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Sight reading skills are widely considered to be crucial for all musicians. However, given
that sight reading involves playing sheet music without having seen it before, once an
exercise has been completed by a student it can no longer be used as a sight reading
exercise for them. In this paper we present a novel evolutionary algorithm for generating
musical sight reading exercises in the Western art music tradition. Using models based on
expert examples, the algorithm generates material suitable for practice which is both
technically appropriate and aesthetically pleasing with respect to an instrument and
difficulty level. This overcomes the resource constraint in using traditional practice
exercises, which are exhausted quickly by students and teachers due to their limited
quantity.
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1 INTRODUCTION

Sight reading is widely believed to be a basic skill every musician should obtain (Spillman, 1990;
Crozier, 2000; Lehmann and McArthur, 2002; McPherson and Gabrielsson, 2002; Galyen, 2005;
Kopiez and In Lee, 2008), and is required at most levels of formal musical achievement in many
countries (Ji, 2017; Australian Music Examinations Board, 2018a; The Associated Board of the Royal
Schools of Music, 2018). It enables musicians to learn new music quickly, to rapidly expose
themselves to a variety of repertoire and musical styles, and to become independent musical
learners (Gregory, 1972). For students specifically, good sight reading skills allow them to dedicate
more lesson time to musical interpretation rather than learning notes. For music teachers, sight
reading is essential for demonstrating examples to their students.

As with most skills, practice is key to improving musical sight reading ability. This is shown by
Kopiez and In Lee (2008), who found that there is a positive correlation between the time a person
has spent practicing sight reading and their level of sight reading skill. As sight reading is the ability to
perform a piece or phrase of music without having seen it before, as soon as a single exercise has been
completed once by an individual it is no longer a sight reading exercise for them (Schulz, 2016).
Currently, practice material for students preparing for formal music exams in the Western tradition
is written by experts and disseminated to students through online stores and physical books. This is
an ineffective approach. Access to expertize is limited, and practice material is consumedmuch faster
than it is created. This means that students often exhaust the available resources before achieving
competency. Given that both the quantity and quality of practice is key to gaining competence in
sight reading (Kornicke, 1992; Banton, 1995; Galyen, 2005; Kopiez and In Lee, 2008; Tsangari, 2010),
this resource constraint is a large barrier for musicians attempting to develop the skill.

To overcome this resource constraint, in this paper we present a novel evolutionary algorithm
(EA) for generating monophonic sight reading exercises in theWestern art music tradition. The goal
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of the algorithm is to generate exercises which are both
technically appropriate and aesthetically pleasing. It does so by
using expert models of professionally-written sight reading
exercises as templates for emulation.

There are four primary reasons for selecting EAs in this work.
First, Biles (2007) notes that evolutionary approaches have been
applied to melody generation problems more often than any
other technique, and with more success. Secondly, the solution
space when generating a melody is large, and evolutionary
algorithms are well suited to navigating that space (Johnson
et al., 2004). Thirdly, evolutionary algorithms allow for specific

goals to be set for a solution while still providing space for
random elements and emergent behaviors to appear. This
means that the solutions found by the algorithm are likely to
maintain a higher level of variability compared to other methods,
even when using identical configurations. Lastly, preliminary
experiments using probability-bound random sampling
indicated that simpler approaches were not able to
satisfactorily handle the complexities of the problem.

Figure 1 shows the general process followed by EAs. An EA
begins with a randomly generated set of candidate solutions,
referred to as a ‘population’, then follows an iterative process until

FIGURE 1 | The general process followed by an evolutionary algorithm. Recreated from Koza (2018). Note that the number of parent candidates selected and the
number of children generated depends on the operator. This example shows two parents generating two offspring.
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some termination criteria is met. This iterative process involves
generating a series of new candidate populations, each of which is
based on the previous. The aim is that over time the populations
will contain incrementally superior solutions to those in previous
populations.

First, all candidates are measured for their suitability as a
solution and assigned a corresponding numerical value
(i.e., fitness value). The top n best or “elite” candidates (where
n can be 0) are then directly copied into the next population
without any alterations. The remainder of the new population is
formed through the application of the genetic operators crossover
andmutation. Crossover is a reproduction method used to create
candidates by combining elements from two ‘parents’ from the
previous population. The mutation operator applies small
random changes to a candidate in order to introduce diversity
into the population.

Once the new population has reached its target size, the
termination criteria are checked. If they have been met, the
candidate with the highest fitness over all iterations is returned
as the solution. If not, the process is repeated.

The algorithm requires a number of aspects be defined:

• Population size The number of candidate solutions in a
population. If this value is too small the algorithm may
converge on a suboptimal solution due to lack of diversity.
However, if this value is too large the algorithmmay take an
excessive amount of time to finish.

• Termination criteriaWhen the algorithm should stop. It is
typically a target fitness value, a specific number of
iterations, a number of iterations without improvement,
or a combination of the three. For example, target a fitness of
0.95, but if it hasn’t been reached within 1,000 iterations
terminate the algorithm anyway.

• Fitness function A numerical measure for quantifying the
suitability of a candidate solution. This dictates the
likelihood that a candidate will be selected to be part of
the next population.

• Number of elites The number of top candidates from the
previous population that will be directly copied to the new
population without any adjustments.

• Genetic operators How the crossover and mutation
operators will be implemented.

• Selection method The method for selecting candidates for
the crossover operator. Typically a function of each
candidate’s fitness value.

• Probability of mutation How likely it is that candidates
resulting from the crossover operator will be mutated.

• Candidate representation How each candidate is encoded.

Section 2 will describe the method used in this work. This
includes the curation of a suitable set of expert models, the
technique used to represent candidate solutions, and the
experimental design. The results of this experimental design
will be detailed in Section 3. Finally, Section 4 will discuss the
implications of these results and potential directions for
future work.

2 METHOD

2.1 Building Expert Models
Four books of sight reading exercises were selected, representative
of the curricula of the Australian Music Examinations Board
(AMEB), Associated Board of the Royal Schools of Music
(ABRSM), and Trinity College. Grade 1 and 2 exercises were
extracted from each book, as summarized in Table 1. A expert
model was derived from each exercise, capturing the following
characteristics:

• Key and time signatures
• length,
• range,
• number of ties and rests
• ratio of notes to rests
• proportions of note lengths, rest lengths, and intervals, and
• melody shape (defined in Section 2.3.2).

These characteristics can be viewed as a whole to gain an
appreciation of a “typical” exercise at the Grade 1 and 2 difficulty
levels. They can also be considered individually to see a distilled
view of the key characteristics of each individual exercise. In
practice, this data will primarily be used at the level of an
individual exercise, where the set of characteristics relating to
one exercise is used to form a single expert model. This is
discussed further in Section 2.4.1.

2.2 Exercise Representation
Many published works in the field of melody generation are not
clear on how melodies are represented. However, two primary
themes emerge: tree-based and sequential structures (Biles, 2007).
This is true for works which both do and do not utilize
evolutionary algorithms.

Sequential structures, such as that used by Acevedo (2004),
represent melodies as ordered lists of musical elements. These
elements are typically individual notes and rests, with each
having a length and (where appropriate) a pitch. Pitches can be
represented absolutely (e.g., C4), or as an offset from some epoch.
Length can also be represented absolutely (e.g., crotchet), or as a start
and end time offset from the start of the melody. In some cases,
elements may also contain ornamental information such as dynamic
or articulation markings. Melodies represented this way are read by
examining the sequence of musical elements in order.

TABLE 1 | Summary of expert-written example exercises extracted from
published books.

Book Grade 1 Grade 2

Improve your sight-reading! (Harris, 1994) 25 16
Flute sight-reading (Selleck, 2012) 12 12
Sound at sight - sight reading pieces for flute; book 1 (Rae,
2007)

20 20

Flute specimen sight reading 15 16
The Associated Board of the Royal Schools of Music (1995)
Total 72 64
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Regardless of the specific encoding scheme, sequential
structures are not an ideal choice for an evolutionary
algorithm. This is particularly true in this work, where the
desired result is a melody of an explicit, fixed length. The
practical reason for this lies in the crossover operator. This
operator swaps sections of two parents to create two new
candidates. When using a sequential structure, it is easy for
the newly created candidates to have different lengths, simply
by choosing asymmetrical crossover points. It is also easy for
crossover to create candidates whose note and rest sequences do
not fit neatly into entire bar lengths. For example, if two 4-bar
parents were selected, while asymmetrical crossover could result
in two children with 4-bar lengths it is much more likely to create
two children with different lengths and partially complete bars
(e.g., 3.4, and 4.6 bars). Symmetrical crossover would eliminate
this problem, but would severely reduce the variety of new
candidates that could be created, as the selected crossover
points would always need to be symmetrical.

