURE 2 | A manual contour of CT scan from a representative patient in

cohort 2.

images (Khalvati et al., 2019a). An example of the contour is
shown in Figure 2.

Radiomics Feature Extraction
Radiomics features were extracted using the PyRadiomics library
(Van Griethuysen et al., 2017) (version 2.0.0) in Python. Voxels
with Hounsfield unit under−10 and above 500 were excluded so
that the presence of fat and stents will not affect the values of the
features. The bin width (number of gray levels per bin) was set
to 25. In total, 1,428 radiomic features were extracted from CT
images within the ROI for both cohorts. Table 1 lists different
classes of features used in this study (Khalvati et al., 2019a).

Transfer Learning
We developed a transfer learning model (LungTrans) pretrained
by CT images from non-small-cell lung cancer (NSCLC) patients.
The Lung CT dataset was published on Kaggle for Lung Nodule
Analysis (LUNA16), containing CT images from 888 lung cancer
patients and the outcome (malignancy or not) (Armato et al.,
2011). All input ROIs were resized to 32×32 greyscale. An
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8-layer CNN was trained from scratch using LUNA16 CT
images with batch size 16 and learning rate 0.001 (Figure 3).
This configuration was shown to have high performance in
differentiating malignancy vs. normal tissue in the LUNA16
competition (DeWit, 2017). In addition, given small ROI sizes of
data in this study (32×32) and the fact that images are grayscale
instead of RGB color, off-the-shelf deep CNNs such as ResNet
(He et al., 2015) do not provide adequate performance. Each
convolutional layer except for Conv_5 has Kernel size as 3×3
with stride of 1 with zero padding. Conv_5 has 2×2 kernel size
and stride of 1 without padding. All the Max Pooling layers have
2×2 kernel size. Previous research has shown that top layers in

TABLE 1 | List of radiomic feature classes and filters.

First-order features Histogram-based features

Second-order texture features Features extracted from Gray-Level

Co-Occurrence matrix (GLCM)

Morphology features Features based on the shape of the region

of interest

Filters No filter, exponential, gradient, logarithm,

square, square-root, local binary pattern,

wavelet

the CNN extract generic features from the image, while bottom
layers can extract features specific to the tasks (Yosinski et al.,
2014; Paul et al., 2019). Since our pretrained domain (lung CT)
and target domain (PDAC CT) are rather similar, we extracted
features from the bottom layer. In addition, the number of
features (coefficients) in the CNN significantly decreases as the
layers become deeper, due to Max pooling. If we picked a layer
above the final layer, the number of extracted features would
increase significantly. Considering the sample size of our training
(68) and test (30) datasets, all the convolution layers were frozen
and features were extracted from the end of the CNN (Conv_5).
As a result, for each ROI from PDACCT images, 64 features were
extracted. This was the ideal number of intermediate features
tested in LUNA16 dataset (De Wit, 2017).

TABLE 2A | Summary of models’ performances in AUC.

Training cohort (n = 68) Test cohort (n = 30)

(5-Fold cross validation)

PyRadiomics model 0.57 (95% CI: 0.42–0.73) 0.54 (95% CI: 0.32–0.76)

Transfer learning model 0.72 (95% CI: 0.58–0.86) 0.81 (95% CI: 0.64–0.98)

Tables 2B,C show Confusion Matrix for Random Forest models using PyRadiomics and

LungTrans features, respectively, in the test cohort.

FIGURE 3 | Architecture for pretrained CNN using LUNA16 data.
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Prognostic Models
To have a proper and robust validation, training and test datasets
were collected from two different institutions. In Cohort 1
(training cohort, n = 68), two prognostic models for overall
survival were trained using features extracted from conventional
radiomics feature bank (PyRadiomics) and transfer learning
model (LungTrans). The prognosis models were built using
the Random Forest classifier, which is a common classifier in
radiomics analytic pipeline, with 500 decision trees (Chen and
Ishwaran, 2012; Zhang et al., 2017). Random Forest classifier is
highly data-adaptive, which have shown the potential to handle
large P small N problem by choosing the best subset of features
for classification (Chen and Ishwaran, 2012). The “data-adaptive”
characteristic makes the random forest a good candidate for
our study where transfer learning and PyRadiomics offered
different numbers of features. The number of variables available
for splitting at each tree node (mtry) was determined by the
best performing mtry option in the training cohort. Due to the
imbalanced outcome in the training data, (Cohort 1: 52 Deaths
vs. 16 Survivals), a data balancing algorithm, SMOTE (Ryu et al.,

TABLE 2B | Confusion Matrix of PyRadiomics model in the test cohort.

