AUTHOR=Ghose Abhishek , Ravindran Balaraman TITLE=Interpretability With Accurate Small Models JOURNAL=Frontiers in Artificial Intelligence VOLUME=3 YEAR=2020 URL=https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2020.00003 DOI=10.3389/frai.2020.00003 ISSN=2624-8212 ABSTRACT=
Models often need to be constrained to a certain size for them to be considered interpretable. For example, a decision tree of depth 5 is much easier to understand than one of depth 50. Limiting model size, however, often reduces accuracy. We suggest a practical technique that minimizes this trade-off between interpretability and classification accuracy. This enables an arbitrary learning algorithm to produce highly accurate small-sized models. Our technique identifies the training data distribution to learn from that leads to the highest accuracy for a model of a given size. We represent the training distribution as a combination of sampling schemes. Each scheme is defined by a parameterized probability mass function applied to the segmentation produced by a decision tree. An Infinite Mixture Model with Beta components is used to represent a combination of such schemes. The mixture model parameters are learned using Bayesian Optimization. Under simplistic assumptions, we would need to optimize for