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Deep neural networks have been successfully applied in learning the board games Go,

chess, and shogi without prior knowledge by making use of reinforcement learning.

Although starting from zero knowledge has been shown to yield impressive results, it

is associated with high computationally costs especially for complex games. With this

paper, we present CrazyAra which is a neural network based engine solely trained

in supervised manner for the chess variant crazyhouse. Crazyhouse is a game with

a higher branching factor than chess and there is only limited data of lower quality

available compared to AlphaGo. Therefore, we focus on improving efficiency in multiple

aspects while relying on low computational resources. These improvements include

modifications in the neural network design and training configuration, the introduction of a

data normalization step and a more sample efficient Monte-Carlo tree search which has a

lower chance to blunder. After training on 569537 human games for 1.5 days we achieve

a move prediction accuracy of 60.4%. During development, versions of CrazyAra played

professional human players. Most notably,CrazyAra achieved a four to one win over 2017

crazyhouse world champion Justin Tan (aka LM Jann Lee) who is more than 400 Elo

higher rated compared to the average player in our training set. Furthermore, we test the

playing strength of CrazyAra on CPU against all participants of the second Crazyhouse

Computer Championships 2017, winning against twelve of the thirteen participants.

Finally, for CrazyAraFish we continue training our model on generated engine games.

In 10 long-time control matches playing Stockfish 10, CrazyAraFish wins three games

and draws one out of 10 matches.

Keywords: deep learning, chess, crazyhouse, supervised learning, Monte-Carlo tree search

1. INTRODUCTION

The project AlphaZero (Silver et al., 2017a) with its predecessors AlphaGoZero (Silver et al.,
2017b) and AlphaGo (Silver et al., 2016) marks a milestone in the field of artificial intelligence,
demonstrating that the board games Go, chess, and shogi can be learned from zero human
knowledge. In this article, we extend this family of games. We present the neural network based
engine CrazyAra which learned to play the chess variant crazyhouse solely in a supervised fashion.
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Crazyhouse, also known as drop chess, is the single-player
version of the game bughouse and introduces the ability to re-
introduce pieces that have been captured. The captured piece
switches its color, and is henceforth held in the capturing so-
called pocket of the respective play. Crazyhouse incorporates all
classical chess rules including castling, en passant capture, and
draw by three-fold repetition. In addition, instead of playing a
classical move, the player has the option to drop any pocket piece
onto an empty square of the board, with the exception that pawns
cannot be dropped on the first or eighth rank. The element of
dropping captured pieces is similar to the game of shogi, with
the difference that in crazyhouse pawns can also be dropped
to deliver immediate checkmate. The fact that pieces never
fully leave the game makes crazyhouse a highly tactical game
with a considerably larger branching factor than conventional
chess. The chance of drawing and the average game length
are significantly reduced because games almost always end in
checkmate, and the element of the chess endgame is missing.
Moreover, the ability to drop pieces to set your opponent in check
often enables long forced checkmating sequences. Furthermore,
crazyhouse is commonly played in short time controls, and is
increasing in popularity particularly for the online community.

We approach the problem by training a deep neural network
from human game data, in a similar fashion as AlphaGo (Silver
et al., 2016). Unfortunately,AlphaGo is difficult, if not impossible,
to directly apply to crazyhouse. First of all, there is only a
significantly smaller data set of lower quality available compared
to Go or chess. Second, because of the higher move complexity
and the more dynamic nature of the game, several challenges had
to be overcome when adapting the neural network architecture
and applying Monte-Carlo Tree Search (MCTS). Specifically, our
contributions are as follows:

• First, we introduce a more compact input board presentation
by making the state fully Markovian and removing the
history component.

• Second, we highlight the importance of input preprocessing
in form of rescaling or normalization for significant
better performance.

• Third, we present a new more powerful and more efficient
neural network architecture based on advancements in
computer vision such as grouped depthwise convolutions,
pre-activation resnets, and squeeze-excitation layers.

• Fourth, we investigate several techniques to make the Monte
Carlo tree search (MCTS) more sample efficient. This includes
the usage of Q-Values for move selection, a transposition table
which allows sharing evaluations across multiple nodes, and
ways to decrease the chances of missing critical moves.

• Finally, we evaluate the strength of a neural network in
combination with MCTS with expert human players as well
as the most common crazyhouse chess engines.

We proceed as follows. We start off, in section 2, by briefly
reviewing prior work in computer crazyhouse and machine
learning in games. Section 3 then goes through the general
scheme on how the neural network is trained and integrated
with MCTS to be used as an engine. Our input representation
for encoding the board state is introduced in section 4, and

our output representation in section 5. Section 6 goes over
the AlphaZero network architecture and introduces different
convolutional neural network designs, which make use of pre-
activation residual blocks (He et al., 2016b), depthwise separable
convolutions (Howard et al., 2017), and Squeeze Excitation
Layers (SE; Hu et al., 2018). Next, in section 7, we describe
the training data in more detail, including statistics of the most
frequent players, the win and draw percentages as well as the
occurrence of different time controls. We also summarize how
a computer generated data set based on Stockfish self play games
was created. Then, the configuration of the supervised training
is provided in section 8 and the performance and progress
for different network architectures is visualized. Section 9
outlines the formulas for the MCTS algorithm including its
hyperparameter settings. We also introduce several changes and
extensions such as including Q-values for final move selection,
a conversion of Q-Values to Centi-Pawn (CP), the usage of
a transposition table, a parameterization for calculating the
U-Values and a possible integration of domain knowledge to
make the search more robust and sample efficient. We continue
with a discussion in section 10 highlighting the benefits and
disadvantages of MCTS compared to Alpha-Beta minimax
search. Before concluding, we summarize the match results with
human professional players and other crazyhouse engines.

2. RELATED WORK ON COMPUTER
CRAZYHOUSE AND ML IN BOARD GAMES

Crazyhouse is a fairly recent chess variant, which primarily
enjoys popularity in on-line chess servers such as lichess.org.
Despite its youth, there are already more than a dozen engines
available which are able to play this chess variant (cf. also section
11.2). The first two of these engines are Sjeng1, written by
Gian-Carlo Pascutto released in 1999, and Sunsetter2, developed
by Georg v. Zimmermann and Ben Dean-Kawamura in 2001.
Later the strong open-source chess engine Stockfish3 has been
adapted to play crazyhouse by Daniel Dugovic, Fabian Fichter,
and Niklas Fiekas. Stockfish won the first Crazyhouse Computer
Championships 2016 and also the second Crazyhouse Computer
Championships 2017 (Mosca, 2017). All these engines have in
common that they follow a minimax search regime with alpha-
beta pruning, as has been popularized by successful chess engines,
most notablyDeepBlue (Campbell et al., 2002). These engines are
often described as having a large number of node evaluations
and being strong at tactics in open positions, while sometimes
having trouble in generating strategical attacks2. Due to the
higher branching factor in crazyhouse, engines commonly reach
a significantly lower search depth compared to classical chess.

Generally, machine learning in computer chess (Skiena, 1986;
Fürnkranz, 1996) and in computer game playing in general
has a long history (Fürnkranz, 2017), dating back to Samuel’s
checkers player (Samuel, 1959), which already pioneered many
components of modern systems, including linear evaluation

1https://www.sjeng.org/indexold.html (accessed July 30, 2019).
2http://sunsetter.sourceforge.net/ (accessed July 30, 2019).
3https://github.com/ddugovic/Stockfish (accessed July 30, 2019).
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functions and reinforcement learning. The original example that
succeeded in tuning a neural network-based evaluation function
to expert strength by playing millions of games against itself is
the backgammon programTD-Gammon (Tesauro, 1995). Similar
ideas have been carried over to other board games (e.g., the chess
program KnightCap; Baxter et al., 2000), but the results were not
as striking.

Monte-Carlo Tree Search (MCTS; Kocsis and Szepesvári,
2006) brought a substantial break-through in the game of Go
(Gelly et al., 2012), featuring the idea that instead of using
an exhaustive search to a limited depth, as was common in
chess-like games, samples of full-depth games can be used to
dynamically approximate the game outcome.WhileMCTSworks
well for Go, in games like chess, where often narrow tactical
variations have to be found, MCTS is prone to fall into shallow
traps (Ramanujan et al., 2010). For such games, it has thus
been considered to be considerably weaker than minimax-based
approaches, so that hybrid algorithms have been investigated
(Baier and Winands, 2015).