While not without fault, tree-based structures avoid these
problems entirely. As such, they are used in this work.

2.2.1 Tree-Based Structures in the Literature
In the literature, tree-based solutions for melody representation
typically follow a binary structure where each node represents a
musical element with half the duration of its parent. This means
that the structure of a melody tree adheres to the duration
hierarchy shown in Figure 2, where the length of a note is
entirely dependent on its depth within the tree. The root of
the tree represents the entire melody, with nodes in the first layer
representing individual bars. From this point onwards each
additional layer of depth splits durations in two. For example,
in a 4

4 melody nodes with a depth of 1 would represent

semibreves, nodes with a depth of 2 would represent minims,
nodes with a depth of 3 would represent crotchets, and so on.
Within this structure only leaf nodes represent concrete musical
elements that would be directly shown on a score. Internal nodes,
at a minimum, serve to maintain the duration hierarchy.
However, some implementations also assign some or all
internal nodes special meaning in order to support additional
functionality. When interpreting a melody tree, leaf nodes on the
left are typically played before leaf nodes on the right.

Table 2 shows a comparison of the characteristics of the
melody trees in the literature. All of the trees are able to
represent monophonic melodies and dotted notes.
Additionally, all three representations allow for subtrees from
two different melodies to be swapped at any point, without
breaking the tree structure.

The trees proposed by Rizo et al. (2003) and de León et al.
(2016) both support simple time signatures–that is, time
signatures such as 4

4 and 2
4 where measures can recursively be

divided into equal halves without the need for dotted notes.
However, neither of these trees support compound time
signatures such as 6

8 and 9
8, where measures do not neatly fit

into a binary structure. They also do not support simple time
signatures such as 3

4 which do not neatly divide into two.
Dahlstedt’s tree is noted as supporting neither simple nor

compound time. This is because the tree does not structure its
nodes according to a duration hierarchy. Instead, it assigns the
duration of nodes independently of one another. A time signature
is applied to the melody when translating it to a score rather than
within the tree itself, and the melody has no guarantee of fitting
within the chosen time signature. This means that Dahlstedt’s
tree, unlike the trees of Rizo et al. (2003) and de León et al. (2016),
also does not maintain a musical grammar. That is, it can not

FIGURE 2 | The duration hierarchy typically used by tree structures which are designed to represent melodies in common time. The bottom row of semiquavers has
been truncated for space, and the right-hand side of the tree is not shown to completion as it is identical to the left.
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guarantee that the represented melody will fit neatly into any
particular time signature.

None of the melody tree structures discussed explicitly support
irregular divisions such as triplets or tuplets. This severely limits
their representational capacities. Rizo’s tree has an additional
problem, in that it does not offer a mechanism for representing
tied notes.

For representing sight reading exercises a melody tree would,
at a minimum, need to support:

• monophonic melodies
• dotted notes
• tied notes
• triplets
• simple time signatures
• compound time signatures,
• enforceable musical grammar, and
• swapping of subtrees at any point.

Additional features that would be useful for representing
melodies include support for

• polyphonic melodies
• multiple time signatures in one melody
• ornamental and stylistic markings (e.g., mordents,

trills), and
• additional irregular divisions (e.g., duplets, any variation of

the “x in the time of y” pattern).

These additional features are not necessary for the task of
generating monophonic sight reading melodies of low level
difficulties, and thus are left as future work.

None of the trees in the surveyed literature support the
necessary combination of minimally viable features. As such, a
novel melody tree was created that would meet this criteria. This
novel tree is described in Section 2.2.2.

2.2.2 Designing a Novel Melody Tree
Several of the minimally viable features for a melody tree are
already supported in existing trees. This is capitalized upon in this
work by taking elements from existing trees where possible then
adding the additional, missing functionality necessary for
representing musical sight reading exercises.

Of the trees in the literature, that proposed by Rizo et al. (2003)
offers the most desired features, thus will act as a starting point for
a novel tree structure. The features covered by this tree include
support for:

• monophonic melodies
• dotted notes
• tied notes
• simple time signatures,
• enforceable musical grammar, and
• swapping subtrees at any point.

This leaves two key features absent:

• upport for compound time signatures
• Support for triplets

The implementation of these two features is discussed below.

2.2.2.1 Supporting Compound Time Signatures
The ability to swap subtrees at any point while enforcing
musical grammar is entirely due to a tree following a
duration hierarchy as described in Section 2.2.1.
Unfortunately, this encourages a binary structure, which is
not ideal for representing compound time signatures or other
time signatures which do not neatly divide into two. For
example, to represent a melody in 3

4 time (a simple time
signature that does not neatly divide into two), splitting bars
equally would result in the first layer of nodes representing
dotted crotchets. Continuing this pattern, the following layer
would contain nodes representing half that value again–a dotted
quaver. The next layer would represent dotted semiquavers,
then dotted demisemiquavers, and so on. This pattern results in
a structure where node lengths are unnecessarily complex, and
individual nodes do not represent lengths commonly found in
melodies (i.e., non-dotted lengths).

An alternative strategy might be to split any compound-
lengthed node into two non-equal but more typical lengths.
Returning to the example of a melody in 3

4 time, this would
result in the first layer being a combination of a minim and
crotchet node. The next layer would then comprise two crotchet
nodes (from splitting the minim) and two quaver nodes (from
splitting the crotchet).

TABLE 2 | A comparison of the features of the melody trees proposed in the literature.

Feature Rizo et al. (2003) Dahlstedt (2007) de León et al. (2016)

Monophony ✓ ✓ ✓
Polyphony 7 ✓ 7

Dotted notes ✓ ✓ ✓
Tied notes 7 ✓ ✓
Irregular divisions 7 7 7

Simple time ✓ 7 ✓
Compound time 7 7 7

Maintain musical grammar ✓ 7 ✓
Crossover anywhere ✓ ✓ ✓
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This approach presents two problems. Firstly, it breaks the
duration hierarchy which requires that all nodes at the same
depth have the same length. This complicates the continuation
operator as no assumptions can be made regarding a node’s
length with respect to its depth. It also adds more complexity
when swapping subtrees in ensuring nodes are reassigned the
correct length given their new depths.

Secondly, it introduces a decision regarding which node
should be left-most in the tree–the longer or shorter of the
split? For example, when splitting a 3

4 bar should the minim or
crotchet node be left-most? This choice informs how elegantly a
melody can be represented and how often continuation operators
need to be used to form longer note lengths.

The solution to these problems is for bars of a time signature n
m

be split into n nodes ofm length, wherem indicates the number of
that length note required to equal the length of a semibreve. So,
m � 1 indicates a semibreve, m � 2 indicates a minim, m � 4
indicates a crotchet, and so on.

This strategy means that the second layer of a melody tree is
non-binary, but the remainder is. Unfortunately, this gives rise to
one problem. In order to successfully implement the crossover
operator, it must be possible to swap any subtree from one
melody with any subtree from another. This is an issue when
the second layer of the tree is non-binary, as the parent node of a
non-binary layer (i.e., the node representing a single bar) may be
swapped with the parent node of a binary layer.

The solution to this problem is to remove the layer of ‘bar’
nodes entirely, meaning that the tree starts with a layer containing
n* number_of_bar nodes of m length. This means that the first
layer of the tree may contain many nodes, but every one of those
nodes is binary and has children with exactly half of their length.
Additionally, because the value of ‘m’ is taken from the time
signature, these nodes are guaranteed to be of a length which can
be recursively split into two equal, non-compound halves. Notes
longer than m can still be represented through the use of one or
several linked continuation operators.

2.2.2.2 Supporting Triplets.
Triplets are implemented with an internal node operator

similar to the split and continuation operators used by de
León et al. (2016). As shown in Figure 3, the triplet operator
is placed on the first direct parent of the triplet leaf nodes. If all
leaves within the triplet are of the same length, the triplet operator
is placed one layer above. If the leaves within the triplet are of
different lengths, the triplet operator is placed on the first
common parent.

The triplet operator does not break the duration hierarchy, nor
does it restrict the swapping of subtrees. If the triplet operator
itself is selected to be swapped, the entire triplet is moved. If a
subtree within the triplet is selected to swap, notes within that
subtree will–assuming they are swapped to a non-triplet parent
node–be interpreted as having a standard, non-triplet length.
Conversely, the subtree swapped into its place will then be
interpreted as part of the triplet.