Test cohort Deceased patients Survived patients

Predicted death 12 10

Predicted survival 3 5

Accuracy: 0.57, Sensitivity: 0.8, Specificity: 0.33, Precision: 0.55.

TABLE 2C | Confusion matrix of transfer learning model in the test cohort.

Test cohort Deceased patients Survived patients

Predicted Death 13 4

Predicted Survival 2 11

Accuracy: 0.80, Sensitivity: 0.87, Specificity: 0.73, Precision: 0.76.

2002), was applied in the training process to artificially balance
the training data.

The prognostic values of these two models were evaluated in
Cohort 2 (n = 30, 15 Deaths vs. 15 Survivals) using the area
under the receiver operating characteristic (ROC) curve (AUC).
DeLong test, as one of the common comparison tests, was used
to test the difference between the two ROC curves (DeLong
et al., 1988). To further assess the prognosis values, the predicted
probabilities of death generated from the two classifiers were used
as risk scores in survival analyses. These risk scores were tested
in Cohort 2 using univariate Cox Proportional Hazards Model
for their Hazard Ratio and Wald test p-value (Cox, 1972). These
analyses were done in R (version 3.5.1) using “caret,” “pROC,” and
“survival” packages (Kuhn, 2008; Therneau, 2020).

RESULTS

Prognostic Models Performance
Using features from the PyRadiomics feature bank, the Random
Forest model yielded AUC of 0.54 [95% Confidence Interval (CI):
0.32–0.76] in the test cohort (Cohort 2) (mtry: 2). In contrast,
using LungTrans features, the AUC of the Random Forest model
reached 0.81 (95% CI: 0.64–0.98) in the test cohort (mtry: 17).
The performances of these two models for both training and
test cohorts are listed in Table 2A. We performed a 5-fold cross-
validation to produce AUCs for the training cohort. The AUCs
for the test cohort were generated using the models trained by
the training cohort.

To investigate the prognostic value of each PyRadiomics
features, variable importance indices were calculated using the
Caret Package in R. The top ten features were first order
entropy, first order uniformity, first order interquartile range,
GLSZM gray level non-uniformity normalized, GLRLM run
length non-uniformity normalized, GLCM cluster tendency,
NGTDM busyness, GLSZM small area high gray level emphasis,
GLSZM low gray level zone emphasis, and GLSZM large area
high gray level emphasis. This confirming previous studies in

FIGURE 4 | (A) ROC curve for the test cohort for PyRadiomics model (AUC = 0.54). (B) ROC curve for the test cohort for Transfer Learning (LungTrans) model

(AUC = 0.81).
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this field where similar radiomic features have been reported to
be prognostic of PDAC (Eilaghi et al., 2017; Chu et al., 2019;
Khalvati et al., 2019a; Li et al., 2020). It is worth noting that
morphologic features were not ranked as top features in the
list. This may be attributed to the challenges associated with
contouring the PDAC regions of interest, leading to the low
robustness of morphology features.

Comparing the ROC curves using Delong ROC test (DeLong
et al., 1988), the LungTrans (Transfer Learning) prognosis model
had significantly higher performance than that of PyRadiomics
feature bank with a p-value of 0.0056 (AUC of 0.81 vs. 0.54). This
result indicated that the transfer learning model based on lung
CT images (LungTrans) significantly improved the prognostic
performance compared to that of the traditional radiomics
methods (PyRadiomics). Figure 4 shows the ROC curves for the
two models for the test cohort.

Risk Score
In univariate Cox Proportional Hazard analysis, the risk score
from the PyRadiomics model was not associated with overall
survival. In contrast, the risk score from the LungTrans model
had significant prognostic value with a Hazard Ratio of 1.86
[95%Confidence Interval (CI): 1.15–3.53], p-value: 0.04 as shown
in Table 3.

Using the risk scores, patients can be categorized into low-
risk or high-risk groups based on the median values. As shown
in Kaplan-Meier plots in Figure 5, the LungTrans model was
able to differentiate patients with high risk from those with low
risk. This result further confirms that the transfer learning feature
extractor pretrained byNSCLCCT images is capable of providing
prognostic information for PDAC patients.

TABLE 3 | Performance of risk score models in Cox Proportional Hazard analysis.