Recently, AlphaGo has brought yet another quantum leap in
performance by combining MCTS with deep neural networks,
which were trained from human games and improved via self
play (Silver et al., 2016). AlphaZero improved the architecture
of AlphaGo to a single neural network which can be trained
without prior game knowledge. Silver et al. (2017a) demonstrated
the generality of this approach by successfully applying it not
only to Go, but also to games like chess and shogi, which
have previously been dominated by minimax-based algorithms.
While AlphaZero relied on the computational power of large
Google computation servers, for the games of Go4 and chess5

the Leela project was started with the goal to replicate AlphaZero
in a collaborative effort using distributed computing from the
crowd. Several other engines6 built up on Leela or are partly
based on the source code of the Leela project. Our work on
crazyhouse started as an independent project. Generally, only
little work exists on machine learning for crazyhouse chess. One
exception is the work of Droste and Fürnkranz (2008), who used
reinforcement learning to learn piece values and piece-square
values for three chess variants including crazyhouse. In parallel
to our work, Chi (2018) also started to develop a neural network
to learn crazyhouse.

3. OVERVIEW OF THE CRAZYARA ENGINE

Our crazyhouse bot CrazyAra is based on a (deep) neural
network that has been first trained on human games and is then
optionally refined on computer-generated games. The network
is used in a MCTS-based search module, which performs a
variable-depth search. In the following, we first briefly sketch all
components (see Figure 1). The details will then be described in
subsequent sections.

4https://github.com/leela-zero/leela-zero (accessed June 10, 2019).
5https://github.com/LeelaChessZero/lc0 (accessed June 10, 2019).
6See e.g., https://github.com/manyoso/allie, https://github.com/Cscuile/BetaOne
(accessed June 10, 2019).

3.1. Deep Neural Networks for Evaluating
Moves
CrazyAra trains a (deep) neural network model fθ (s) to
predict the value v ∈ [−1, 1] of a board state s and its
corresponding stochastic policy distribution p over all available
moves (section 5). Since we are learning the network based on
preexisting matches, we encode the ground truth label as a one-
hot vector. Specifically, depending on the final outcome of the
game, each board state is assigned one of three possible outcomes
{−1: lost, 0: draw, 1: win} from the point of view of the player
to move. Note that the number of draws is below 1% in human
crazhouse games and thus considerably lower than in classical
chess. These assignments are based on the assumption that given
a considerable advantage in a particular position for a player,
then it is highly unlikely that the respective player will lose the
game. This assumption is, however, heavily violated in our data
set partly due to the popularity of low time control games (see
section 7).

Actually, the neural network is a shared network, which both
predicts the value and policy (section 6) for a given board state in
a single forward pass. The loss function is defines as follows

l = α(z − v)2 − πT log p+ c‖θ‖2 (1)

where z is the true value, v the predicted value, π the true policy,
p the predicted policy and c the L2 regularization constant for
the network weights θ , respectively. We set α to be 0.01 in
order to avoid overfitting to the training values as suggested
by Silver et al. (2016). The weights of the neural network are
adjusted to reduce the loss by Stochastic Gradient Descent
with Neterov’s Momentum (NAG; Botev et al., 2017) (see also
section 8). We keep the neural network weights fixed after
training and do not apply any reinforcement learning using
self-play yet.

3.2. Monte-Carlo Tree Search for Improving
Performance
The trained (deep) neural network of CrazyAra has a move
prediction accuracy of about 60%, i.e., covers most of the play-
style of the average playing strength in the training set. Its
performance is then improved using a variant of the Upper
Confidence Bounds for Trees algorithm (Kocsis and Szepesvári,
2006), which integrates sample-based evaluations into a selective
tree search. Like with all Monte-Carlo tree search algorithms
(Browne et al., 2012), the key idea is to evaluatemoves by drawing
samples, where good moves are sampled more frequently, and
less promisingmoves are sampled less frequently, thereby trading
off exploration and exploitation. The key component is the (deep)
neural network fθ which guides the search in each step. For each
iteration t at state st , the following UCT-like formula (Equation 2)
is used for selecting the next action at leading to a new state st+1.

at = argmaxa(Q(st , a)+ U(st , a))

where U(s, a) = cpuctP(s, a)

√
∑

b N(s, b)

1+ N(s, a)
(2)

Frontiers in Artificial Intelligence | www.frontiersin.org 3 April 2020 | Volume 3 | Article 24

https://github.com/leela-zero/leela-zero
https://github.com/LeelaChessZero/lc0
https://github.com/manyoso/allie
https://github.com/Cscuile/BetaOne
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Czech et al. Deep Learning for Crazyhouse Chess

FIGURE 1 | Compilation pipeline of the CrazyAra engine.

This move selection continues until a new previously unexplored
state s∗ or a terminal node sT is reached. The state s∗ is
then expanded, the corresponding position is evaluated using
the learned neural network, and the received value evaluation
is propagated through all nodes on the path beginning from
the current position s∗ back to the root position s0. In case
of a terminal node sT the static evaluation according to the
game rules being either −1, 0, or +1 is used instead. After
enough samples have been taken, the most promising move, i.e.,
the node which has been visited most often, is played on the
board (section 9).

3.3. Availability of CrazyAra
CrazyAra is compatible with the Universal Chess Interface (UCI;
Kahlen and Muller, 2004) and uses the BOT API of lichess.org7

to provide a public BOT account8, which can be challenged to a
match when online. Furthermore, the executable and full source
code, including the data preprocessing, architecture definitions,
training scripts9, and MCTS search10 is available under the terms
of the GNU General Public License v3.0 (GPL-3.0; Free Software
Foundation, 2017).

Let us now dive into the details of each component
of CrazyAra.

4. INPUT REPRESENTATION OF
CRAZYARA

The input to CrazyAra is a stack of 8 × 8 planes where
each channel describes one of the feature of the current board
state described in Table 1. The main extension compared to
encodings used for classical chess is the addition of pocket
pieces accounting for 10 additional channels. Furthermore, we
remove the seven step history of previous board states and
only consider the current board position as input. This decision

7https://github.com/careless25/lichess-bot (accessed June 5, 2019).
8https://lichess.org/@/CrazyAra (accessed June 5, 2019).
9https://github.com/QueensGambit/CrazyAra (accessed June 5, 2019).
10https://github.com/QueensGambit/CrazyAra-Engine (accessed July 7, 2019).

has several motivations. Crazyhouse, as well as chess is a full
information game. In theory, the history is not needed to find
the best move. Dropping the game history also allows better
compatibility to use the engine in analysis mode. Otherwise one
would have to add dummy layers, which can distort the network
predictions. Avoiding the history also reduces the amount of
model parameters, the storage for saving and preprocessing
the data set. It also allows to have fewer channels early in
the network, as shown in Figure 3, as well as having higher
batch sizes during training and inference. Furthermore, it is
more consistent in combination with the use of transposition
tables (see section 9.2.5). For instance a position might be
reached from different transpositions and be assigned a different
value and policy target during training. In case of a history
free representation, the model will converge to the mean
of both training samples but with history and a small data
set, it might overfit to the individual targets. Furthermore,
the policy is not optimized to predict the best move in a
position but the same move as in corresponding game of the
training set. This results in the network trying to imitate the
playing behavior of the current player based on his and the
opponent’s past moves. As a downside, however, we lose the
attention mechanism provided by the move history and lose
information to detect “fortress” positions which are signified
by a series of shuffling moves and more common in standard
chess. Overall, this decision was based on reducing complexity
and avoiding negative side effects rather than improving the
validation loss.

To make the board presentation fully Markovian, we add an
additional feature channel, which highlights the square for an en-
passent capture if possible. In contrast to standard chess, piece
promotions are a lot more common and often occur multiple
times in a game. If a promoted piece gets captured, it will be
demoted to a pawn again and added to the pocket of the other
player. To encode this behavior, we highlight each square of a
piece that has been promoted using a binary map for each player.
Overall, the representation to CrazyAra is fully compatible with
the standard Forsyth–Edwards Notation (FEN) for describing
a particular board position in a compact single ASCII string,
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TABLE 1 | Plane representation for crazyhouse.

Feature Planes Type Comment

P1 piece 6 Bool Order: {PAWN, KNIGHT, BISHOP, ROOK, QUEEN, KING}

P2 piece 6 Bool Order: {PAWN, KNIGHT, BISHOP, ROOK, QUEEN, KING}

Repetitions* 2 Bool Indicates how often the board positions has occurred

P1 pocket count* 5 Int Order: {PAWN, KNIGHT, BISHOP, ROOK, QUEEN}

P2 pocket count* 5 Int Order: {PAWN, KNIGHT, BISHOP, ROOK, QUEEN}

P1 Promoted Pawns 1 Bool Indicates pieces which have been promoted

P2 Promoted Pawns 1 Bool Indicates pieces which have been promoted

En-passant square 1 Bool Indicates the square where en-passant capture is possible

Color* 1 Bool All zeros for black and all ones for white

Total move count* 1 Int Sets the full move count (FEN notation)

P1 castling* 2 Bool Binary plane, order: {KING_SIDE, QUEEN_SIDE}

P2 castling* 2 Bool Binary plane, order: {KING_SIDE, QUEEN_SIDE}

No-progress count* 1 Int Sets the no progress counter (FEN halfmove clock)

Total 34

The features are encoded as a binary maps and features with* are single values set over the entire 8× 8 plane.

which holds all necessary information to recover a game state11.
However, the information of how often a particular position has
already occurred gets lost when converting our representation
into FEN.