2.3 Evolutionary Operators
2.3.1 Parent Selection
In this work, Pareto selection is used. Instead of considering a
candidate’s overall fitness value, Pareto selection examines fitness
in terms of individual characteristics. This is a relative probability
measure which is useful for situations where a single fitness value
does not make sense (Horn et al., 1994; Fonseca and Fleming,
1995).

For example, consider the task of evolving a box with an
appropriate width, depth, height, strength, and weight. Here, an
overall or combined fitness value will not work, as perfection in
one aspect of the box does not offset weakness in another aspect.
That is, better fitness in height does not compensate for poor
fitness in depth. Similarly, good fitness in width does not make up
for poor fitness in strength. Pareto selection deals with this issue
by considering the individual aspects of fitness. The probability
that a candidate will be selected is based on the number of other
candidates in the same population that it is superior to in every
aspect. Using the box example, a candidate is only better than
another candidate if it has a superior width, depth, height,
strength, and weight. Once this value is known, Eq. 1 can be
used to determine the selection probability for a candidate.

probability of selectioni � (1 +Wi)
∑ n

j�1Wj

Wi : the number of candidates the ith candidate in a population

is superior to in every aspect

n : the total number of candidates in the population

(1)

The task of evolving musical sight reading exercises benefits from
the use of Pareto selection. An exercise needs to meet multiple
criteria, both technical and esthetic. For example, an exercise at
the Grade 1 level might need to use only crotchet lengths and have
only one or two rests. Additionally, the melody might also need to
meet esthetic criteria such as beginning and ending on the tonic
note. As with the box problem, an overall fitness value does not
work for these requirements. A good selection of note lengths

FIGURE 3 | A melody tree containing a triplet and a combine operator.
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does not make up for a lack of esthetic qualities. Similarly, a melody
sounding good does not make up for an absence of appropriate
technical characteristics. As such, Pareto selection is an ideal solution.

2.3.2 Fitness Measures
The fitness measures are designed to guide the evolutionary
process toward creating a melody with a specific set of
characteristics. For this work six measures are used, each of
which has an associated target value. A melody is assigned a
score in the range [0..1] for each measure. This score is calculated
using Eq. 2 as the difference between the candidate’s actual and
target value for a fitness measure.

fitnessfi � 1.0 − abs(tf − afi)
tf : the target value for fitness measure f
afi : the actual value for fitness measure f for candidate i

(2)

To illustrate this idea, return to the example of evolving a box.
A target height for the box may be set as 10 cm. If a candidate
box had a height of 10 cm it would receive a score of 1.0 for
the ‘height’measure. However, if the box had a height of 5 cm
it would receive a score of 0.5. Similarly, if the box overshot
the target with a height of 15 cm it would also receive a score
of 0.5.

Each of the six fitness measures used in this work are based
on counting a specific element within the melody. These
counts are described as being either “time” or “count”
based. A count-based measure takes the count as a raw
value. For example, 6 notes in the melody are crotchets.
Time-based measures take the raw count value and
interpret it as a proportion of melody time. For example, in
a 4 bar melody in 4

4 time a count of 8 crotchets would be
interpreted as 50% of the melody being crotchets, because the
melody could potentially fit a total of 16 crotchets.

The six fitness measures used in this work are:

• Target note lengths (time-based) The proportion of
melody time to be taken by each note length. For
example, 50% of the melody time should be filled by
crotchets; 25% of the melody time should be filled by
quavers.

• Target rest lengths (time-based) The proportion of melody
time to be taken by each rest length. For example, 25% of the
melody time should be filled by crotchet rests.

• Allowable lengths (count-based) The acceptable lengths
for notes and rests in the melody. For example, only use
notes and rests with crotchet or quaver lengths.

• Target intervals (count-based) The proportion of each size
of interval to include. Size is represented in scale degrees.
For example, 50% of intervals should be 1 scale degree in
size; 50% of intervals should be 2 scale degrees in size.

• Allowable intervals (count-based) The acceptable interval
sizes to use in the melody. Size is represented in scale
degrees. For example, only use intervals with sizes of 1 or
2 scale degrees.

• Melody shape (count-based) The number of segments in
the melody containing three contiguous notes where the

pitches move consistently up or down. For example, 80% of
the melody segments should be shapely.

The target note proportions and target rest proportions
should sum to represent exactly 100% of the melody time.
Similarly, the target interval proportions should sum to
represent 100% of the intervals. The allowable lengths and
allowable intervals are derived automatically from the target
note, rest, and interval proportions. For example, if
target proportions are set for crotchet and quaver notes,
and a target proportion is set for crotchet rests, the
allowable lengths are crotchets and quavers. Similarly, if
target proportions are set for intervals of size 1, 2, and 3,
the allowable intervals are 1, 2, and 3.

The purpose of combining “target” and “allowable”measures
rather than just using one or the other is to guide the algorithm
toward rewarding the use of an “allowable” length more than an
undesirable length, even if doing so breaks the target
proportions. The “target” measures represent the ideal
proportions of note lengths and intervals. However, if the
algorithm is struggling to reach the ideal targets it is better
to sacrifice melodies score with respect to the targets, in the
interest of still only using “allowable” note lengths and intervals.
This is because introducing “unallowable” note lengths or
intervals is a much bigger problem for the overall fitness-for-
purpose of an exercise than having slightly incorrect
proportions. That is, if only crotchets and quavers are
“allowable” and the algorithm can not form an exercise with
the desired proportions of these note lengths, it is still better for
the algorithm to use extra quavers and potentially lower the
score for target note proportions than to introduce some other
note length that is considered inappropriate.

The “melody shape”measure is illustrated further in Figure 4.
In this example, the melody contains a total of ten segments. Note
that segments containing rests or fewer than three notes are not
counted. Of these ten segments, only four contain notes which
move consistently up or down in pitch. Therefore, in this case the
melody shape is 4

10, or 0.4.
Consider the example target values for a melody set out in

Table 3. These targets indicate that the evolutionary algorithm
should attempt to create a melody made entirely of crotchets,
most of which are notes (as opposed to rests). They specify a large
target proportion for intervals with a size of 1, but also requests
that some intervals of 0 and 2 scale degrees be used. The melody
shape target is set to 0.3, meaning that 30% of the segments in the
melody should have notes which move consistently up or down
in pitch.

Now consider the melody shown in Figure 5. To calculate the
fitness value for each measure we must calculate the actual
proportions and numbers of notes, rests, and intervals, and
compare them to the targets. For measures such as “target
note/rest proportions”, “target interval proportions”, and
“melody shape”, the fitness value is calculated according to Eq.
2. The remaining fitness measures are calculated as raw counts, as
their target is for 100% of the melody to fit within the assigned
parameters. For example, the fitness for “allowable intervals” is
calculated as the number of intervals of an allowable size divided
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by the total number of intervals in themelody.Table 3 shows how
each fitness measure would be calculated for this melody, given an
arbitrarily selected set of targets.

2.3.3 Crossover
The implementation of crossover is reasonably straightforward.
First, two parent candidates are selected using Pareto selection.
Then, a node from the melody tree of each candidate is randomly
picked. The subtrees starting from these nodes are taken from
each parent and their positions are swapped.

Once the subtrees are swapped, the durations of their nodes
are altered with respect to their overall depth within their new
tree. For example, if a node is placed one layer higher in its new
tree than in its old tree, its duration is doubled. Similarly, a node
placed one layer lower would have its duration halved. No
additional alterations are made.

This simple implementation is possible because the melody
tree representation ensures that no matter which subtrees are
swapped the resulting melody trees will still be grammatically
correct. Additionally, the length of the melodies remains fixed

FIGURE 4 | Calculating the shape of a melody. Tick marks indicate the segments which are counted as having shape, as the pitches within the segment move
consistently up or down.

TABLE 3 | Calculating the fitness of the melody in Figure 5 against an arbitrarily selected set of targets. The final fitness value for each measure is in bold.

Fitness measure Target Actual Fitness

Target note proportions 0.75 crotchets Crotchets 1 − abs(0.75 − 13
16) � 0.94

Target rest proportions 0.25 crotchets 2
16 crotchets 1 − abs(0.25 − 2

16) � 0.88

Allowable lengths Crotchets 15
17 allowable Lengths 15

17 ≈ 0.88

Target interval 0.3 size 0 0
13 intervals Of size 0 1 − abs(0.3 − 0) � 0.7

Proportions 0.5 size 1 9
13 intervals Of size 1 1 − abs(0.5 − 9

13) ≈ 0.81

0.2 size 2 3
13 intervals Of size 2 1 − abs(0.2 − 3

13) ≈ 0.97

(0.7+0.81+0.97)
3 ≈ 0.83

Allowable intervals 0, 1, and 2 12
13 allowable Intervals 12

13 ≈ 0.92

Melody shape 0.3 6
11 shapely Segments 1 − abs(0.3 − 6

11) ≈ 0.75

FIGURE 5 | An example melody.
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as the node durations are adjusted according to their new
depths.

