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Here, we review the processes involved in producing and assessing the quality of

recombinant spider silk proteins (spidroins) and the challenges associated with

their synthesis and spinning into robust fibres. We provide an overview of the

techniques used to produce the proteins, from gene synthesis to expression in

various host organisms. Evidence suggests that the N- and C-terminal regions of

spidroins are of utmost importance for fibre assembly and the repetitive domains

are responsible for the unique mechanical properties in both native and

recombinant versions of spider silks. We describe the role of liquid–liquid

phase separation (LLPS) in spidroin assembly and its importance in subsequent

fibre formation. Recent developments in recombinant spidroin production and

co-expression strategies for improving yield and scalability are highlighted.

Techniques such as mass photometry and size exclusion chromatography

(SEC) for analysing protein purity and assembly behaviour are thereupon

detailed. Finally, we address the role that predictive computational methods

play in the future of designing novel and high-performing materials inspired

by spidroins.
KEYWORDS

recombinant spider silk, spidroin synthesis, fibre assembly, liquid–liquid phase
separation, predictive computational model
Introduction

Spider silk has unique physical properties that make it attractive to utilise in

applications that require lightweight materials with high tensile strength. Its properties

include not just exceptional strength and toughness, but also high flexibility, unique

anisotropy, and in situ biological inertness (Heim et al., 2009; Vollrath et al., 2013; Blamires
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et al., 2020; Blamires, 2022; Linklater et al., 2023). The successful

replication of spider silk’s properties within fibres spun in the

laboratory would undoubtedly open exciting opportunities for the

production of extremely high-performing materials for applications

in medicine, textiles, wearables, and materials engineering (Kluge

et al., 2008; Leal-Egaña and Scheibel, 2010; Humenik et al., 2011;

Heidebrecht et al., 2015; Blamires, 2022, Blamires, 2024).

Spiders are solitary and cannibalistic, and they need to be

anaesthetised for silk to be spooled from their spinnerets for

several hours at a time. Moreover, individual spiders yield

proportionally smaller masses of silk than can be conventionally

attained from an individual silkworm cocoon. Accordingly, it is not

feasible to harvest spider silk by the same methods as silkworm silk

is harvested (Blamires, 2022). The only way to possibly generate

large amounts of spider silk, or spider silk-like material, is by the

recombinant production of spider silk proteins (so called spidroins)

followed by purification and the utilisation of advanced wet or dry

fibre spinning methodologies to facilitate spinning the proteins into

robust fibres (Lewis et al., 1996; Scheller et al., 2001; Wong Po Foo

and Kaplan, 2002).

Recombinant spider silk proteins (or more strictly speaking

proteins inspired by spider silk sequences) are produced using

techniques that involve, firstly, the synthesis of a gene encoding

the spidroin-like construct, insertion of this construct into a

synthetic expression vector (such as plasmid DNA) and then

transforming an expression host (such as Escherichia coli, yeast

(Saccharomyces cerevisiae), plants (e.g. potato, tobacco) or animals

(e.g. silkworms, hamsters, goats) (Scheller et al., 2001; Menassa

et al., 2004; Miao et al., 2006; Chung et al., 2012; Teulé et al., 2012;

Mi et al., 2023). Spidroins are produced by the host’s protein

expression system, which can then be isolated and concentrated

into a solution called dope. Generating recombinantly engineered

synthetic fibres with physical qualities that resemble native spider

silk fibres, however, remains one of material science’s grandest

challenges (Humenik et al., 2011; Jastrzebska et al., 2016; Blamires,

2024). Some specific issues associated with producing recombinant

spider silk proteins, and the spinning of fibres from those proteins,

include inducing the hosts to express recombinant spidroins, and

obtaining a sufficient quantity of proteins at concentrations high

enough to spin the resulting dope into exceptionally robust fibres

(Copeland et al., 2015; Harris et al., 2016)

Inducing host organisms to express full-length spidroins

necessitates the use of sophisticated techniques, some of which we

overview herein. Recent advances in DNA sequencing, DNA

synthesis and improved protein structural prediction have

enabled an acceleration in the construction of genes encoding

recombinant proteins inspired by spider silk proteins. However,

many difficulties remain in terms of expressing and purifying these

constructs in a scalable manner (Scheller et al., 2001; Schacht and

Scheibel, 2014; Rising and Johansson, 2015; Koeppel and Holland,

2017; Edlund et al., 2018).