In over-the-board (OTB) games, the players see their pieces
usually in the first rank. We make use of symmetries by flipping
the board representation on the turn of the second player, so that
the starting square of the queen is always to the left of the king
for both players.

4.1. Input Normalization
All input planes are scaled to the linear range of [0, 1]. For most
computer vision tasks, each channel of an image is encoded as
8 bit per pixel resulting in a discrete value between [0, 255].
Commonly, these input images are divided by 255 to bring each
pixel in the [0, 1] range. For ImageNet (Russakovsky et al., 2015),
it is also frequent practice to subtract the mean image from the
train data set for every input. In the case of crazyhouse chess, we
define the following constants, which act as a maximum value
for each non-binary feature (see Table 1). We set the maximum
number of pocket pieces for each piece type to 32, the maximum
number of total moves to 500, and the maximum value of the
no progress counter to 4012. Next we divide each correspond
feature of an input sample with these maximum values. Note
that these maximum values only describe a soft boundary and
can be violated without breaking the neural network predictions.
Some values such as the maximum number of pocket pieces and
the maximum number of moves could have also been set to a
different similar value.

To illustrate the benefits of including this step, we conducted
the following experiments, learning curves shown in Figure S1,
p. 2. We trained a small AlphaZero like network with seven

11More information on the FEN notation can, e.g., be found at: https://en.
wikipedia.org/wiki/Forsyth-Edwards_Notation.
12According to the 50 move rule a value of 50 is recommended instead.

residual blocks on a subset of our training data using 10000
games. For the optimizer we used ADAM (Kingma and Ba, 2015)
with its default parameters: Learning-rate =0.001, β1 = 0.9, β2 =

0.999, ǫ = 10−8 and Stochastic Gradient Descent with Neterov’s
Momentum (NAG; Botev et al., 2017) using our learning rate
and momentum schedule (cf. section 8). When training both
optimizer with and without normalization for seven epochs with
a weight decay of 10−4 and a batch size of 1024, one can make the
following observations. Both optimizers highly benefit in terms of
convergence speed and final convergence when using our input
pre-processing step. ADAM gains +2, 3% whereas NAG gains
+9, 2%move prediction accuracy. The ADAMoptimizer is much
more robust when dealing with the unnormalized feature set due
to its internal automatic feature rescaling, but is outperformed in
terms of generalization ability when using NAG with our defined
learning and momentum schedule. This agrees with research on
different optimizer (Keskar and Socher, 2017).

4.2. Illustrative Example for Predictions
Essentially, we treat learning to play crazyhouse as modified
computer vision problem where the neural network fθ conducts
a classification for the policy prediction combined with a
regression task for the value evaluation.

Figure 2 visualizes our input representation using an
exemplary board position of the first game in our test set.
The pseudo color visualization, which neglects the pocket
information of both players for better visualization purposes,
shows how the neural network receives the board as a 8 × 8
multi-channel image.

Next, the activationmaps of a fully trained network (section 6)
for a single prediction are shown in Figure 3. The activation
maps in Figure 3A are the extracted features after the first
convolutional layer and in Figure 3B after the full residual tower.
In the initial features, the pawn formations for black and white
are still recognizable and the features are sparse due to the usage
of ReLU activation and our compact input representation. The
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A

C

B

FIGURE 2 | Plane representation of an exemplary game position of our test data set, FEN: r2q3k/ppp2p1p/2n1pN2/3pP3/3P4/4BB2/PPP2PPP/R2Q1RK1[Rbbnnp] w -

- 4 22. (A) Classical board representation, (B) Pseudo color visualization, (C) Plane representation.
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A B

C D

FIGURE 3 | Activation maps of model 4-value-8-policy when processing input sample (Figure 2) from the test data set. (A) Features after conv0-batchnorm0-relu0,

(B) Features after the full residual tower, (C) Final value activation maps, (D) Final policy activation maps.

final features visually exhibit a high contrast and are fed to both
the value and policy evaluation head.

The final spatial activation map of the value head are summed
along the first axis and overlayed on top of the given board
position in Figure 3C. Dark orange squares represent high
activation regions and unsaturated those of low importance.
The value evaluation fundamentally differs from those used
in other crazyhouse engines and fully relies on the estimated
winning chances by the neural network for a particular position.
Formulating a handcrafted value evaluation for crazyhouse
is challenging because game positions often require high
depth in order to reach a relatively stable state and the
element of initiative and king safety is intensified and hard
to encode as a linear function. In the case of Stockfish, its
specialist list of chess hyper parameters including the values for
pieces on the board and in the pocket, KingAttackWeights,
MobilityBonus, and QueenThreats has been carefully fine-
tuned for the crazyhouse variant with the help of a SPSA Tuner
(Kiiski, 2014; Fichter, 2018).

Based on the games of CrazyAra with other crazyhouse
engines and human players, it seems to attach high importance
to initiative and often seemingly, intuitively sacrifices pieces in
tactical or strategic positions in order to increase the activity of its
pieces. This often leads to strong diverging position evaluations

compared to other engines (section 11.2) because the value
evaluation of most engines is fundamentally based on material.
CrazyAra seems to have a higher risks of choosing a sacrifice
which was not sufficiently explored or missing a tactical sequence
rather than slowly losing due to material disadvantage. The
tendency for an active play-style is primarily due to a prominent
proportion of human crazyhouse players in our data set which
are known to play aggressively. Moreover, most players are
more prone to make a mistake when being under attack and
in time trouble which influences the value evaluation. On the
other hand, there are also players which prefer consolidation
moves instead of risking a premature attack. During the course of
training, the network converges to the best fit limited by its model
expressiveness which captures the play style of the majority of the
games in our data set.

5. OUTPUT REPRESENTATION OF
CRAZYARA

The value output, which represents the winning chances for a
game position, represents as a single floating point value in the
range [−1,+1] as described in section 3.1.
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For the policy output we investigate two conceptually different
representations. First, the policy head consists of a single
convolutional layer with a variable amount of feature channels
followed by a fully connected layer storing all 2272 theoretical
plausible moves as described in UCI-notation. Each entry in
this vector stands for a particular predefined move and queen
promoting moves are treated as individual moves, denoted with
a suffix q, e.g., e7e8q. This form of policy representation was also
used by13.

In the second version, the policy head representation directly
encodes each of the 2272 moves on a particular square on 81
channels of 8 × 8 planes: first come the queen moves in all
compass direction, followed by all knight moves for each square,
promoting moves, and finally all dropping moves. Queen moves
also include all pawn, bishop, rook, and king moves. We spent
three additional channels for queen promotion moves, to be
consistent with the UCI-move-representation14. However, please
keep in mind that most squares of the 5184 values describe illegal
moves. This is due to the fact that the corresponding move would
lead outside of the board and that promotingmoves are only legal
from the second last row on.

In the UCI-move-representation, en-passant moves and
castling moves do not have separate vector indices and king
side and queen side castling is denoted as the move e1g1 and
e1c1, respectively. Treating these as special move or as king
captures rook, which would ensure a better compatibility with the
chess960—also known as Fischer random variant, is a valuable
alternative for the network.

6. DEEP NETWORK ARCHITECTURE OF
CRAZYARA

Finding a (deep) neural network for playing board games covers
three criteria, which determine the playing strength when using
the learnt model in MCTS. First, the performance, i.e., the policy
and value loss on the test data set is the main component for
predicting the best moves at each roll-out. Second, a better
performance is often associated with a longer training and
inference time leading to less evaluations per second during
search. Third, the memory consumption per prediction specifies
the maximum achievable batch size.

To address these points, CrazyAra makes use of a dual
architecture design with a tower of residual blocks followed by
a value and policy head as recommended by Silver et al. (2017a).
The originally proposedAlphaZero architecture differs frommost
common computer vision architectures in several ways: there
are no down-sampling operation such as max-pooling, average
pooling, or strided convolution to preserve the spatial size and
no increase in feature channels per layer. Consequently, the
number of parameters is rather high and most comparable with
WideResnet (Zagoruyko and Komodakis, 2016).Moreover, in the
final reduction step for selecting the classes, convolutional layers

13https://github.com/Zeta36/chess-alpha-zero (accessed June 8, 2019)
14Details can be found in Table S1, p. 3.

are used instead of a global average pooling layer due to the
spatial importance of defining moves.

Residual connections (He et al., 2016a) play an important role
for training computer vision architectures effectively. Later the
original version has been revisited in ResneXt (Xie et al., 2017)
making use of branching in form of group convolutions.