2.3.4 Mutation
As the candidates in this work are melodies, the potential
mutations are musical in nature and specific to the domain.
One alteration type is randomly selected from the following:

• Change note type Randomly select a leaf node. If the node
represents a note, change it to a rest. If the node represents a
rest, change it to a note with a random pitch.

• Split node Randomly select a leaf node. Change that node
into an internal node with two randomly initialized
children.

• Reduce node Randomly select a leaf node. Remove that
node and its siblings and randomly reinitialize their parent.

• Reinitialize note Randomly select a node representing a
note (not a rest). Reinitialize the node with a random pitch.

• Add triplet Randomly select any node within the tree. If the
node is a leaf, change it to an internal node, add the triplet
operator, and randomly initialize and add three children to
it. If the node already has children, add the triplet operator
and randomly initialize and add a third child to it.

• Remove triplet Randomly select any node within the tree
that has a triplet operator attached. Remove the triplet
operator then randomly select one of the node’s children
and remove the subtree from that point.

• Add continuation Randomly select any leaf node within the
tree that does not already have a continuation operator
attached. Add a continuation operator to the node. Then, if
the next leaf node in the tree is not the same type, change it
so that it is. For example, if the randomly selected node is a
note and the next leaf node is a rest, change the rest to a note
with the same pitch as the randomly selected node.

• Remove continuation Randomly select any node that has a
continuation operator attached. Remove the operator.

Any change that is not possible is not considered when
randomly selecting an alteration. For example, if a melody
does not contain any triplets then “Remove triplet” will not be
selected. The algorithm configuration also allows for individual
mutation operators to be disabled regardless of whether they are
possible or not for any given candidate. Additionally, the random
elements of mutation (e.g., giving a note a new randomly selected
pitch) are constrained with respect to a target range and key
signature as dictated by an expert model.

2.4 Experimental Design
2.4.1 Overview
The design of the algorithm allows for exercises to be generated
for any monophonic instrument. However, for consistency
and comparability between results only a single
instrument–the flute–is used in this experimental design.
The flute was chosen as it is both monophonic and non-
transposing. It is also a relatively popular instrument,
meaning there are a large number of sight reading exercise
books published for it. This is important as parameter sets for

the algorithm were derived from the characteristics of expert
models, which are in turn derived from published books of
exercises. This ensures that the targets set for the algorithm are
both realistic and grounded in accepted, widely-used,
professionally written examples.

Grades 1 and 2 were chosen as the difficulty levels with which
to validate the algorithm’s capabilities. The reason for selecting
these earlier grades lies in the utility of the exercises. Formal
exams at the Grade 1 level are a student’s first exposure to musical
sight reading, so naturally students at this level find large
quantities of practice material useful. A wide variety of
practice exercises is also useful at other early grade levels as
students come to grips with sight reading techniques. Students
studying later levels–typically Grade 5 and above–often require
fewer practice exercises. There are likely two reasons for this.
Firstly, students at this level should already have a solid
foundation of sight reading skills, and thus require less
practice material. Secondly, at these levels students can use
entire pieces from lower grades as sight reading exercises,
reducing the need for purpose written material.

As discussed in Section 2.1, the set of individual expert-
written sight reading exercises extracted from published
exercise books were transformed into a set of expert models,
where each model corresponds to one published exercise. The
reason for modeling exercises individually rather than as a
collective is twofold. Firstly, targeting only the most typical
characteristics of a group of exercises ignores the variety in
musical and technical content in exercises of even the lowest
level of difficulty. This severely limits the variety of solutions the
algorithm can generate, as it would be constrained by a single
expert model for any one difficulty level. The second reason
relates to the purpose of the experimental design in exploring the
capabilities of the algorithm. If the algorithm is tasked only with
generating ‘typical’ sight reading exercises, the results only
indicate how it performs generating typical sight reading
exercises. To gain a wider understanding of the algorithm’s
performance, it should be tested on a broader range of input.
Using models based on individual expert-written examples allows
this to be done.

2.4.2 Algorithm Configurations
Given a configuration, the algorithm generates tree structures
using an evolutionary approach, as described in Section 2. When
the algorithm is finished the best candidate is converted into a text
format supported by music21a, which is then used to render the
solution and save it in the MusicXML format.

A unique algorithm configuration was created for each expert
model. Each of these configurations (i.e., parameter sets) covers
three elements:

• Fixed characteristics,
• target characteristics, and
• evolutionary parameters.

The fixed characteristics represent targets for the algorithm
which can be set or ‘hard-coded’ during initialization. These
characteristics are:
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• Length (number of bars)
• time signature
• key signature
• range
• use of ties, and
• use of rests.

There are two reasons for setting these characteristics as hard
limits rather than targets that may or may not be achieved. Firstly,
as discussed in Section 2.2.2, both the length and time signature
are required to form the structure of the melody tree used to
represent candidate solutions. Given this, they need to be fixed
during initialization, and can not change during the evolutionary
process without requiring fundamental alternations to the
melody tree structure.

The second reason relates to the key signature, range, use of
ties, and use of rests, in that setting non-negotiable limits on these
characteristics significantly reduces the search space the
algorithm needs to explore. If the key signature and range is
known, random pitch selection can be restricted to a pool of
pitches which are both in the given key signature and within the
given range. As pitches outside the target range and key signature
add no value to a candidate solution, this approach serves only to
reduce the search space–it is highly unlikely to reduce the quality
of the final solution, only the time needed to find it.

Similarly, if the melody of the expert model being used does
not include any rests or ties, then rests and ties should not be
introduced into the solution space. That is, mutations relating to
rests and ties should not be applied, and the initial population of
candidate solutions should not contain any rests or ties.

The target characteristics relate to specifying target values for
each of the six fitness measures defined in Section 2.3.2. Unlike
the fixed characteristics, these targets may not be perfectly met.
Targets for the target note lengths, target rest lengths, target
intervals, and melody shape measures can be found directly
within an expert model. Targets for the remaining two
measures–allowable lengths and allowable intervals can be
inferred from these values. This was discussed in Section 2.3.2.

Finally, the evolutionary parameters relate to values which
influence the evolutionary process but which are not specific to
the chosen application of generating musical sight reading
exercises. These remain static regardless of the expert model
being used:

• Population size: 50
• Number of elites: 1
• Probability of mutation: 0.01 (i.e., 1%)
• Random function: Gaussian
• Selection method: Pareto
• Termination criteria: 100 generations with no improvement

in the best candidate

Each configuration is also assigned a fixed random number
generator seed, so that its output can be reproduced.

The parameters of the algorithm are intended to be specific
enough to guide the evolutionary process, but still broad enough
that there are many acceptable solutions for a given expert model.

To show this, three configurations were created for each expert
model, differing only in their random number generator seed.
This means that after being executed with every configuration the
algorithm will have generated three different sight reading
exercises for each expert model. Comparing these results will
indicate how consistent the algorithm is in finding acceptable
solutions, and the similarities between solutions generated using
the same set of targets.

2.4.3 Evaluating the Generated Exercises
Describing exactly what makes a musical sight reading exercise fit
for purpose requires quantifying both the esthetics of themelody as
well as its technical appropriateness with respect to a specific
difficulty level and instrument. Either one of these tasks is
uniquely challenging on its own. Some guidance can be found
by examining existing published exercises. These mostly reveal the
technical properties which are appropriate for each difficulty level,
such as the acceptable note lengths, interval sizes, and use of
syncopation. Additional guidelines can be inferred. For example,
some sequences of notes are clearly unplayable. Other components,
such as repeated large intervals between notes, are widely accepted
as being difficult to play (Schoenberg, 1967).

Other factors to consider relate to the esthetics of the melodies.
Musical esthetics are notoriously difficult to quantify and remain
the subject of much debate and ongoing research. One reason for
this is that musical rules tend to be derived empirically, in that
they emerge by examining trends in common practice rather than
being determined a priori. Another reason is that they are largely
contextual, depending on the culture, genre, age, and purpose of
the music in question. This means that not only are they open for
discussion and interpretation, but they also evolve over time.