Difficulties associated with expressing the large repetitive amino

acid sequences of the spidroins include plasmid stability, difficulties

in host-cell translation, the potential of protein misfolding that

accompanies the expression of large and repetitive proteins and the
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potential toxicity of certain sequences to the host cells (Heim et al.,

2010; Rising and Johansson, 2015). Purification of adequate

quantities of the proteins yielded is another challenge. Indeed,

efficient purification of high-quality samples of recombinant

proteins is critical for the implementation of all of the

downstream applications (Oliveira and Domingues, 2018;

Tripathi and Shrivastava, 2019). This is all the more critical for

the synthesis of spider dragline, or major ampullate, silks (i.e.,those

silk whose toughness has been compared to that of Kevlar and

carbon fibres; Blamires, 2022) because the quality of the fibres spun

from these proteins is a product of the concentrations of the

spidroins and factors associated with spinning protocols

(Humenik et al., 2011; Liu et al., 2014; Doblhofer et al., 2015;

Peng et al., 2016). Thus, we detail herein how the gene construction,

protein expression and purification, structural characterisation

protocols, and downstream fibre fabrication methodologies are

performed in vitro to generate native-like spidroin-like fibres.
Recombinant expression of spidroins

Much of the reported work on recombinant spider silk protein

expression has focused on the spider silk fibroins (known as

spidroins). The first reported construction of a recombinant

spider silk protein was in 1995, when constructs of varying length

inspired by both Major Ampullate spidroin 1 and 2 (shortened

conventionally to MaSp1 and Masp2) proteins from the golden orb

web spider Triconephila clavipes were created using the gram-

negative bacteria E. coli as the host (Prince et al., 1995). Since

then, there have been many reports describing strategies to produce

recombinant silks for research and commercial development

(Tokareva et al., 2014). The primary advantage of spider silk

protein expression by recombinant techniques is that it has a

greater capacity for larger scale production than does collecting

the silk directly from spiders.

Much of the work thus far has focused on Major Ampullate

Spidroin Proteins (MaSp), MaSp1 and MaSp2 due to their

contribution to the strength and elasticity of dragline silk fibres.

The remarkable properties of MaSp1 and MaSp2 can be attributed

to their composition, i.e. a non-repetitive and partially conserved N-

and C-terminus that flanks a repetitive core domain (Ayoub et al.,

2007a; Römer and Scheibel, 2008; Gaines et al., 2010; Andersson

et al., 2017; Xu et al., 2017). Recombinantly-derived sequences have

hence been generated using conserved N- and C-terminal domains

from single or different spider species, creating so called “chimeric”

structures. These constructs also commonly have varying repeating

numbers of conserved glycine- and alanine-rich domains,

which create polypeptides of shorter length than the native

proteins (Figure 1A).

Many biotech companies are now developing recombinant

spider silk fibres using genetically modified organisms such as

bacteria, yeast, and silkworms with some success. However, there

are challenge associated with the limitations of such hosts to express

recombinant proteins at high levels and/or consistently produce

quality fibres.
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Impact of N- and
C-termini composition

The solubility and spinning characteristics are heavily influenced

by both the N-terminus (NT) and the C-terminus (CT) of the silk

proteins. The NT and CT regions are not only conserved amongst

species but also spidroin types (Dicko et al., 2004; Ayoub et al., 2007a;

Kronqvist et al., 2014). It was determined that across 12 different

species, and multiple fibre types, more than 50% of the amino acids

were congruent (Ayoub et al., 2007a). Such similarity amongst N-

and C-termini between species and spidroins suggest they are integral

in the assembly of spider silk proteins which must be considered

when designing constructs for recombinant expression (Dicko et al.,

2004; De Oliveira et al., 2024). This has indeed been confirmed by

studies inducing recombinant expression of the N- and C-terminal

domains of major ampullate spidroins, whereby their role in fibre

assembly solubilising effect and structural solving have been
Frontiers in Arachnid Science 03
accomplished (Figure 1A) (Askarieh et al., 2010; Malay et al., 2020;

De Oliveira et al., 2024).
Structural motifs and importance of
the repetitive domain

While the terminal domains are responsible for polymerisation

and drive a portion of the assembly process, the repetitive domain is

predominantly responsible for the unique mechanical properties

and intrinsically disordered behaviour of spidroin fibres in solution.