We train several different architectures on the same training
set with the same optimizer settings15.

Specifically, model 4-value-8-policy, 8-value-16-policy, and
8-value-policy-map essentially follow the original AlphaZero
network architecture (see Table S2) but use different value
and policy heads. Specifically, 4-value-8-policy means that four
channels in the value head and eight channels in the policy head
are used. 8-value-policy-map has a policy head has a predefined
mapping of move to squares.

First we tried training the original AlphaGoZero network
architecture 1-value-2-policy (Silver et al., 2017b), which has one
channel for the value and two channels for the policy head. This
unfortunately, did not work for crazyhouse and led to massive
gradient problems, especially for deeper networks. The reason
is that the policy for crazyhouse is much more complex than
in the game of Go. In Go you can only drop a single piece
type or pass a move, but in crazyhouse you can do any regular
chess move and additionally drop up to five different piece types.
When only relying on two channels, these layers turn into a
critical bottleneck, and the network learns to encode semantic
information on squares, which are rarely used in play. Based on
our analysis of the policy activation maps, similar to Figure 3D,
we observed that for these networks, usually squares on the
queen-side hold information such as the piece type to drop. In
cases where these squares are used in actual play, we encountered
massive gradient problems during training.We found that at least
eight channels are necessary to achieve relatively stable gradients.

RISEv2-mobile/8-value-policy-map-mobile (Table 2) is a new
network design which replaces the default residual block with
the inverted residual block of MobileNet v2 (Sandler et al.,
2018) making use of group depthwise convolutions. Moreover,
it follows the concept of the Pyramid-Architecture (Han et al.,
2017): due to our more compact input representation only about
half activation maps are used after the first convolution layer
(Figure 3A). Therefore, the number of channels for the 3 × 3
convolutional layer of the first block start with 128 channels
and is increased by 64 for each residual block reaching 896
channels in the last block. We call this block type an operating
bottleneck block due to either reducing or expanding the number
of channels.

It also uses Squeeze Excitation Layers (SE; Hu et al., 2018)
which enables the network to individually enhance channels
activation maps and based the winning entry of the ImageNet
classification challenge ILSVRC in 2017 (Russakovsky et al.,
2015). For our network we use a ration r of two and apply SE-
Layer to the last five residual blocks. The name RISE originates
from the Resnet architecture (He et al., 2016a; Xie et al., 2017),
Inception model (Szegedy et al., 2016, 2017), and SE-Layers (Hu
et al., 2018).

15Figure 4 was generated with the tool https://github.com/HarisIqbal88/
PlotNeuralNet (accessed August 8, 2019).
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TABLE 2 | RISEv2 mobile/8-value-policy-map-mobile architecture: 13× 256.

Layer name Output size
RISEv2 mobile

40-layer

conv0

batchnorm0

relu0

256× 8× 8 conv 3× 3, 256

res_conv0_x

res_batchnorm0_x

res_relu0_x

res_conv1_x

res_batchnorm1_x

res_relu1_x

res_conv2_x

res_batchnorm2_x

shortcut + output

256× 8× 8











(SE-Block, r = 2) 









×13
conv 1× 1, 128+ 64 x

dconv 3× 3, 128+ 64 x

conv 1× 1, 256

Value head Policy head 1
2272/

5184
see TablesS4–S6, p. 5–6.

Model 8-value-policy-map-preAct-relu+bn (see Table S3)
replaces the default residual block with a preactivation block (He
et al., 2016b) and adds an additional batchnormalization layer to
each residual block as suggested by Han et al. (2017).

Dong et al. (2017) and Zhao et al. (2017) discovered that
the common 1:1 ratio between the number of convolutional
layers and ReLU activations is suboptimal and that removing
the final activation in a residual block or the first activation in
the case of a pre-activation can result in improvements. Model
8-value-policy-map-preAct-relu+bn and RISEv2-mobile/model8-
value-policy-map-mobile follow a 2:1 ratio.

Furthermore, motivated by the empirical findings16,17,18 we
also tried flipping the conventional order of Batchnorm-ReLU
into ReLU-Batchnorm. Here, we observed a faster convergence
during training, but also witnessed NaN-values. The model
continued to converge to NaN-values even when relying on
checkpoints fall-backs of a healthy model state.

Our proposed model19 8-value-policy-map-mobile is up to
three times faster on CPU and 1.4 times faster on GPU. The
reason why the model does not scale as efficiently on GPU like
on CPU is because group convolution and Squeeze Excitation
layers are not as suited for GPU computation because they cause
memory fraction (Hu et al., 2018; Ma et al., 2018).

7. TRAINING DATA

Now that the architectures are in place, let us turn toward the
data used for training. As training data we mainly used 569537

16https://github.com/pudae/tensorflow-densenet/issues/1 (accessed July 30, 2019).
17https://github.com/keras-team/keras/issues/1802 (accessed July 30, 2019).
18https://www.reddit.com/r/MachineLearning/comments/67gonq/
d_batch_normalization_before_or_after_relu/ (accessed July 30, 07).
19Inference time comparison can be found in Table S9, p. 7

human games20 played by lichess.org users from January 2016 to
June 2018 in which both players had an Elo≥ 2000. The majority
of the games used for training have been played by a small group
of active players: 20 players participated in 46.03% of all games21.

In crazyhouse, the opening advantage for the first player is
even more pronounced and the chance to draw is significantly
reduced compared to chess. We used all games ending in
checkmate, resignation, a draw or time forfeit except aborted
games. All games and moves in our data set are equally weighted
in the loss function (1).

The average Elo rating for a single game is 2279.61 and very
short time controls are the most popular.

One minute games make up 45.15% of all games. As
a consequence the chances of blundering is increased and
the quality of moves usually declines over a course of
a game. Some games are also won by winning on time
in a lost position in which one person gives as many
possible checks.

Additionally, however, we also generated a data set based
on 121571 Stockfish self play games for training a version
called CrazyAraFish. For each game position Stockfish used
one million ±100000 nodes with a hash size of 512mb.
The opening book was based on a set of neural network
weights22 which was trained on the lichess.org database.
Consequently the opening book corresponds to the most
popular human crazyhouse openings. The opening suite
features 1000 unique opening positions where each opening
had 5.84± 2.77 plies. One ply describes a half-move in
chess notation.

20https://database.lichess.org/ (accessed July 30, 2019).
21Statistics about the data set can be found in Figures S3–S5, p. 3–4.
22The model used was based on our RISEv1 architecture: https://github.com/
QueensGambit/CrazyAra/wiki/Model-architecture
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FIGURE 4 | Comparison of the activation map shapes for different architecture models. All models process the same input representation via a sequence of residual

blocks followed by a value and policy head. (A) Model architecture 4-value-8-policy: 19 residual blocks followed by a value head with 4 channels and a policy head

with 8 channels. (B) Model 8-value-policy-map: 19 residual blocks followed by a value head with 8 channels and a policy map representation. (C) Model

RISEv2-mobile/8-value-policy-map-mobile architecture: 13 incrementally increasing operating bottleneck blocks.

A B

FIGURE 5 | Schedules used for modifying the parameters of Nesterov’s stochastic gradient descent optimizer. (A) Learning rate schedule, (B) Momentum schedule.

8. SUPERVISED LEARNING TO PLAY
CRAZYHOUSE

We trained the resulting models for seven epochs, using a
one cycle learning rate schedule combined with a momentum
schedule (Smith and Topin, 2019) and updating the weights
of the neural network by Stochastic Gradient Descent with
Neterov’s Momentum (NAG; Botev et al., 2017). For the batch

size we chose the highest value possible on our hardware, which
is 1024, and a weight-decay of 10−4 for regularization. The first
iterations were treated as a warm-up period followed by a linear
long cool-down period. The maximum and minimum learning
rate (Figure 5) were set to 0.35 and 0.00001, respectively, and
were determined using a learning rate range test (Smith, 2018).
The maximum learning rate of 0.35 is higher than the typical
learning rates and acts as an additional source of regularization
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(Smith and Topin, 2019). The momentum schedule was built
based on the learning rate schedule (Figure 5) with a maximum
value of 0.95 and minimum value of 0.85. Linear schedules, in
contrast to a step-wise learning rate reduction by a fixed factor,
greatly reduced the number of training iterations needed and
also yielded a higher generalization ability. The advantages of
linear schedules have also been verified on ImageNet by Mishkin
et al. (2017). A summary of the hyperparameter configuration for
supervised learning can be found in Table S7, p. 6.

As a new metric, we define the “value accuracy sign”
metric, which determines if the network predicts the correct
winner given a random game position (Figures 6, 7). Drawn
games are neglected for this metric. Generally, improving
the performance on the value loss is harder because it
has a lower influence on the combined loss. Nonetheless,
the gap between validation and train loss is still higher
for value prediction, which confirms that reducing its
influence is necessary to avoid overfitting on this small
data set (Figure 6).

