AUTHOR=Mohanty Sharada Prasanna , Czakon Jakub , Kaczmarek Kamil A. , Pyskir Andrzej , Tarasiewicz Piotr , Kunwar Saket , Rohrbach Janick , Luo Dave , Prasad Manjunath , Fleer Sascha , Göpfert Jan Philip , Tandon Akshat , Mollard Guillaume , Rayaprolu Nikhil , Salathe Marcel , Schilling Malte TITLE=Deep Learning for Understanding Satellite Imagery: An Experimental Survey JOURNAL=Frontiers in Artificial Intelligence VOLUME=3 YEAR=2020 URL=https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2020.534696 DOI=10.3389/frai.2020.534696 ISSN=2624-8212 ABSTRACT=
Translating satellite imagery into maps requires intensive effort and time, especially leading to inaccurate maps of the affected regions during disaster and conflict. The combination of availability of recent datasets and advances in computer vision made through deep learning paved the way toward automated satellite image translation. To facilitate research in this direction, we introduce the Satellite Imagery Competition using a modified SpaceNet dataset. Participants had to come up with different segmentation models to detect positions of buildings on satellite images. In this work, we present five approaches based on improvements of U-Net and Mask R-Convolutional Neuronal Networks models, coupled with unique training adaptations using boosting algorithms, morphological filter, Conditional Random Fields and custom losses. The good results—as high as