As a result, repetitive domain sequences have been the source of

extensive investigation due to their direct relationship to fibre

mechanical properties.

Spidroin paralog and phylogenetic analyses have confirmed

the convergence of key residues across sequences (Ayoub et al.,

2007a; Craig et al., 2020; Arakawa et al., 2022). The abundance of
FIGURE 1

Sequence-structure-environment relationship of recombinant spidroin proteins. (A) Spidroin proteins are comprised of structurally resolved and
conserved N- and C-terminal domains, responsible for promoting fibrillation and liquid-liquid phase separation respectively. These domains flank an
intrinsically disordered repetitive domain. The abundance of residues commonly found within the repetitive domain are organised from most
abundant (top) to least abundant(bottom). (B) (Top) The sequence map of a published recombinant MaSp2 protein highlighting the relationship
between residue occurrence (orange-tyrosine, green-glycine, purple-proline, alanine-blue, serine-indigo, glutamine-red), structural disorder (Hu
et al., 2021) (black line) and phase separation propensity (Hardenberg et al., 2020; Vendruscolo and Fuxreiter, 2022) (blue shaded region). (Bottom)
The relationship of residues found within a spidroin sequence are shown categorised to their respective sticker (proline, glutamine and tyrosine) and
spacer (glycine, alanine and serine) model role, as well as the motifs commonly found within the repetitive region and the corresponding structural
and mechanical property they confer. (C) The anatomy of the spidroin duct and corresponding environmental shifts. Protein is synthesised in the tail
(left of light blue) in a high pH, low shear, chaotropic environment. Free monomer then travels down to the sac (right of light blue) where liquid-
liquid phase separation occurs due to an influx of kosmotropic ions. As shear and kosmotropic ion concentration increases and a subsequent
decrease in pH occurs, condensates begin to coacervate and form nanofibril structures, progressively becoming more aligned until they are
extruded out of the duct (dark blue). Figures created using BioRender.
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comparatively smaller glycine, alanine, and serine residues

within the low complexity repetitive region contribute most

heavily to fibre structural flexibility as a consequence of

disorder of the domains within the highly soluble regions of

the silk gland, i.e., in and around the tail and sac (Figures 1A, B)

(Oktaviani et al., 2018; Yang et al., 2023).

Consistent with many other proteins that have a high degree of

intrinsic disorder, spidroins have demonstrated the ability to phase

separate, a phenomenon where proteins separate into two phases: a

proteinaceous dense phase and a buffer light phase (Malay et al.,

2020; Mohammadi et al., 2020). The sticker-spacer model is often

used to describe residue-residue interactions that drive liquid-liquid

phase separation (LLPS). Stickers are residues which act as

molecular glues and hold proteins together, whereas spacers are

flexible residues that have low interaction strengths with other

residues. In the context of spidroins abundant residues like glycine

and alanine act as spacers, providing flexibility to the protein chain.

Additionally, spacer residues also spatially control the interactions

between less abundant but more reactive sticker residues like

tyrosine, glutamine and proline which can enter p- p, p-cation
and charge interactions ultimately driving phase separation.

Understanding the relationship between sticker-spacers and their

patterning provides a platform to develop de novo biomaterials for a

diverse range of applications not limited to tissue engineering,

synthetic organelles and encapsulants (Martin and Mittag, 2018;

Martin et al., 2020; Maraldo et al., 2024).