Furthermore, the value loss decreased over the course of a
game. After training, we evaluated our models using a mate in
one data set (Table 3), which was generated using 1000 positions
from our test set. On average there are 115.817 legal moves, from
which 1.623 lead to direct mate. As our best mate in one accuracy,
we achieved 0.955 with a value loss of 0.047. Because the first
candidate moves sometimes lead to a mate in #2 or mate in #3
instead, we also provide the top five mate in one accuracy where
we achieved a value of 0.999.

Model 8-value-policy-map-preAct-relu+bn and RISEv2-
mobile/8-value-policy-map-mobile, which both use a 2:1
convolution-ReLU ratio, performed best regarding the combined
loss, but worse for the value loss compared to other models.

For training on the Stockfish self play data, we reused the
above-mentioned neural network that we have also used for
Stockfish’s opening book (cf. footnote 22) and the same supervised
learning configuration. We employed transfer learning for
parameter initialization which avoids relearning the move
generation based on a smaller data set and enabled an initial
move prediction accuracy of 46.29%. Alternatively, one could
freeze the first layers of the network and only fine-tune the last
layers or retrain the network from scratch. We changed the
maximum learning rate to 0.01 and set the minimum learning
rate 0.00001. After convergence the move prediction increased
to 56.6% on the validation set. We also achieved a significant
lower value loss of 0.4407 on this set. This is primarily because
the games by Stockfish do not contain as many back and forth
blunders as human games and the prior win-probability for
White is higher.

9. CONFIGURATION OF THE
MONTE-CARLO TREE SEARCH

Only relying on the initial prior policy p provided by the
supervised model fθ for playing will remain unsatisfactory in a
complex environment such as crazyhouse. Therefore, the policy
is now improved using Monte Carlo Tree Search (MCTS). An

overview of the MCTS hyperparameters and their respective
values is available in Table S8, p. 6.

9.1. Default Parameter Settings
For the MCTS we used the most recent version of the
PUCT algorithm due (Silver et al., 2017a). The current game
position which is subject to search is the root node of
the search tree. If this position has already been expanded
in the previous search then the respective subtree becomes
the new search tree. Next, the statistics of the root node
are updated through a continuous sequence of rollouts. A
rollout or simulation is defined as the process of traversing
the tree until a new unexplored node is encountered. Then,
this node is expanded and evaluated by the (deep) neural
network, returning the value prediction, and distribution over
all possible moves. This value prediction is backpropagated
through the tree for every node that has been visited along
its path and the process restarts. No random rollouts are
used and all predictions are provided by a single shared
neural network.

Specifically, a node is selected at each step t by taking
at = argmaxa(Q(st , a) + U(st , a)). The Q-values Q(st , a)
of state st for every available action a are calculated by a
simple moving average (SMA) over all node evaluations and
terminal visits of their respective sub-trees. Each newly acquired
state evaluation is multiplied by −1 after every step along its
back-propagated visited search path. The U-values are based
on a combination of the current number of node visits and
the predicted probability distribution P(s, a) by the neural
network: U(s, a) = cpuctP(s, a)

√
∑

b Nr(s, b)/(1+ N(s, a)). We
choose cpuct-init = 2.5 as our U-Value weighting constant,
also called exploration constant, which is scaled over the
search by

cpuct(s) = log

∑

a N(s, a)+ cpuct-base + 1

cpuct-base
+ cpuct-init (3)

with a cpuct-base of 19652.We apply dirichlet noise with a factor of
25% to the probability distribution P(s, a) of the root node with α

of 0.2 to encourage exploration. To avoid that all threads traverse
the same path during a concurrent rollout we use a virtual loss
of 3 which temporarily reduces the chance of visiting the same
current node. We initialized the Q-values to −1 for all newly
unvisited nodes. This value caused a lot of misunderstandings
and confusion because in the initial AlphaZero papers the
network was described to return a value range output of [−1,+1],
but the initialization of Q-Values to be zero assumed the values
to be in the range of [0, 1]. When treating unvisited nodes as
draws, it often led to bad search artifacts and over-exploration,
especially when explored positions have negative values because
unvisited and low visited nodes have a higher value compared to
more visited nodes. As an intermediate solution when initializing
unvisited nodes as draws, we introduced a pruning technique
in which nodes are clipped for the rest of the search that (1)
did not return a better value prediction than their parent node
and (2) have a prior policy visit percentage of below 0.1%. This
pruning was used in the matches with JannLee (section 11.1)
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A B

C D

FIGURE 6 | Learning progress of training for seven epochs on the lichess.org crazyhouse data set for different model architectures. 4-value-8-policy means that four

value channels and eight policy channels are used in the respective network heads. 8-value-policy-map means that eight value channels are used in the value head

and the policy is encoded in a direct move to square mapping. (A) Policy loss, (B) value loss, (C) policy accuracy, (D) value accuracy sign.

A B

FIGURE 7 | Detailed view on the last iterations of training for different model architectures. (A) Validation policy loss, (B) Validation value loss.
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TABLE 3 | Performance metrics for different models on the lichess.org crazyhouse validation set.

Evaluation metrics on

the validation set

4-value-

8-policy

8-value-

16-policy

8-value-

policy-map

8-value- policy-map-

mobile

8-value- policy-map-

preAct -relu+bn

Combined loss 1.2138 1.2166 1.1964 1.1925 1.1896

Policy loss 1.2184 1.2212 1.2008 1.1968 1.1938

Value loss 0.7596 0.7601 0.7577 0.7619 0.7663

Policy accuracy 0.5986 0.5965 0.6023 0.6032 0.6042

Value accuracy sign 0.6894 0.6888 0.6899 0.6889 0.6868

Mate-in-one-accuracy 0.954 0.942 0.955 0.945 0.955

Mate-in-top-5-accuracy 0.999 0.998 0.999 0.998 0.999

Mate-in-one-value-loss 0.0532 0.0474 0.0560 0.0567 0.0624

Bold entries indicate the best metric values: lowest value for loss and highest for accuracy.

and caused a major problem in long time control settings: a key
move, which would have defended a certain mate threat, has been
clipped.

9.2. Changes to Monte-Carlo Tree Search
However, to really master the game of crazyhouse
at the level of a world champion, we also had to
modify standard MTCS in several ways that we
now discuss.

9.2.1. Integration of Q-Values for Final Move Selection
For selecting the final move after search, the vanilla version uses
an equation only based on the number of visits for each direct
child node

π(a|s0) =
N(s0, a)

1
τ

∑

b N(s0, b)
1
τ

, (4)

where τ is a temperature parameter which controls the
exploration. In tournament play against other engines, τ is set
to 0 which results in choosing the move with the highest number
of visits.

We investigated taking information about the Q-values
into account, which do not require additional search time
and are updated for every rollout. Using Q-values for
move selection is motivated by the fact that the most
frequently visited node is not necessarily the best one,
but the quality for each move is in principle described by
its Q-value. Usually there is a strong correlation between
the most visited move and the move with the highest Q-
value. However, in cases when a strong counter reply was
only discovered late during search, the Q-value converges
quickly, but the respective node still remains at most visits for
several samples.

Silver et al. (2018) also acknowledged that deviating from the
most visited node for move selection can yield better results:
“When we forced AlphaZero to play with greater diversity (by
softmax sampling with a temperature of 10.0 among moves for
which the value was no more than 1% away from the best
move for the first 30 plies) the winning rate increased from 5.8
to 14%.” When naively picking the node with the highest Q-
value or directly combining Q-values with number of visits, we

encounter the problem that Q-values of nodes with low visit
counts can be poorly calibrated and can exhibit an overestimation
of its actual value. Therefore, we apply the following procedure.
First, we re-scale the Q-values into the range [0, 1] and set
all Q-values with a visit count < Qthreshmaxa(N(s0, a)) to 0.
We set Qthresh to 0.33 and denote these updated Q-values
as Q’(s0, a).

The Q-values are then integrated as a linear combination of
visits and Q-values:

π(a|s0) = (1−Qfactor)
N(s0, a)

∑

b N(s0, b)
+Qfactor Q’(s0, a). (5)

9.2.2. Q-Values With Principal Variation
The Q-values can be further adjusted by updating them taking
the information of the Principal Variation (PV) for each move
candidate into account:

Q(s0, a) = min(Q(s0, a), Q(st , x)), (6)

where t = 5 and x is the selected move at each depth
along the rollout. The PV-line describes the suggested optimal
line of play for both players and is constructed by iteratively
choosing the next move according to Equation (5) until st
or a terminal node sT has been reached. As can be seen in
Figure 8 and Table 4, the relative increase in Elo23 is more
drastic compared to the scalability of AlphaZero for classical
chess and more similar to the Elo increase of AlphaZero for
shogi (Silver et al., 2017a). We think this is due to the lower
chances for draws and higher move complexity of crazyhouse
which statistically increases the chance to blunder. This makes
crazyhouse an excellent testing environment for both MCTS and
Alpha Beta Search because effects of changes in the search are
reinforced while the number of draws and average game length is
vastly reduced.