Fortunately, the application domain of the algorithm presented
in this work naturally restricts the scope of the musical rules that
need to be considered. The purpose of the proposed algorithm is to
generate sight reading exercises which would be suitable for students
preparing for formal musical examinations such as those facilitated
by the Australian Music Examinations Board (AMEB) and the
United Kingdom’s Associated Board of the Royal Schools of
Music (ABRSM). The curricula developed by these organizations
strictly fall within Western Classical Music from the Common
Practice period. This is a relatively well-documented period with
a number of widely accepted musical guidelines for aesthetically
pleasing melodic and harmonic structures. As the algorithm focuses
on monophonic melodies, only guidelines relating to melodic
structures need to be considered.

Additionally, sight reading exercises are uniformly short in
length, meaning that complex concepts of musical form, which

TABLE 4 | Criteria for assigning each generated sight reading exercise a rating.

Rating Fit for purpose? Percentage of melody violating ruleset

Very good Yes −
Good Yes ≤10%
Average Yes ≤25%
Bad No >25%
Very bad No Unplayable elements
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describe formal structures for musical pieces to follow, do
not apply.

Each generated exercise was evaluated against a ruleset
containing 29 rules relating to technical appropriateness and
melodic esthetics. Evaluation was performed by one person
who has over 20 years of musical experience, and who has
obtained formal musical qualifications in both performance
and musical theory studies. The proportion of an exercise in
violation of the ruleset was translated to a Likert quality rating on
a five-point scale according to Table 4. This means that although
the weighting of the rules is equal, their impact on the final score
for a melody differs as some are easier to violate than others.
Exercises assigned a “Very good”, “Good”, or “Average” rating are
said to be “fit for purpose”, with the remainder being ‘unfit for
purpose’.

Each exercise is also given a rating based on whether it can be
improved or upgraded with a small number of alterations. An
exercise is said to be “improved” if it was already fit for purpose
and becomes more so as a result of the changes. Alternatively, an
exercise is said to be ‘upgraded’ if the changes transform it from
being unfit to being fit for purpose. Currently, changes are made
manually when assessing each exercise.

When determining potential changes, at most 5% of the
melody can be altered. Acceptable alterations include changes
to note pitches, note and rest lengths, and note and rest
placements. Only changes which could be represented
algorithmically should be used, as it is intended that these
changes could be incorporated into the algorithm in the
future. Once a small set of changes is made, an exercise is
evaluated again with respect to the ruleset and a new Likert
rating is assigned.

The post-alteration ratings serve a dual purpose. They show
the potential of the algorithm to be improved, and serve to
highlight the biggest problems currently preventing the
generated exercises from being more fit for purpose. This
information could be used to drive future work.

The evaluation ruleset was derived from an examination of
relevant literature and published expert-written examples
(i.e., expert models) of sight reading exercises. As well as
relating to the technical appropriateness of an exercise, the
melodic esthetics of an exercise, or both, each individual rule
can be further categorized as relating to one of four facets:

• Note/Rest selection

Rules relating to the length, pitch, and location selected for
each note and rest in the melody.

• Intervals

Rules relating to the size and placement of intervals.

• Melodic structure

Rules relating to the shape and form of the melody.

• Rhythmic structure

Rules relating to the sequences of note and rest lengths in the
melody.

Many of the rules refer to the “strong” beats of a melody. Beats
which are seen as “strong” depend on the time signature. In time
signatures where bars can be divided into two equal parts, the first
beat and the beat half-way through are strong (e.g., beats 1 and 3
in 4

4 bars are strong). In all other time signatures the first beat of
the bar is strong.

Some rules also refer to scale degrees, either numerically or in
roman numerals. In this case, the scale degrees should be
interpreted with respect to the target key signature of the
generated exercise (e.g., scale degree 3 in C major would
indicate the pitch E).

Many of the rules are written generally, for example “An
exercise should only use rest lengths seen in expert models of the
same difficulty level.” In order to implement the ruleset a
reasonable sample of expert models need to be collected. For
the application of the algorithm presented in this work these
expert models are those for the flute described in Section 2.1. The
ruleset can easily be translated to evaluate exercises for other
monophonic instruments by replacing this set of expert models
with another specific to the instrument being considered.

Table 5 summarizes the ruleset, including the source from
which each rule was derived. The individual rules are defined as
follows:

• Rest proportions

No more than 10% of the melody should be made up of rests,
unless a larger proportion is present in the target expert model.

• Note lengths

An exercise should only use note lengths seen in expert models
of the same difficulty level. For example, Grade 1 exercises for the
flute are expected to only use minim, crotchet, quaver,
semiquaver, and semibreve length notes.

• Rest lengths

An exercise should only use rest lengths seen in expert models
of the same difficulty level. For example, Grade 1 exercises for the
flute are expected to only use crotchet, quaver, and semiquaver
length rests.

• Tied notes

Grade 1 exercises for the flute should not contain any
tied notes.
Grade 2 exercises for the flute should contain at most 5%
tied notes.

If the target expert model contains a larger proportion of tied
notes than those listed here, the maximum percentage of tied
notes an exercise can contain is that of the target expert model.

• Interval sizes
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An exercise should only use intervals seen in expert models of
the same difficulty level. For example, Grade 1 exercises for the
flute are expected to only use intervals up to a size of 7.

• Interval proportions

At least 90% of the intervals should be between 0 and 3 in size,
inclusive (i.e., between a unison and a fourth).

At least 50% of the intervals should be between notes only one
scale degree apart (i.e., a second).

7 Key signature

An exercise should only be written in a key signature seen in
expert models of the same difficulty level. For example, Grade 1
exercises for the flute are expected to only be written in the keys of
C, F, G, and BX major, or A, D, and E minor.

8 Time signature

An exercise should only be written in a time signature seen
in expert models of the same difficulty level. For example,
Grade 1 exercises for the flute are expected to only be written in
4
4,

2
4, or

3
4.

9 Playability

Each bar of the melody should only contain sequences of note
lengths seen in expert models of the same difficulty level. For
example, a bar in a Grade 1 exercise for the flute in 4

4 time can
contain two minims in a row, but would not be filled with a string
of semiquavers.

10 Note placement

Strong notes from the target key (i.e., 1, 3, 5) should be placed
on at least 50% of the strong beats in the melody.

11 Tonic repetition

TABLE 5 | The origin of each rule in the ruleset for evaluating algorithmically generated sight reading exercises. Note that there are no rules for evaluating just the melodic
esthetics of rhythmic structures, only technical appropriateness alone or technical appropriateness and melodic esthetics combined.

Rules Evaluating. . . Facet Rule Origin

Technical Note/Rest selection 1. Rest proportions Expert models
Appropriateness 2. Note lengths Expert models

3. Rest lengths Expert models
4. Tied notes Expert models

Intervals 5. Interval sizes Expert models
6. Interval proportions Expert models; Miller (2005)

Melodic Structure 7. Key signature Expert models
Rhythmic Structure 8. Time signature Expert models

9. Playability Expert models
Melodic Note/Rest selection 10. Note placement Perricone (2000)
Esthetics 11. Tonic repetition Laitz (2008); Perricone (2000)

12. Opening note Laitz (2008); Perricone (2000); Australian Music
Examinations Board (2018b)

13. Phrase endings Expert models; Goetschius (2009)
14. Peak note Australian Music Examinations Board (2018b)

Intervals 15. Tritones Expert models; Perricone (2000); Goetschius (2009);
Aldwell and Cadwallader (2018); Schoenberg (1967)

16. Augmented and diminished intervals Expert models; Perricone (2000); Goetschius (2009);
Aldwell and Cadwallader (2018); Schoenberg (1967)

17. Closing intervals Expert models; Laitz (2008)
18. Interval resolutions Goetschius (2009)

Melodic structure 19. Melodic direction Goetschius (2009)
20. Contextualizing leaps Goetschius (2009); Perricone (2000); Kwalwasser (1955);

Schoenberg (1967)
21. Peak placement Australian Music Examinations Board (2018b)

Rhythmic structure − −
Technical Note/Rest selection 22. Placement of long notes Expert models; Goetschius (2009)
Appropriateness 23. Placement of rests Expert models; Goetschius (2009)
and Melodic 24. Target key signature Expert models; Miller (2005)
Esthetics Intervals 25. Gap placement Expert models; Laitz (2008); Miller (2005)

26. Leaps Laitz (2008)
Melodic structure 27. Repetition Expert models; Australian Music Examinations Board

(2018b); Miller (2005)
28. Length Expert models; Goetschius (2009)

Rhythmic structure 29. Syncopation Expert models; Miller (2005)

Frontiers in Artificial Intelligence | www.frontiersin.org January 2021 | Volume 3 | Article 49753012

Pierce et al. Evolving Musical Sight Reading Exercises

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


At least 10% of the strong beats in the melody should be filled
with a tonic note.

12 Opening note

The opening pitch of an exercise should be 1, 3, or 5.