Considering the repetitive nature and low complexity of the

repetitive domain, several motifs can be observed and used to

classify the subspecies of MaSp to which they belong (Ayoub

et al., 2007a; Arakawa et al., 2022). Most MaSp constructs are

primarily formed with two major subunits; a glycine rich GGX or

GPGXX where “X” denotes any amino acid and often a sticker

residue (Tokareva et al., 2013). These motifs are then typically

followed by a poly-alanine sequence spanning 4-7 residues on

average (Figure 1B) (Gaines et al., 2010). The spatial arrangement

of these residues ensures that sticker-sticker interactions are finely

balanced preventing premature aggregation, and the formation of

highly concentrated dope.

As fibre formation proceeds, the role of these residues

transforms. These repetitive motifs in response to stimuli changes

like pH, shear and kosmotropic buffer exchange in the duct begin to

form defined secondary structures that are responsible for the

unique mechanical properties spidroins are well-known for (Dong

et al., 1991; Gosline et al., 1999; Hayashi et al., 1999; Gu et al., 2020).

The comparatively smaller size of the most abundant residues

enables the formation of highly compact b-sheet content due to

minimised interchain distance (Van Beek et al., 2002; Keten et al.,

2010). Evidence suggests that poly-alanine sequences form

hydrophobic b-sheet crystalline domains provide silk with high

tensile strength, whereas the glycine-rich regions form hydrophilic

extensible 310-helical structures and account for the elasticity of

silk– (Figure 1B) (Dong et al., 1991; Kümmerlen et al., 1996; Ayoub

et al., 2007a). Recent work comparing over 1000 spider silk species

transcriptomic data has provided unparalleled insight into the
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relationship between the sequence-property relationship and

serves as a platform for designing and modifying the

aforementioned motifs to create fibres with tuneable properties

(Arakawa et al., 2022).
Impact of the repetitive domain on
recombinant expression

Native spidroins are polypeptides of approximately 200–350

kDa (Kümmerlen et al., 1996; Hayashi et al., 1999; Van Beek et al.,

2002; Chaw et al., 2017). Due to their length and the repetitive

nature of MaSps, several challenges arise when utilising

heterologous hosts for expression. When considering the two

most common subclasses, MaSp1 repetitive sequences have been

shown to be more homogenous than those of MaSp2 (Ayoub et al.,

2007a; Craig et al., 2020). As a result, recombinant forms of MaSp1

have historically been more difficult to develop compared to MaSp2,

in part because of limitations on producing highly repetitive

synthetic gene sequence constructs.

Thankfully, several molecular biology techniques have been

developed to enable the assembly of full length spidroin proteins

from a single motif repeat, namely recursive directional ligation

(McDaniel et al., 2010). Alternatively, recent circular RNA

production serves as another promising avenue for generating

native-length templates without the requirement for duplicating a

single repeat, instead translational units loop over a single construct

and insert fragments to generate multimeric repeats (Lee et al.,

2021; Liu et al., 2022).

However, despite the ability to reliably produce vectors for

recombinant expression, the main challenge lies in the lack of

specialised tissue and translational machinery in the commonly

used heterologous hosts (Candelas et al., 1990; Xia et al., 2010;

Sonavane et al., 2024). As residue diversity is low within MaSp

sequences, spiders have evolved to overexpress tRNAs for highly

abundant residues like glycine and alanine to prevent translational

bottlenecking (Candelas et al., 1990; Ayoub et al., 2007a; Xia et al.,

2010; Tokareva et al, 2013). Comparatively, when expressing

“native like” spidroins in heterologous hosts, a decrease or

complete lack of expression compared to truncated forms is

observed due to the exponential increase in the translational

stress it places on the host (Xia et al., 2010).

Solutions for heterologous expression systems particularly within

E. coli systems, have taken inspiration from spider physiology. Co-

expression of recombinant forms of MaSp with a plasmid that

supplies additional glycine and alanine t-RNAs showed significant

improvement in expression (Xia et al., 2010; Cao et al., 2017). This

co-expression strategy along with incubating the bacteria in media

with elevated glycine and alanine levels allows expression of large

“native like” spidroins with comparable yields to those of smaller-

sized repeat proteins (Cao et al., 2017). Proteomic analyses have

confirmed such expression patterns (Ramezaniaghdam et al., 2022).