Move selection which also makes use of Q-values
outperformed the vanilla version for a node count < 1600.
To improve its behavior also for higher node counts, we applied

23Matches are available in Data Sheet 2.ZIP. The starting opening
positions are available at: https://sites.google.com/site/zhassociation/download:
ccva-50start.pgn (accessed July 30, 2019).
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a dynamic adaption of Qthresh, similar to Equation (3), and keep
Qfactor fixed at 0.7:

Qthresh(s) = Qthresh-max − exp

(

−

∑

a N(s, a)

Qthresh-base

)

(Qthresh-max

− Qthresh-init), (7)

where Qthresh-init is 0.5, Qthresh-max is 0.9, and Qthresh-base is 1965.

9.2.3. Centi-Pawn Conversion
To achieve a better comparability with other crazyhouse engines,
we convert our final Q-value of the suggested move after search
to the centi-pawn (cp) metric with

cp = −
v

|v|
· log

1− |v|

log λ
, (8)

where λ is 1.2.

FIGURE 8 | Self Elo increase with respect to nodes.

9.2.4. Time Dependent Search
We also integrate a basic time management system, which does
not search moves based on a fixed number of nodes, but on a
variable move time tcurrent. This makes the engine applicable on
different hardware and better suited for playing other engines.
There are twomain time settings for engine games. In basic one, a
predefined constant time is assigned for a given number of moves
(e.g., 40). In sudden deathmode a total game time is given to both
players for all moves. Optionally, the time can be increased by a
certain amount on each move, also called increment, in order to
reduce the risk of losing on time in long games.

Our time management uses in principle a fixed move time,
which depends on the expected game length, remaining time,
and increment. We allocate a constant move time and add 70%
of the increment time per move. For sudden death games, we
assume a game length of 50 and switch to proportional based
system at move 40. In the proportional system, we allocate 5%
of the available move time and therefore assume that the game
will last 20 moves longer. This formula models the empirical
distribution of the expected number of moves to the end of the
game as presented by Vučković and Šolak (2009).

Moreover, we stop the search immediately if there is only a
single legal move available (e.g., the king is in check with only
one escape square) or prematurely at half the allocated time for
easier positions in order to save time for the rest of the game.
We consider a position to be easy if the first candidate move of
the prior policy has a likelihood >90% and remains the move
with the highest Q-value. We extend the search-time by half of
the additional preassigned time for critical positions. A position
is considered critical if the Q-value of the current candidate
move is 0.1 smaller than the Q-value of the last played move of
the previous state. The concept of prematurely stopping MCTS
search for the game of Go has been investigated by Baier and
Winands (2016).

Last, for games with human players, we also adjust the
allocated time per move

tcurrent = tcurrent + tfactortcurrent, (9)

where tfactor ∼ [−0.1,+0.1] to increase playing variety.

TABLE 4 | Match results of different MCTS move selection types playing each setting against 800 simulations per move using only the most visited node.

Type Simulations + − = Elo difference

Default (visits only) 800 − − − 0

Default (visits only) 1600 80 20 0 240.82± 88.88

Default (visits only) 2400 93 6 1 463.16± 168.96

Visits & q-values 800 51 48 1 10.43± 68.57

Visits & q-values 1600 87 12 1 338.04± 110.92

Visits & q-values 2400 91 8 0 422.38± 148.92

Visits & q-pv-values 800 57 41 2 56.07± 69.14

Visits & q-pv-values 1600 87 13 0 330.23± 110.06

Visits & q-pv-values 2400 90 10 0 381.70± 128.31

Matches were generated with CrazyAra 0.4.1 using model 4-value-8-policy. Games start from 50 unique CCVA opening positions with a temperature value of zero for all settings.

Bold entries indicate the best setting that produced the highest Elo difference for a fixed number of simulations.

Frontiers in Artificial Intelligence | www.frontiersin.org 14 April 2020 | Volume 3 | Article 24

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Czech et al. Deep Learning for Crazyhouse Chess

9.2.5. Transposition Table
Furthermore, we introduce a transposition table, which stores
a pointer to all unique nodes in the tree. Since the number of
nodes is several magnitudes lower than for alpha beta engines,
its memory size is negligible. Transposition tables are used in
most modern chess engines as a look-up table to store and
reuse the value evaluation for already explored nodes. In the
case of MCTS, we can reuse already existing policy prediction
vectors as well as value evaluations. Additionally, one might copy
the move generation instead of recomputing it. Transpositions
occur frequently during search in chess games and can increase
the evaluated nodes per second by a factor of two or more on
certain position. Because our input representation depends on
themovement counter as well as the no-progress counter, we only
take transpositions into account where these counters share the
same value. f the node being in the set of its parent nodes could
even result in a better performance.

9.2.6. U-Value Exploration Factor
We also notice that for certain positions, if a node was found with
a Q-value ≫0, then the node exploration of unvisited nodes is
sharply reduced. This is because all nodes are initialized with aQ-
value of−1 and represent losing positions. We make the division
factor for calculating the U-values parameterizable:

U(s, a) = cpuctP(s, a)

√
∑

b N(s, b)

udivisor + N(s, a)
. (10)

This increases the chance of exploring unvisited nodes at least
once, according to the principle

“When you see a good move, look for a better one”—
Emanuel Lasker.

A udivisor < 1 increases the need of exploring unvisited nodes and
can help to reduce the chance of missing key moves, but comes
at the cost of losing search depth. To avoid over-exploration at
nodes with a low visits count, we reduce udivisor over time, similar
to Equation (11):

udivisor(s) = umin − exp

(

−

∑

a N(s, a)

ubase

)

(umin − uinit), (11)

where umin is 0.25, uinit is 1, and ubase is 1965.

9.2.7. Integration of Domain Knowledge
Checks are usually important moves in crazyhouse and it can
have detrimental effects if these are missed during search. To
ensure that checks have been sufficiently explored, we add the
option to enhance the prior probability for all checking moves
Pcheck’(s, a) < checktresh by

Pcheck’(s, a) = Pcheck’(s, a)+ checkfactormax
a

(P(s, a)), (12)

where we set checktresh to 0.1, checkfactor to 0.5, and renormalize
the distribution afterwards. This modification has the following
motivations: the preassigned order for checking moves should

be preserved, but checking moves with a low probability are
preferred over low confidence non-checking moves. The top-
candidate non-checking moves should remain as the move with
the highest prior probability.

Including this step might not be beneficial as soon as our
network fθ reaches a certain level of play, but it provides
guarantees and was found to greatly increase the efficiency
in positions where a forced mate is possible or in which the
opponent is threatening a forced mating sequence. Further, we
disable any exploration for a particular node as soon as a move
was found which leads to a winning terminal node. A direct
checkmate is a case which is known to be the best move for all
available moves, so additional exploration is unneeded an can
only distort the value evaluation.

10. DISCUSSION

Before moving on to our empirical evaluation, let us discuss the
pros and cons of the techniques used in CrazyAra compared to
alternatives as well as provide an illustrative example for our
MCTS approach.

10.1. The Pros and Cons of MCTS for
Crazyhouse
As mentioned, alpha-beta engines are strongest at open tactical
positions. This holds particularly true for finding forced
sequences such as a long series of checks. For example, it is
common for Stockfish to find a forced mate of 20 or up to 40
half-moves in under 5 s in crazyhouse games given sufficient
computing power.

In contrast, MCTS shows the opposite behavior and shares
similar strength and weakness when compared to human play.
It exhibits a significantly lower number of node evaluation and
is generally inferior in solving tactical positions quickly if the
tactic does not follow its current pattern recognition. On the
other hand, it is often better at executing long term strategies and
sacrifices because its search is guided by a non-linear policy and is
able to explore promising paths more deeply. Alpha-beta engines
commonly purely rely on handcrafted linear value evaluations
and there is no flow of information in a proposed principal
evaluation. The non-linear, more costly value evaluation function
can also allow it to vary between small nuances in similar
positions. Additionally, (deep) neural networks are able to
implicitly build an opening book based on supervised training
data or self-play, whereas traditional alpha-beta engines need
to search a repeating position from scratch or have to store
evaluations in a look-up table which is linearly increasing in size.

In crazyhouse the importance of tactics is increased compared
to classical chess and generally when a certain tactic has been
missed, the game is essentially decided in engine vs. engine
games. Stronger strategic skills result in long grinding games,
building up a small advantage move by move, and usually take
longer to execute.