13 Phrase endings

The note before a rest should be at least crotchet length.

14 Peak note

The highest note in the melody should be used no more than 3
times.

15 Tritones

Tritones should never be used.

16 Augmented and diminished intervals

Augmented and diminished intervals should never be used.

17 Closing interval

The melody should end with 2 → 1, 7 → 1, 4 → 1, or 5 → 1.

18 Interval resolutions

After a jump (i.e., an interval greater than a fourth), instability
should always be resolved.

• should resolve to 3.
• should resolve to 1 or 3.
• should resolve to 5.
• should resolve to 1.

19 Melodic direction

If the melody is moving up in pitch, it should not change
direction on pitch 7.

If the melody is moving down in pitch, it should not change
direction on pitches 4 or 6.

20 Contextualizing leaps

The melody should switch direction after a leap (i.e., an
interval greater than a fourth).

If there are two leaps in a row, the first should be larger.

21 Peak placement

The peak should fall within the middle 50% of the melody.

22 Placement of long notes

80% of notes longer than a crotchet should be placed on strong
beats of the bar.

23 Placement of rests

80% of rests should be placed on weak beats of the bar.

24 Target key signature
All notes should have pitches from the target key signature.

25 Gap placement

There should be no more than 3 intervals of a third or more in
sequence, unless the sequence forms an arpeggio.

26 Leaps

There should be no more than two intervals of a fourth or
more in a row.

27 Repetition

A self-similar structure should not be repeated exactly more
than twice in a row. If the structure is transposed when repeated,
it is not considered to be repeated exactly.

28 Length

An exercise should be of a length, in bars, seen in expert
models of the same difficulty level. For example, Grade 1
exercises for the flute are expected to only be 4, 8, 12, 14, or
16 bars long.

29 Syncopation

Grade 1 exercises for the flute should contain no syncopation.
Grade 2 exercises for the flute can contain up to 10%
syncopation.

3 RESULTS

3.1 Most Typical Characteristics
3.1.1 Overview
A preliminary examination of the generated exercises can be
done by comparing the most typical values for a set of
measured characteristics between the expert-written and
algorithmically-generated exercises. These results, presented
in Sections 3.1.2 and 3.1.3, show how closely the generated
exercises were able to match the characteristics of the expert-
written exercises. This is a good indication of the fitness for
purpose of the results.

3.1.2 Grade 1
The Grade 1 generated exercises almost exactly match the most
typical characteristics of the expert-written Grade 1 exercises, as
seen in Table 6. Compared to the expert-written exercises, the
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generated exercises often exhibit a slightly smaller range, the most
common highest note falling one full tone from G5 to F5. The
generated exercises also include some semibreves, which were not
seen in the expert-written exercises. They also exhibit slightly
fewer crotchet rests and slightly increased proportions of quaver
and semiquaver rests.

3.1.3 Grade 2
Table 7 shows that, compared to the expert-written exercises, the
generated Grade 2 exercises exhibit only slight differences in their
most typical characteristics. As with the Grade 1 exercises, the most
common highest note drops a full tone, this time fromA5 to G5. The
typical proportions of crotchet note lengths increase in range from
80–90% to 75–90%. This is compensated for by increases in other
note lengths, but not enough to alter the most typical proportions.
The typical proportions of rest lengths also change. Crotchets are

used less frequently, a drop which is compensated for by an increased
use of quavers, semiquavers, and minims.

3.2 Target Characteristics
3.2.1 Pitch Range
Compared to the expert-written exercises, the generated exercises
exhibit a greater variety of ranges and an increased use of smaller
ranges (i.e., ranges less than 12 semitones in size). However, overall,
the pitch ranges of the expert-written and algorithmically-generated
exercises are similar.

Although the range for each exercise was fixed with respect to a
particular expert model, the algorithm does not enforce that the
specified range be used to its limits, only that all selected pitches must
fall within that range. It is for this reason that the range sizes and
spreads differ between the expert-written and algorithmically-
generated exercises.

TABLE 6 | Typical characteristics of expert-written and generated Grade 1 sight reading exercises. Ratios and proportions are represented in terms of time. Differences
between the expert-written and generated exercises are highlighted in bold. Characteristics marked with ‘*’ are fixed and not expected to change.

Characteristic Typical Value(s)

Expert-written exercises Generated exercises

Key signature* F major, C major F major, C major
Time signature* 4

4
4
4

Exercise length* 8 bars 8 bars
Range 14 semitones (one octave and one tone) 12 semitones (one octave)

F4 → G5 F4 → F5
Note lengths 90–100% crotchets 90–100% crotchets

0–10% quavers 0–10% quavers
0–5% minims, dotted minims, semiquavers 0–5% minims, dotted minims, semiquavers, semibreves

Rest lengths 95–100% crotchets 90–100% crotchets
0–5% quavers, semiquavers 0–10% quavers, semiquavers

Ratio of notes to rests 90% notes: 10% rests 90% notes: 10% rests
Intervals 95–100% gaps of 1 scale degree 95–100% gaps of 1 scale degree
(As scale degrees) 0–5% gaps of 0 or 2–7 scale degrees 0–5% gaps of 0 or 2–7 scale degrees

TABLE 7 | Typical characteristics of expert-written and generated Grade 2 sight reading exercises. Ratios and proportions are represented in terms of time. Differences
between the expert-written and generated exercises are highlighted in bold. Characteristics marked with ‘*’ are fixed and not expected to change.

Characteristic Typical Value(s)

Expert-written exercises Generated exercises

Key signature* G major, A minor, F major G major, A minor, F major
Time signature* 4

4
3
4

4
4
3
4

Exercise length* 8 bars 8 bars
Range 12 semitones (one octave and one tone) 12 semitones (one octave)

G4 → A5 G4 → G5
Note lengths 80–90% crotchets 75–90% crotchets

0–10% quavers 0–10% quavers
0–10% minims 0–10% minims
0–5% dotted minims, semiquavers, dotted 0–5% dotted minims, semiquavers, dotted
Crotchets, dotted quavers, semibreves Crotchets, dotted quavers, semibreves

Rest lengths 95–100% crotchets 85–100% crotchets
0–5% quavers, semiquavers, minims 0–15% quavers, semiquavers, minims

Ratio of notes to rests 95% notes: 5% rests 95% notes: 5% rests
Intervals 85–95% gaps of 1 scale degree 85–95% gaps of 1 scale degree
(As scale degrees) 0–10% gaps of 0 or 2 scale degrees 0–10% gaps of 0 or 2 scale degrees

0–5% gaps of 2–7 scale degrees 0–5% gaps of 2–7 scale degrees
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3.2.2 Proportion of Notes vs. Rests
The amount of time in each exercise that should be filled by notes and
rests is not specified exactly in the expert models, but can be inferred
from the target proportions of specific note and rest lengths. That is, if
the target proportion for crotchet notes is 0.5, the target proportion of
quaver notes is 0.25, and target proportion of crotchet rests is 0.25, it
can be inferred that the target proportion of notes is 0.75.

In the generated exercises there were no cases where an
exercise contained rests if its corresponding expert model
contained no rests. This is because, as discussed in Section
2.4.2, rests were not introduced at any stage of the algorithm’s
execution if there were no rests in the expert model used to derive
the algorithm parameters. For cases where both note and rest
target proportions were provided, the generated exercises
regularly matched the given target proportions exactly.

3.2.3 Note Lengths
The generated exercises closely emulate the target note lengths
extracted from the expert models. However, at both the Grade 1
and 2 difficulty levels there were note lengths in some generated
exercises that were not present in any of the expert-written
exercises. For Grade 1 the only unallowable note length used
was a semibreve. This is not of significant concern given that
semibreves are valid note lengths, and not unheard of at a Grade 1
level even though they are not present in the sample of expert-
written Grade 1 exercises used in this work. The unallowable note
lengths at the Grade 2 level, however, represent more of an issue.
These were notes such as doubly dotted quavers and
hemidemisemiquavers, which are rarely if ever seen at even
the highest difficulty levels. However, very few generated
exercises contained such note lengths.

3.2.4 Rest Lengths
As with the note lengths, the proportions of rest lengths in the
generated and expert-written exercises are reasonably close.

However, at both difficulty levels the generated exercises exhibited
some rest lengths that were not present in the expert-written exercises.
For example, some Grade 1 generated exercises contained minim
rests, which were not in any of the expert-written Grade 1 exercises.
Some exercises also contained rests with lengths that would rarely be
seen at any difficulty level, such as doubly dotted semiquavers.