In conjunction with further codon optimisation, challenges

pertaining to sequence repetition and size, on recombinant
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expression, can be mitigated when attempting to produce

recombinant MaSps.
Liquid–liquid phase separation as an
emerging pre-assembly paradigm

Liquid–liquid phase separation (LLPS) of proteins is a mechanism

for the organisation and regulation of the intracellular environment

with underlying driving forces, which typically include hydrophobic,

aromatic, and/or electrostatic interactions regulated by temperature,

(osmotic) pressure, or ion concentration (i.e., osmolyte, pH, salt

concentration) (Dai et al., 2022). Protein phase separation is also

known to be sensitive to protein concentration, sequence, and length.

The aqueous solvent based LLPS of biopolymers such as proteins,

leads to a dense phase in thermodynamic equilibrium with a dilute

phase. The dispersed dense phase domains (biopolymer rich phase)

are often referred to as coacervates or biomolecular condensates.

The formation of spider silk fibrils from soluble spidroin

precursors during spinning is a complex process involving

spidroin proteins encountering multiple chemical and physical

gradients (e.g., numerous ion fluxes, water dehydration, CO2,

shear force). There is mounting evidence that LLPS plays a

critical role in mediating the self-assembly and aggregation

processes involved in producing the unique molecular and

hierarchical structures involved in spider silk fibre spinning

(Yarger et al., 2018; Mohammadi et al., 2020; Perera et al., 2023).

Much of our current understanding of spider silk assembly via LLPS

comes from experimental studies of recombinant spidroins

(Lemetti et al., 2019, Lemetti et al., 2022). For example, probing

of a recombinant MaSp2 showed phosphate ion-induced LLPS at

neutral pH which resulted in the formation of coacervates (Malay

et al., 2020). Furthermore, if the pH is lowered during spinning, as

happens within the silk gland of spiders, the coacervates become

fibrous (Figure 1C). It has also been shown through the microfluidic

spinning of recombinant MaSp2 that polyalanine blocks have

limited influence on the occurrence of LLPS and hierarchical

structure (Chen et al., 2024). The role of the N- and C-terminal

domains and repetitive domains in LLPS and resulting fibril

formation have also been explored using recombinant proteins,

providing strong evidence that the C-terminal domain, repetitive

domain and several key residues play a central role in LLPS, and the

N-terminal domain is essential for subsequent fibril assembly

(Malay et al., 2020; Watanabe and Arakawa, 2023).

LLPS is also being explored as a potentially useful mechanism to

control protein solubility during expression and accumulation in

the cytoplasm of E. coli as well as a property fit for developing non-

canonical materials, enabling the further development of

recombinant spidroin proteins for biomimetic spider silk

materials and biomedical applications (Gabryelczyk et al., 2022;

Dai et al., 2022; Maraldo et al., 2024). Evidence of such has already

been shown through the generation of a synthetic organelle capable

of performing enzymatically driven reactions within puncta of the

cell using a recombinantly expressed MaSp2 (Wei et al., 2020). The
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importance of sequence design in both the terminal and repetitive

domains is therefore integral in dictating the assembly behaviour

and subsequent mechanical properties of formed fibres.
Formation of fibres in vitro

The methodologies involved in spinning spider silk fibres from

recombinantly expressed spidroins are complex and multifaceted,

particularly when aiming to replicate the natural spinning process

of spiders. As stated, the success of any methodology at reproducing

the properties of native silk is dependent on producing a spinning

dope at appropriate concentrations. The spinning process itself

aims to emulate the conditions under which spiders naturally spin

their silk. This includes an aqueous medium, ambient temperature,

low hydrostatic pressure, slow extrusion rates, and low post-

spinning draw-down ratios (Figure 1C). Researchers have used

various methods to spin silk fibres from recombinant spider silk

proteins, including microfluidic spinning and post-stretching

techniques. These methods aim to align the spidroins and induce

the formation of b-sheet structures (Chung et al., 2012; Leclerc

et al., 2013; Peng et al., 2016).