MCTS is naturally parallelizable and can make use of
every single node evaluation while minimax-search needs to
explore a full depth to update its evaluation and is harder to
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parallelize. Also the computational effort increases exponentially
for each depth in minimax-search. Besides that, MCTS returns a
distribution over all legal moves which can be used for sampling
like in reinforcement learning. As a downside, this version of
MCTS highly depends on the probability distribution a ∼ P(s, a)
of the network fθ which can have certain blind spots of missing
critical moves. Minimax search with a alpha-beta pruning is
known to have the problem of the horizon effect where a miss-
leading value evaluation is given because certain tactics have
not been resolved. To counteract this, minimax-based algorithms
employ quiescence search to explore certain moves at greater
depth (Kaindl, 1982). For MCTS search taking the average over
all future value evaluation for all expansions of a node can be
misleading if there is only a single winning line and in the worst
case to divergence.

10.2. Exemplary MCTS Search
Figure 9 shows a possible board position in a crazyhouse game
in which P(s, a) misses the correct move in its first 10 candidate
moves. The white player has a high material advantage, but
black is threatening direct mate by Qxf2# as well as Qxb1

followed by R@h1#. White has to find the following sequence
of moves 24. N@e6!! fxe6! 25. Bxf6! Ke8 26. P@f7!! Kxf7

27. N@g5! Ke8 28. Nxh3! to defend both mate threats and to
keep a high winning advantage. Intermediate captures such as
Rxe4 or N@c6 or a different move ordering are also losing.

There are 73 moves available and P(s, a) of the used model
assigns a low softmax-activation of 2.69e-05 for the move
N@e6 resulting as the 53 rd candidate move. Figure 9 shows the
progression of the number of visits and Q-value for the move
N@e6 using our introduced MCTS adaptations. To disable the
effect of randomness and fluctuations due to thread scheduling,
we make the search fully deterministic for this experiment: we
set the number of threads to one with a batch size of eight and
replace the Dirichlet noise distribution by a constant distribution
which uniformly increases the prior probability for all moves in
the root node.

The convergence for the node visits behaves linearly as soon as
the move N@e6 emerged as the most promising move. If the move
remains unexplored its corresponding Q-value stays at a value of
−1. After the move is visited for only a few samples the event is
associated with a spike. These high initial Q-value degrade over
time because simulations chose the wrong follow-up lines and
consequently back-propagate a miss-leading value evaluation. In
cases where the move N@e6 remains unvisited for a period, the
Q-value behaves flat. As soon as all of white only moves have
been found in response to different attempts by black, theQ-value
quickly recovers and converges to a value of approximately+0.6.

When comparing our changes to MCTS, we notice the
following: in the default MCTS version the move N@e6 remains
unvisited for more than 10000 simulations due to a very low
prior probability. In the case when exploration is disabled as
soon as a mate in one has been found (fix-checkmates) it requires
slightly fewer samples. If the prior probability for all checking
moves is uniformly increased (enhance-checks, section 9.2.7) the
convergence is overall the fastest. For the parameterized u-value-
exploration-factor, the initial visit and convergence of the Q-value

is pulled forward. The last setting (all) combines all of our pre-
mentioned search adaptions. The initial node exploration occurs
similarly to enhance-checks, and after the Q-value degraded the
node remains unexplored for 8000 simulations. However, after
the correct lines for white have been found for the first few depths,
the Q-value convergences as quickly as enhance-checks.

11. EXPERIMENTAL EVALUATION

Our intention here is to evaluate the playing strength of
CrazyAra. To this end, we let CrazyAra play matches against
other crazyhouse engines as well as the human player Justin Tan,
the 2017 crazyhouse world champion.

11.1. Matches With Human Professional
Players
Over the course of its development, CrazyAra was hosted
several times on lichess.org playing among others the strongest
human crazyhouse players from whom it has learnt to play the
game. On December 21st 2018 at 18:00 GMT CrazyAra 0.3.1
played multiple world crazyhouse champion Justin Tan, also
known as LM JannLee and won four of five informal games24.
The match has been streamed live and commented by Justin
Tan. in the time control of 5min + 15 s. For the settings, we
used a temperature value τ of 0.07 for the first four moves,
thinking during opponents turn called “Ponder” was disabled and
we achieved 250 nodes per second (NPS). Our recommended
changes to MCTS in sections 9.2.6, 9.2.7 had not been integrated
in this version.

11.2. Strength Evaluation With Other
Crazyhouse Engines
We also evaluate the playing strength of CrazyAra 0.6.0 using
the network architecture 8-value-policy-map-mobile (see Table 2)
on an Intel R© CoreTM i5-8250U CPU @ 1.60GHz × 8, Ubuntu
18.04.2 LTS against all participants of the second CCVA
Computer Championships (Mosca, 2017) or their respective
updated version.

All engines including CrazyAra were run on the same
hardware in a time control of 15min + 5 s per move. The number
of threads was set to 8 and the hash size, which allows storing
board evaluations, to 1024mb, if the engine provides an option
for it. If only a Windows executable is available for an engine,
we made it compatible with the help of Wine (Julliard, 1994),
which reduces the original NPS of an engine by about 10%. We
refer to the term NPS as the number of position evaluations
per second and in the context of MCTS as the number of
MCTS simulations per second. “Ponder” was turned off and we
also allowed other engines to use opening books or position
learning. As the deep learning framework for CrazyAra, we used
MXNet 1.4.1 (Chen et al., 2015) with the Intel-MKL backend
(Wang et al., 2014) and also enabled the network subgraph
optimization by Intel. Arithmetic, vectorized operations in the
MCTS search were formulated in the Blaze 3.6 library (Iglberger

24All games can be found in the Supplementary Material (section 1.1, p. 1). The
match has been streamed live and commented by Justin Tan.
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A B

C D

FIGURE 9 | Search tree statistics over time for the Move N@e6 using different MCTS modifications25. (A) Exemplary tactical board position, (B) sorted policy

distribution of the first 10 candidate move, (C) simulation progression, (D) Q-value progression.

et al., 2012a,b) and move generation routines were integrated
frommulti-variant Stockfish26.

To get a reference point, DeepMind’s AlphaZero “used
44 processor cores and four of Google’s first-generation TPUs
generating about 60000 positions per second in chess compared
to Stockfish’s roughly 60 million” yielding a ratio of 1:1000.
AlphaZero started to outperform the search efficiency of
Stockfish 8 in their setup after 30000 node evaluations (Silver
et al., 2017a). We achieved 330 NPS for CrazyAra 0.6.0 on the
aforementioned CPU, resulting in approximate 7260 nodes per
move in this time control compared to an average NPS between
1 million nodes for most alpha-beta engines and 4.6 million for
multi-variant Stockfish 10, resulting in a ratio between 1:3000 and
1:14000. Despite this large gap in number of evaluated nodes,
CrazyAra often achieved a higher depth compared to other
engines. This is partly due to the forcing nature of crazyhouse
in which a majority of the moves are losing outright and filtered

25The FEN for this position is: 3k2r1/pBpr1p1p/Pp3p1B/3p4/2PPn2B/5NPp/
q4PpP/1R1QR1K1/NNbpw--123
26https://github.com/ddugovic/Stockfish (accessed July 30, 2019).

out by the neural network. However, we use the term depth for
CrazyAra as the length of the explored principal variation after
the search, and alpha-beta engines usually explore the full tree or
much larger parts of it. The depth and centipawn evaluation of
the current board position is denoted as {<centipawn>/<depth>
<time spent>} after each move where a positive
centipawn value describes an advantage in the view of the
respective engine.

We played 10 matches with each engine starting from five
common crazyhouse opening positions. Each position was played
twice, one in which CrazyAra played the white and one in which
it played the black pieces. The matches were played without a
resign threshold and always ended in a mate position or a draw.
We enabled all of our proposed changes for the MCTS search
(section 9.2) and used a temperature value of zero to make the
moves for CrazyAra relatively deterministic and to give all other
engines the same chances.

The results of the matches (see Table 5) demonstrate that
CrazyAra 0.6.0 clearly won against 12 of the 13 participants with
either 10 or 9 wins out of 10 matches. All matches with the
respective engine evaluations and their depth on each move are

Frontiers in Artificial Intelligence | www.frontiersin.org 17 April 2020 | Volume 3 | Article 24

3k2r1/pBpr1p1p/Pp3p1B/3p4/2PPn2B/5NPp/q4PpP/1R1QR1K1/NNbpw--123
3k2r1/pBpr1p1p/Pp3p1B/3p4/2PPn2B/5NPp/q4PpP/1R1QR1K1/NNbpw--123
https://github.com/ddugovic/Stockfish
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Czech et al. Deep Learning for Crazyhouse Chess

TABLE 5 | Match results of CrazyAra 0.6.0 on CPU playing twelve different crazyhouse engines.