Overall, the proportions of rest lengths are more variable in the
generated exercises compared to the expert-written exercises.
This indicates that the generated exercises were not always
able to match the target rest proportions exactly. They were,
however, able to come close. Additionally, the spread of
proportional values in the generated exercises is close to those
of the expert-written exercises.

The generated exercises were not able to as closely match the target
rest lengths as they were the target note lengths. It is important to note
that this is most likely a side effect of the exercises containing
significantly fewer rests than notes. A low number of rests within
each exercise means that discrepancies between the actual and target
rest proportions are amplified simply because each individual rest
represents a relatively large proportion of the overall rest time. This
results in cases where a single rest length being of an “unallowable”
length can have a large effect on the overall rest proportions. For

example, if an exercise was given a target of containing 4 crotchet rests,
having one of those rests generated as two quaver restsmeans that 25%
of the rest time is filled by an “unallowable” length, and the target rest
proportion was only 75% met. This situation is much less likely to
happen with note proportions, simply because significantly more time
within each exercise is filled by notes.

3.2.5 Intervals
At each of the difficulty levels, the proportions of intervals
exhibited in the generated exercises closely match the target
proportions set by the expert models.

In both grade levels the use of intervals with a size of 0 is higher in
the generated exercises than in the expert-written exercises. However,
as this increase in use is only slight it is not overly concerning.
Compared to the expert-written exercises, the generated exercises
exhibit greater variation in interval proportions. Aswith the rest length
proportions, this is most likely an indication that the generated
exercises were not always able to exactly match the target
proportions. They were, however, able to come close.

3.3 Fitness of the Generated Exercises
As shown in Table 8, the generated exercises consistently achieved
high fitness values on every fitness measure. At each grade level
there was at least one exercise that achieved a perfect score on each
of the fitness measures. The average fitness value for each measure
was consistently high, ranging between 0.95 and 0.99 inclusive.
Similarly, the standard deviations of the fitness values were
consistently low, indicating that little variance was exhibited
across the fitness values for each measure. The minimum values
aremore variable, both across fitnessmeasures andwithin the same
fitness measure across different grade levels. However, given the
high average fitness and low standard deviations, such minimum
values represent outliers rather than trends.

Overall, there are no fitness measures on which the generated
exercises scored consistently better or worse. This is true both
when comparing different fitness measures within a grade level,
and when comparing fitness values on the same measures across
different grade levels.

TABLE 8 | Summary of fitness values for each grade level of generated exercises.
Shows that at least one exercise reached the maximum value for each fitness
measure (i.e., 1.0), and that the average fitness values for each measure were high
at every difficulty level.

Fitness measure Grade Minimum Maximum Average SD

Target note lengths 1 0.53 1.0 0.95 0.11
2 0.66 1.0 0.96 0.08

Target rest lengths 1 0.96 1.0 0.95 0.01
2 0.94 1.0 0.99 0.01

Allowable lengths 1 0.65 1.0 0.99 0.04
2 0.95 1.0 0.99 0.01

Target intervals 1 0.82 1.0 0.95 0.05
2 0.92 1.0 0.97 0.03

Allowable intervals 1 0.94 1.0 0.99 0.01
2 0.96 1.0 0.99 0.01

Melody shape 1 0.8 1.0 0.99 0.02
2 0.88 1.0 0.99 0.01

ahttp://web.mit.edu/music21/.
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Given the application domain, it is likely that some of the fitness
measures may have conflicting goals. That is, an increase in one
fitness value may be directly related to a decrease in another. For
example, consider an exercise which meets its target proportion of
notes and rests, but contains two unallowable rest lengths (e.g., two
quaver rests instead of a single crotchet rest). If one or both of those
unallowable rests were changed to notes, the “Allowable lengths”
fitness of that exercise would improve. However, the extra notes
would mean that the exercise no longer meets the target note
and rest proportions, thus decreasing its fitness in the “Target
note lengths” and “Target rest lengths” measures. The set of
results presented in this work indicate that the fitness measures
do not influence one another, given that the generated exercises
achieved consistently high fitness scores. As such, potentially
conflicting goals among the fitness measures can be considered
not to be an issue.

3.4 Fitness for Purpose of the Generated
Exercises
3.4.1 Grade 1
The majority of the Grade 1 generated exercises are “fit for
purpose”, with over 60% being assigned a “Very good”,
“Good”, or “Average” rating. This proportion increases to
almost 80% when small repairs are made to some exercises.

Figure 6 provides examples of generated Grade 1 exercises
assigned each of the Likert ratings. None of the exercises at this
difficulty level were assigned a “Very bad” rating, so no example
has been given. Reasons are provided for each example’s rating.

3.4.2 Grade 2
Approximately half of the Grade 2 generated exercises are fit for
purpose. This is roughly 15% less than the Grade 1 generated
exercises. The proportion of Grade 2 exercises rated as “fit for
purpose” increases once small repairs are made, reaching
approximately the same percentage as the Grade 1 generated
exercises before repairs (i.e., roughly 60%). This drop in the
number of “fit for purpose” exercises is an expected result due to
the increased complexity of the Grade 2 exercises compared to
Grade 1.

The major difference between the Grade 1 and 2 ratings is the
presence of “Very bad” exercises. These account for around 10% of
the Grade 2 generated exercises, a proportionwhich does not change
after repairs are made. This indicates that the “Very bad” exercises
can not be upgraded in fitness for purpose, or even improved to a
“Bad” rating. Given that the criteria for a “Very bad” rating is
unplayable elements within an exercise, it is not surprising that a
small number of changes could not resolve these issues. For
reference, examples of generated Grade 2 exercises assigned each
Likert rating are provided in Figure 7.

4 DISCUSSION AND FUTURE WORK

4.1 Current Capabilities of the Evolutionary
Algorithm
These results show that the proposed EA is capable of emulating
the characteristics of expert-written sight reading exercises at the
Grade 1 and 2 difficulty levels, and that it is able to do so in a way

FIGURE 6 | Examples of Grade 1 generated exercises assigned each of the Likert quality ratings. An example of an exercise rated as “Very bad” is not provided as
none of the Grade 1 exercises were assigned this rating.
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that is generally fit for purpose. This is a particularly promising
outcome given the relatively simplistic and general nature of the
fitness measures. The capabilities of the algorithm to produce
appropriate sight reading practice material is additionally
supported by the Likert quality ratings, which show that the
generated exercises also conform to the expectations of musical
esthetics and technical appropriateness defined by the field of
music theory.

Although the results indicate the potential of the algorithm,
there are areas in which the algorithm’s capabilities can be
improved. When examining the Likert quality ratings of an
exercise with respect to its characteristics there appear to be
no links. That is, the quality of an algorithmically generated
exercise is not related to its key signature, time signature, length,
note proportions, or interval proportions. This indicates that the
primary difficulty in applying the algorithm to generate exercises
at higher difficulty levels will be in managing the overall increase
in musical and technical complexity. Even at the difficulty levels
currently examined (i.e., Grades 1 and 2), higher quality results

should be possible were this complexity to be better modeled and
incorporated into the evolutionary process.

For example, the presence of rests in an exercise affects its
overall structure. If not placed carefully within a sequence of
notes, rests can cause unintended syncopation or awkward breaks
in phrasing. The existence of a rest also affects the measurement
of intervals within an exercise, as two notes separated by a rest are
not considered to be part of an interval during fitness calculations.
Given that rests become more frequent in number and length at
later difficulties, these issues will become more prominent.

The pitch range of exercises also grows with the difficulty
level. For example, exercises at the Grade 2 level cover a greater
range of pitches than exercises at the Grade 1 level. An increase
in pitch range increases the solution space. This is because there
are simply more potential pitches to select, thus more potential
for an algorithm to select pitch sequences which are
aesthetically or technically inappropriate. Naturally, this
increase in the size of the solution space also causes an
increase in the difficulty of algorithmically generating fit for

FIGURE 7 | Examples of Grade 2 generated exercises assigned each of the Likert quality ratings. Note that the “Very bad” example was given this rating due to the
rhythm in bar 6 being uncharacteristically difficult for the Grade 2 difficulty level.
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purpose solutions. This problem is compounded when
considering other musical artifacts, as the size of the
solution space similarly increases with additions to the sets
of allowable note lengths and intervals. The interaction of these
elements also needs to be considered. For example, increasing
the allowable intervals in an exercise where only crotchet note
lengths are allowed would increase the overall solution space. If
additional note lengths were also to be allowed, the solution
space would increase exponentially, not linearly. This is
because some interval sequences, which would have been
appropriate between crotchets, would not be appropriate
with shorter note lengths.