Studies have shown that factors such as temperature, pH, and

ionic balance within the spinning column, and the speed at which

the fibres are spooled, play significant roles in affecting the

mechanical properties of the silk (Figure 1C). Higher reeling

speeds tend to increase the orientation of spidroin molecules,

leading to stiffer and stronger, but less extensible, fibres

(Shao and Vollrath, 2002; Shao et al., 2003; Gronau et al., 2013;

Oktaviani et al., 2023). Additionally, the acidification of the

spinning dope during extrusion aids in the transition of

spidroins from random coil and a-helix conformations to

b-sheet structures (Gaines et al., 2010; Peng et al., 2016;

Oktaviani et al., 2023). The incorporation of post-treatment

steps, such as post-drawing in air and ethanol solutions, has

been shown to improve the crystalline and molecular structure of

the fibres, enhancing their mechanical properties (Hudspeth

et al., 2012; Doblhofer et al., 2015; Peng et al., 2016).
Host selection for recombinant
spidroin expression

Many different hosts have been used for expressing

recombinant spidroins (Table 1, Figure 2A). The majority of

reports describe the use of E. coli (Prince et al., 1995; Fahnestock

and Bedzyk, 1997; Xu et al., 2007; Teulé et al., 2012). Reasons for the

selection of E. coli include: (i) its ease of manipulation utilising

plasmid transformation, (ii) extremely short regeneration times,

and (iii) low cost and proven scale-up potential (Figure 2B). The

methylotrophic yeast Pichia pastoris (now Komagatella phaffi) has

an advantage over E. coli of being able to secrete the proteins and

facilitate more complex post-translational modifications (Cregg

et al., 2000; dos Santos-Pinto et al., 2014).
frontiersin.org

https://doi.org/10.3389/frchs.2024.1488680
https://www.frontiersin.org/journals/arachnid-science
https://www.frontiersin.org


Maraldo et al. 10.3389/frchs.2024.1488680
Many studies have reported a decrease in replication fidelity

when expressing proteins with sizes larger than ~43 kDa (Xia et al.,

2010; Teulé et al., 2012; Cao et al., 2017). However, for synthesising

spider silks, expression of proteins of this size or greater is required

to create fibres that approximate the mechanical properties of the

natively spun fibres. While solutions we highlighted previously may

address this problem, resolving expression remains a major

challenge for recombinant spider silk production (Blamires, 2024).
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Recombinant protein production
and purification
For spinning spider silk fibres, a high level of purity is desirable

for optimum downstream assembly. Contaminants from E. coli or

other expression systems could either cause damage to the protein of

interest, e.g., by degradation or obstruction of the assembly of fibres.
TABLE 1 Examples of reported production of recombinant MaSp1 and MaSp2 in select hosts.

Host (type) Origin of protein sequences Protein expressed MW (kDa) Yield Ref.

Pichia pastoris
(yeast)

Triconephila clavipes MaSp1 Repeat 65
663mg/L
(16% total protein)

(Fahnestock and
Bedzyk, 1997)

Bombyx mori
(Insect)

Triconephila clavipes MaSp1 Repeat 70
40% of
total proteins

(Zhang et al., 2008)

Transgenic mice
(Mammal)

Triconephila clavipes MaSp1 Repeat 31 -66 11.7mg/L (Xu et al., 2007)

Escherichia coli
(Bacteria)

Triconephila clavipes MaSp1 Repeat 284.9 500-2700mg/L (Xia et al., 2010)

Escherichia coli
(Bacteria)

Euprosthenops australis,
Araneus ventricosus

Hybrid MaSp1
Repeat

33 125mg/L (Andersson et al., 2017)

Bacillus megaterium
(Bacteria)

A5 4mer variant (Masp2) 16 40-100 mg/l (Connor et al., 2024)
FIGURE 2

A common bioprocessing pathway to expressing and isolating spidroins. (A) Several well documented heterologous hosts capable of expressing
recombinant spidroin proteins, E. coli, P. pastoris, mice, goats, tobacco (left to right). (B) Expression and harvesting of recombinantly expressing E. coli.
Transformed E. coli cells are cultured in shaking flasks and later induced. Cells are harvested and pelleted via centrifugation. (C) Harvested cells can be
lysed using several different methods, freeze-thaw cycling (A), sonication (B), and chemical lysing agents (C). Inclusion bodies and soluble protein are
separated through centrifugation. (D) Soluble proteins are passed through an affinity column of choice. The purified protein is then dialysed into a
desired storage buffer, which can then be concentrated for analytical or fibre-producing purposes. Figures created using BioRender.
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Before purification, the cells of the expression system, most

commonly E. coli, must be lysed to release their contents. There are

a variety of ways to go about this and the approach taken depends on

the downstream use of the proteins (Figure 2C) (Islam et al., 2017).