Engine name Version Elo rating NPS (million) Wapc Lapc + = −

CrazyAra 0.6.0 – 0.00033 62± 18 74± 24 118 0 12

PyChess 1.1 > 1566.25* 0.012 – 41± 11 0 0 10

KKFChess† 2.6.7b 1849.50 2.9 – 57± 10 0 0 10

TSCP ZH 1.1 1888.47 0.5 – 54± 12 0 0 10

Pulsar 2009-9b 1982.07 ? – 61± 13 0 0 10

Feuerstein† 0.4.6.1 2205.74 0.1 – 57± 8 0 0 10

Nebiyu† 1.45a 2244.39 1.5 – 42± 8 0 0 10

SjaakII 1.4.1 2245.56 0.425 – 61± 10 0 0 10

Sjeng 11.2 2300.00 0.7 – 66± 15 0 0 10

CrazyWa 1.0.1 2500.00 1.4 – 73± 10 0 0 10

Sunsetter 9 2703.39 1.5 – 74± 19 0 0 10

TjChess 1.37 2732.58 1.37 53± 0 85± 17 1 0 9

Imortal† 4.3 > 2997.33* 0.9 134± 0 77± 9 1 0 9

Stockfish 10 (2018-11-29) > 3946.06* 4.6 70± 16 – 10 0 0

Wapc and Lapc means “win average ply count” and “loss average ply count” and describe the average game length. Engine denoted with
†
use Wine for emulation.

*PyChess’, rating of rating of 1566.25 corresponds to version 0.12.4, Immortal’s rating of 2997.33 corresponds to version 3.04, Stockfish’s rating of 3946.06 corresponds to version

2017-09-23 using a single thread instead of eight.

TABLE 6 | Match results of CrazyAraFish 0.6.0 playing Stockfish 10 in a time control of 30min + 30 s.

Engine name Version Elo rating NPS (million) Wapc Lapc + = −

CrazyAraFish 0.6.0 – 0.0014 118± 22 98± 34 3 1 6

Stockfish 10 (2018-11-29) > 3,946.06 6.7 98± 34 118± 22 6 1 3

available in the Supplementary Material27. However, CrazyAra
lost all games to Stockfish. Despite this, it was able to generate
+2.62,+6.13,+6.44 centipawn positions in three separate games
as white according to the evaluation of Stockfish. To reduce the
effect of the opening advantage for the first player in crazyhouse
and also the fact that CrazyAra can make use of an implicitly
built opening-book, we choose five opening positions for the
final evaluation, which are more balanced and less popular in
human play.

The games between CrazyAraFish 0.6.0 and Stockfish 10 were
generated on an AMDr Ryzen 7, 1700 eight-core processor ×-
16 for both engines and also a GTX1080ti for CrazyAraFish 0.6.0.
Stockfish achieves 6.7 million NPS on our setup. The hash size
for Stockfish was set to 1,024mb28. We used a batch size of eight
and two threads for traversing the search tree in the case of
CrazyAraFish. In this setting, CrazyAraFish 0.6.0 achieved a NPS
of 1400 resulting in a node ratio of about 1:4700. In positions
where many transpositions and terminal nodes were visited, the
NPS increased to 4000. The matches were played in a long time
control format of 30min + 30 s. Here, CrazyAraFish 0.6.0 won
three games and drew one game out of 10 games (see Table 6).

27Data Sheet 1.ZIP; for more information about the engines and their
corresponding authors please refer to the Crazyhouse Alpha List maintained by
Simon Guenther http://rwbc-chess.de/chronology.htm (accessed July 7, 2019).
28We also tried choosing a higher hash size for Stockfish e.g., 4,096mb, but found it
to be unstable resulting in game crashes for the Stockfish executable x86_64-modern

2018-11-29. These crashes have been reported to the corresponding developers.

The better performance of Stockfish in this evaluation can be
attributed to multiple factors. First, CrazyAraFish had a higher
chance of missing important lines during search due to a lower
amount of position evaluations. Second, the data set generated
by Stockfish contained five times fewer games compared to the
lichess data set and could benefit from additional measures
to counteract the deterministic playing behavior of alpha-beta
engines. Third, the value evaluation was sub-optimal for certain
positions partially because the value loss is only weighted by 1%
in the combined loss during training in order to avoid overfitting.
All games can be found in Figures S8–S17, p. 8–17.

12. CONCLUSION

In this work we have developed a crazyhouse chess program,
calledCrazyAra, based on a combination of deep neural networks
and tree search, that plays at the level of the strongest human
players. Despite the highly tactical game-style of crazyhouse
and a relatively small and low quality data set, it is possible to
achieve a remarkable performance when only using supervised
learning. We demonstrated that MCTS is fairly successful at
low samples, when powered by a (deep) neural network, and
is able to drastically increase the quality of moves over time
for the crazyhouse variant. Most importantly, we demonstrated
that the scheme proposed by Silver et al. (2017a) can be and
has to be improved and accelerated in different areas for
crazyhouse: this includes achieving a better training performance
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and the prediction of higher quality moves with the same
number of MCTS simulations. Indeed, several optimizations
are achievable in future work. A faster generation of rollouts
e.g., by using low precision inference like float16 or int8 and
potential future improvements in network design andMCTS will
boost performance. Additionally, applying reinforcement
learning can help to increase the playing strength of
CrazyAra further.
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Vučković, V., and S̆olak, R. (2009). Time management procedure in computer

chess. Fact Univer. Ser. 8, 75–87.
Wang, E., Zhang, Q., Shen, B., Zhang, G., Lu, X., Wu, Q., et al. (2014). “Intel math

kernel library,” in High-Performance Computing on the Intel R©Xeon PhiTM

(Cham: Springer), 167–188. doi: 10.1007/978-3-319-06486-4_7
Xie, S., Girshick, R., Dollár, P., Tu, Z., and He, K. (2017). “Aggregated

residual transformations for deep neural networks,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (Honolulu, HI),
1492–1500. doi: 10.1109/CVPR.2017.634

Zagoruyko, S., andKomodakis, N. (2016). “Wide residual networks,” in Proceedings
of the British Machine Vision Conference (BMVC) (York). doi: 10.5244/C.30.87

Zhao, G., Zhang, Z., Guan, H., Tang, P., and Wang, J. (2017). Rethink ReLU to
training better CNNs. arXiv:1709.06247 [cs]. doi: 10.1109/ICPR.2018.8545612

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Czech, Willig, Beyer, Kersting and Fürnkranz. This is an open-

access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Artificial Intelligence | www.frontiersin.org 20 April 2020 | Volume 3 | Article 24

https://doi.org/10.1109/HPCSim.2012.6266939
https://www.winehq.org/
http://wbec-ridderkerk.nl/html/UCIProtocol.html
http://wbec-ridderkerk.nl/html/UCIProtocol.html
https://doi.org/10.1007/11871842_29
https://doi.org/10.1007/978-3-030-01264-9_8
https://doi.org/10.1016/j.cviu.2017.05.007
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1147/rd.33.0210
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1038/nature16961
https://doi.org/10.1126/science.aar6404
https://doi.org/10.1038/nature24270
https://doi.org/10.3233/ICG-1986-9103
https://doi.org/10.1117/12.2520589
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1145/203330.203343
https://doi.org/10.1007/978-3-319-06486-4_7
https://doi.org/10.1109/CVPR.2017.634
https://doi.org/10.5244/C.30.87
https://doi.org/10.1109/ICPR.2018.8545612
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

	Learning to Play the Chess Variant Crazyhouse Above World Champion Level With Deep Neural Networks and Human Data
	1. Introduction
	2. Related Work on Computer Crazyhouse and ML in Board Games
	3. Overview of the CrazyAra Engine
	3.1. Deep Neural Networks for Evaluating Moves
	3.2. Monte-Carlo Tree Search for Improving Performance
	3.3. Availability of CrazyAra

	4. Input Representation of CrazyAra
	4.1. Input Normalization
	4.2. Illustrative Example for Predictions

	5. Output Representation of CrazyAra
	6. Deep Network Architecture of CrazyAra
	7. Training Data
	8. Supervised Learning to Play Crazyhouse
	9. Configuration of the Monte-Carlo Tree Search
	9.1. Default Parameter Settings
	9.2. Changes to Monte-Carlo Tree Search
	9.2.1. Integration of Q-Values for Final Move Selection
	9.2.2. Q-Values With Principal Variation
	9.2.3. Centi-Pawn Conversion
	9.2.4. Time Dependent Search
	9.2.5. Transposition Table
	9.2.6. U-Value Exploration Factor
	9.2.7. Integration of Domain Knowledge


	10. Discussion
	10.1. The Pros and Cons of MCTS for Crazyhouse
	10.2. Exemplary MCTS Search

	11. Experimental Evaluation
	11.1. Matches With Human Professional Players
	11.2. Strength Evaluation With Other Crazyhouse Engines

	12. Conclusion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