These issues were expected, particularly given the general
approach taken to measuring fitness in this work. Further
efforts in modeling the requirements of higher difficulty
exercises and incorporating those models into the algorithm
would help to manage the expanding size of the solution space,
thus the algorithm’s capacity to generate more complex exercises.

One potential drawback of the Likert ratings currently
presented in the results is that they were all measured using a
single rater. To check for consistency more robustly it would be
ideal to have the same exercises rated using the same framework
by multiple experts.

4.2 Future Directions for Algorithmic
Development
When developing an algorithm for generating musical sight
reading exercises, there are trade-offs to be made. One key
decision is whether the algorithm will be specific or general. For
example, a specific algorithmmight only generate Grade 2 exercises
focusing on breath control for the clarinet. Alternatively, a general
algorithmmight aim to generate exercises for any wind instrument
at any difficulty level. There are benefits and drawbacks to each
approach. The more specific the target, the more focused the
algorithm can be. This means more domain knowledge can be
incorporated and more restrictive parameters can be set. It is likely
that a specific approach would enable the quality of output to be
improved. However, a specific approach would, by definition, also be
limited in its utility. A general approach would need to consider
many more factors. For example, for an algorithm to target multiple
instruments it would need to model the differences between the
technical requirements for those instruments. A more general
algorithm is likely to have an increased utility. However, it also
takes on the risk of attempting to cover too much scope, which
would limit its ability to generate quality output.

The approach taken in this work is somewhere in between. It is
not so general as to target many difficulty levels, but it also isn’t
restricted to a single type of exercise. Although the application of
the algorithm presented in this work was generating musical sight
reading exercises for the flute, its parameters are purely data
driven–they are not instrument-specific. Instead, appropriate
values can be extracted from models of expert-written
examples, which may relate to any monophonic instrument.
This is discussed further in Section 4.4.

Some avenues for future development can be found in the
ruleset used to evaluate the fitness for purpose of solutions. For

example, the rule for ‘Note placement’ states that Strong notes
from the target key (i.e., I, III, V) should be placed on at least 50%
of the strong beats in the melody. This indicates that music sounds
better when strong notes from the target key are placed on strong
beats of the bar. Such note placements could be encouraged by the
evolutionary algorithm. Doing so might reduce or even remove
the need for this evaluation rule, but should also increase the
esthetics of results by reinforcing the key signature.

A similar approach could be taken to reinforce the time
signature of an exercise. This relates to the “Placement of long
notes” rule, which states that 80% of notes longer than a crotchet
should be placed on strong beats of the bar, and the “Placement of
rests” rule, which states that 80% of rests should be placed on weak
beats of the bar. By encouraging these optimal note and rest
placements the music should ‘feel’ like it is written in the target
time signature. This would increase the overall esthetics of the
generated melodies and avoid some situations where phrases
seem to end abruptly.

As an addition tomodeling expert-written examples, the algorithm
could incorporate alternative models of musical complexity. These
models would be relative to a specific instrument. One possible model
is the musiplectics system (Holder et al., 2015). In this work, Holder
et al. (2015) defines a method for computationally measuring the
complexity of a musical score for any instrument. Measuring the
complexity of a score first requires the definition of several parameters
for the chosen instrument. Currently, only the parameters for a BX
clarinet are provided. Implementing support for more instruments
represents a non-trivial quantity of work,most of which requires input
from an expert in the instrument in question. However, doing so
might result in a valuable addition to the capabilities of the
evolutionary algorithm.

Another area of improvement for the algorithm would be to
use chord progressions. Currently, the algorithm generates exercises
within a particular key signature. It does not, however, createmelodies
which follow chord progressions. For example, a common 4 bar chord
progression is I, IV, V, I. If the exercise was in C major, this would
mean that the 4 bars would be rooted in C major, F major, G major,
and Cmajor, in that order. Chord progressions give a melody a sense
of movement and interest. Although not considered in this work, the
expert-written exercises do use chord progressions. As such, it would
make sense for the algorithm to do so as well.

One way chord progressions could be implemented would be
to use the progression map proposed by Stephen (2017). This
map defines transitions between chords which will sound
aesthetically pleasing. This implementation would not
require any changes to be made to the tree structure used to
represent melodies. Although each bar would be rooted in a
different key, the melody overall would still be in the one key
signature. That is, even if the second bar in a C major melody
might be written in F major, it would still only use pitches from
the C major scale. The ruleset for evaluating exercises, however,
would need to be updated. This is because some of the rules
explicitly reference the target key. For example, the “Note
placement” rule states that Strong notes from the target key
(i.e., I, III, V) should be placed on at least 50% of the strong beats
in the melody. If the generated melodies were to follow chord
progressions, the “target key” part of this rule would need to be
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interpreted as referring to the chord of the bar, not of the overall
melody.

Some of the expert-written exercises also change key completely as
they progress, or contain accidentals outside of the key signature.
Neither of these features is currently supported by the algorithm.
Allowing additional accidentals is trivial, as it would simply require
removing the restriction within the algorithm preventing it from
selecting pitches outside the target key. However, this implementation
would introduce significant complexity to the system, as the potential
for selecting poor sounding pitch sequences would dramatically
increase. A better implementation would allow non-key pitches to
be selected, but restrict when that could occur.

Allowing for complete key changes is a more difficult task.
Currently, the melody tree structure does not record the key
signature of the melody it describes. As such, it also does not
support the ability to record a change in key signature. This is not
necessarily an issue, as information relating to the key signatures
can be recorded elsewhere. The true difficulty lies in determining
when a key change is appropriate, what the new key should be, and
how to smoothly transition between the old and new keys. Such
functionality would require significant changes to the algorithm. It
would also require the key change to be noted in the output so that
the melody can be interpreted correctly.

Another feature of the expert-written exercises not currently
shown in the generated exercises is anacruses. An anacrusis is
where a single bar is split into two parts which are placed at the
beginning and end of a melody. This type of structure is not
supported by the melody tree or the algorithm, and adding
support would require significant work.

4.3 Building Better Models of Expert
Knowledge
Given that the algorithm is designed to emulate expert models of
musical sight reading exercises, it stands to reason that developing
better expert models would improve the quality of its output.
Currently, the expert models are a combination of simple
characteristics (i.e., key signature, time signature) and statistical
measures (i.e., note/rest/interval proportions). As such, there is
significant scope for further development in this area.

One area for potential development relates to the analysis of co-
occurring features. Currently, the note, rest, and interval proportions
are treated separately. However, it is possible that there are some
dependencies between these features that are not currently being
captured. For example, it might be that larger intervals are more likely
to be placed on longer notes, and smaller intervals on shorter notes.
Finding these types of co-occurrences should be a relatively simple
task.More difficult would be determining which co-occurring features
are important to emulate, and how they should be implemented.

A similar area is that of sequence or pattern identification. The
expert-written exercises, and music in general, exhibit many clear
patterns. For example, often a dotted quaver will be followed by a
semiquaver, or four semiquavers will be used in sequence. These
types of patterns generally serve to reinforce the beats within the
music and create a sense of rhythmic stability. Identifying the use of
these patterns within the expert-written exercises, and
incorporating them into the algorithm would serve to both

better emulate the characteristics of the expert-written examples,
and create more generally aesthetically pleasing results.

A complex area that has not yet been addressed either through
the analysis of expert-written exercises or in the algorithm
development is that many musical sight reading exercises are
targeted to developing a specific skill. For example, some
exercises for the flute contain a large proportion of long notes
to encourage the development of breath control. Others might
specifically use a series of arpeggios to reinforce scale structures.

Incorporating this type of information into the algorithm
would be a significant undertaking. It would require extensive
expert knowledge to identify the purposes of different musical
sight reading exercises and describe how they have been written
to address these purposes. Developing the ability to
algorithmically generate similarly targeted exercises would be
as, if not more, difficult. However, doing so would greatly increase
the utility of the generated exercises, as they would be able to
more specifically target the needs of different users.

4.4 Applying the Algorithm to Other
Instruments
Although the use of the algorithm presented in this work was to
generate musical sight reading exercises for the flute, the
parameters are purely data driven. That is, they are instrument-
agnostic. Given this, the algorithm can be applied to generate
exercises for any monophonic instrument. This would involve
curating a set of expert-written examples, and using those examples
to determine appropriate parameters. Additional work would be
required to support polyphonic instruments, particularly in the
development of the tree structure used to represent melodies.

To validate the algorithm’s abilities in generating exercises for other
instruments, the evaluation ruleset would need to be revisited. While
the rules themselves are instrument-agnostic, their exact interpretation
is sometimes relative to the analysis of expert-written examples. If the
algorithmwere applied to another instrument, those rules would need
to be revised with respect to a new set of expert-written examples.
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