Commonly used methods include ultrasonication, which harnesses the

cavitation of air bubbles, pressure homogenisation, multiple freeze/

thaw cycles, or the use of chemical lysing agents (e.g. BugBuster) to

“melt” the cells. Some methods may result in damage to the sample

protein (e.g. when using ultrasonication due to sample warming)

whereas others could be prohibitive when dealing with larger

samples (e.g. bigger volumes may require more freeze/thaw cycles). It

is therefore important to tailor the method used to the specific case and

its requirements. The resultant cell lysate from the lysis step then

undergoes a series of downstream purification steps to reach a desired

level of purity. The overexpressed proteins may be soluble and isolated

from the cell cytosol following cell lysis. Alternatively, during

expression the protein may form insoluble “inclusion bodies” and

require subsequent solubilisation and/or refolding (Tsumoto et al.,

2003; Singh et al., 2015). The propensity to form these insoluble

inclusion bodies is very protein and/or system dependent and thus a

significant degree of optimisation and trial-and-error may be required

during recombinant protein expression and purification experiments.

To achieve the required level of purity, a multistep purification

protocol is generally recommended (Figure 2D). Most commonly

this would begin with an affinity step, utilising a tag that has been

incorporated into the expression construct. Many options are

available (Pan et al., 2019), including the traditional 6-His tag or

its newer equivalents HAT and NCTR25 (based on a human protein

to avoid immunogenicity in downstream applications; Young et al.,

2012; Pan et al., 2019), which selectively binds to immobilised

divalent metal cations like Ni2+ and Co2+ and can be released using

an imidazole gradient. Others include the streptavidin-based tags

eluted with biotin, maltose binding protein (MBP), which binds to

amylose resin and is eluted using maltose, and glutathione-S-

transferase, which binds to glutathione resin and is eluted with

reduced glutathione. Recently a new generation of tags has been

released including the Protein Select™ system by Cytiva™ (Clifford

et al., 2024), in which the desired protein self-cleaves from its tag

during purification leaving no residual amino acids. Alternative

strategies to affinity chromatography include ion-exchange or

hydrophobic interaction chromatography, which exploit the

natural polarity of the protein construct in order to facilitate the

separation of the target from the host cell contaminants. The initial

steps, which involve either affinity, ion-exchange or hydrophobic

interaction chromatography, all serve to achieve the bulk cleaning

of the protein sample from contaminants prior to a later size-

exclusion step (McCue, 2009; Cummins et al., 2017)
In-solution analyses

Analytical and preparative
mass determination

When producing recombinant protein subunits as building

blocks for silk fibre assembly, it is useful to identify conditions in
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which the proteins are reliably monodispersed. Hence, the

purification will almost always require size exclusion

chromatography to investigate the oligomeric entities within the

proteins and isolate the monomeric fraction.

Size exclusion chromatography (SEC), also known as gel

filtration, relies on a separation matrix whose pores proportionally

restrict the flow of proteins small enough to penetrate them to

varying extents, while leaving larger proteins to flow straight

through in the ‘‘void volume’’ with further proteins eluting by

decreasing size (Figure 3). In this way, larger proteins may be

separated out from smaller proteins. Appropriate SEC columns

should be selected based on the size range of the protein mixture

being separated. Some SEC matrices allow for the separation of a

larger range of sizes, but with correspondingly lower resolution, and

vice-versa. Elution is monitored spectroscopically at a range of

wavelengths; fractions are collected, and oligomeric state can be

estimated by comparison to standards. In this way SEC serves as a

useful check, and it allows for the protein target to be placed into the

appropriate buffer for downstream uses (Burgess, 2018). It may also

be coupled to other instrumentation to allow for further analysis (e.g.