Hazard ratio and CI p

PyRadiomics based risk score 1.03 (95% CI: 0.60–1.76) 0.91

Transfer learning based risk score 1.86 (95% CI: 1.15–3.53) 0.04

DISCUSSION

In this study, we developed and compared two prognostic models
for overall survival for resectable PDAC patients using the
PyRadiomics and transfer learning features banks pretrained by
lung CT images (LungTrans). The LungTrans model achieved
significantly better prognosis performance compared to that of
the traditional radiomics approach (AUC of 0.81 vs. 0.54). This
result suggested that the transfer learning approach has the
potential of significantly improving prognosis performance in the
resectable PDAC cohort using CT images.

Previous transfer learning studies in medical imaging research
often utilized ImageNet pretrained models (Chuen-Kai et al.,
2015; Lao et al., 2017). In our study, we used a lung CT
pretrained CNN (LungTrans) as feature extractor and showed the
potential of transfer learning in a typical small sample size setting.
Although CNNs are capable of achieving high performance in
image recognition tasks, training these networks needs a large
sample size. If a CNN with the same architecture as LungTrans
was trained from scratch in the training cohort (Cohort 1), it
could not provide any prognostic value in the test cohort (Cohort
2) (AUC of ∼0.50). Transfer learning, unlike conventional
deep learning methods which need large datasets, can achieve
reasonable performance using a limited number of samples,
making it suitable for most medical imaging studies. Although
the training cohort in our study was small (n= 68), in the PDAC
test cohort, our transfer learning model had positive predictive
value (Precision) of 76%, demonstrating its prognostic value in
finding high-risk patients. This may significantly benefit patients
by providing personalized neoadjuvant or adjuvant therapy for
better prognosis.

Although the proposed transfer learning model outperformed
the conventional radiomics model, this was not an indication to
discard radiomic features altogether. These hand-crafted features
have been shown to be prognostic for survival and recurrence in
different cancer sites (Kumar et al., 2012; Balagurunathan et al.,
2014; Haider et al., 2017). In the PDAC radiomics field, more
than forty features have been found to be significantly associated
with tissue classification or overall survival for PDAC patients
(e.g., sum entropy, cluster tendency, dissimilarity, uniformity,

FIGURE 5 | Kaplan-Meier plots for overall survival in Cohort 2. (A) PyRadiomics based risk score (p = 0.91). (B) Transfer Learning (LungTrans) based risk score

(p = 0.04).
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and busyness) (Cassinotto et al., 2017; Chakraborty et al.,
2017; Attiyeh et al., 2018; Yun et al., 2018; Chu et al., 2019;
Sandrasegaran et al., 2019; Li et al., 2020; Park et al., 2020).
Furthermore, a few radiomics features have been found to
be associated with tumor heterogeneity and genomics profile
(Lambin et al., 2012; Itakura et al., 2015; Rizzo et al., 2016;
Li et al., 2018). Hence, radiomics features can provide unique
information about the lesions. Thus, studying the associations
between radiomics and transfer learning features, together with
feature fusion analysis, may further improve the prognostication
performance in future research.

Despite achieving promising results, we should also note
that the differences between NSCLC and PDAC are substantial,
in terms of their biological profiles and prognoses, and thus,
they may not have similar appearances in CT images. This is a
limitation of the present study. A larger PDAC dataset would
allow us to address these differences and test different transfer
learning approaches in the context of PDAC prognosis. For
example, finetuning a few layers of the CNNpretrained byNSCLS
CT images using PDAC CT images would allow the network
extract features that may further adapt to the PDAC images and
lead to better performance.

In this study, we aimed to improve the accuracy of the
survival model using the transfer learning approach. For
diseases with poor prognosis, including PDAC, providing
binary survival classifications offers limited information for
clinicians for decision making since the survival rates are
usually low. It would be more beneficial to provide time
vs. risk information, e.g., identify the high-risk time intervals
for a resectable PDAC patient using CT images. Future
studies may choose to combine the transfer learning-based
features extraction methods with the recent work on deep
learning-based survival models (e.g., DeepSurv Katzman et al.,
2018) to provide more practical prognosis information for
personalized care.

CONCLUSION

Deep transfer learning has the potential to improve the
performance of prognostication for cancers with limited sample
sizes such as PDAC. In this work, the proposed transfer
learning model outperformed a predefined radiomics model for
prognostications in resectable PDAC cohorts.
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