SEC-MALS (Thomsen, 2020) or SEC-SAXS). This could be useful,

for example, in instances of silk fibre formation whereby the

production of higher-order oligomers and protofilaments may be

followed (Sahin and Roberts, 2012).

SEC is an established method for fractionating a polydisperse

spidroin solution, nonetheless its efficiency and ability to capture

real time assembly is limited. A newly developed light-based

method called mass photometry is able to accurately and

efficiently determine the molecular weights of a single molecule,

and protein assemblies with extremely low volumes and

concentrations (Cole et al., 2017; Young et al., 2018). As a result,

mass photometry has been used to quantify assembly properties,

polydispersity and protein behaviour in various buffers at reading

intervals relevant to native assembly processing (Cole et al., 2017; Qi

et al., 2023). The potential to utilise mass photometry as a powerful

analytical tool has been highlighted in amyloid fibril research – with

a particular focus on neurodegenerative-associated peptides like a-
synuclein. Methodological developments have enabled high-

resolution fibril growth kinetics to be quantified, thus equating

the impact of various stimuli on assembly growth at the molecular

level (Paul et al., 2022; Ray et al., 2023). Adopting such methods to

analyse spidroin assembly will undoubtedly be a time- and

resource-effective process for facilitating a better understanding of

fibril assembly.
Spectrophotometric analysis of assembly

Whilst separation methods are commonplace for determining

sample quality and isolating monomeric forms of spidroins, their use

beyond these applications is limited. The nature of spidroins to rapidly

aggregate and the need to determine the underlying sequence–

environment–assembly mechanics behind this phenomenon have

resulted in the use of high-frequency spectroscopic methods.

Absorbance readings and turbidimetry, are commonly used to

study macroscale assembly, particularly in the context of liquid-liquid
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phase separation. High-throughput multifactorial analysis may be

done to reveal the relationship between environmental stimuli and

protein assembly (Figure 3). As such, the impact of ion type and

concentration on spidroin phase separation has been detailed, where

increases in absorbance correlates with environments that exhibit

phase separation, highlighting the crucial role of kosmotropic ions in

driving fibril assembly (Malay et al., 2020; Mohammadi et al., 2020).

As such, implementation of this method enables the rapid

comparison of engineered recombinant spidroins under duct-like

conditions to determine the best candidates worth pursuing, with

respect to fibre formation, whilst simultaneously benchmarking

against native spidroin proteins.

Similarly, spectrofluorimetric analysis is often used to

accurately determine b-sheet aggregation kinetics. Originally

adopted from neurodegenerative research into amyloid fibre

forming peptides, Thioflavin T (ThT) is frequently used in

recombinant spidroin biochemical assays to determine b-sheet
formation behaviour (Figure 3) (Xue et al., 2016) Functionally,
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ThT reports amyloid aggregation through fluorescence, which only

occurs once the small molecular dye has intercalated into the b-
sheet structure. The sigmoidal increase in fluorescence intensity

overtime can be used to determine molecular scale assembly

kinetics, as well as the ability to compare and make inferences on

the b-sheet content of recombinant constructs to form aggregates

with richer b-sheet content from function maxima when seeding

protein concentration is equal (Kaldmäe et al., 2020; Arndt et al.,

2022; Qi et al., 2023; De Oliveira et al., 2024). As such the use of ThT

fluorescence has and will continue to serve as an effective low-cost

and reproducible method for assessing b-sheet formation in

selectable environments.

Circular dichroism (CD), Raman, vibrational, and nuclear

magnetic resonance (NMR) spectroscopy are commonly used

techniques to gain insights into protein assembly, kinetics, and

molecular interactions of proteins within silk fibres. Accordingly,

these techniques have been reviewed (in the context of spidroins)

extensively elsewhere (Blamires et al., 2023).
FIGURE 3

Analytical processes for quantifying protein quality, assembly behaviour and structural conformation. Conditions observed in the duct are shown at
the top. Ions present in the duct transition from chaotropic to kosmotropic, pH decreases from high to low, whereas shear increases from low to
high resulting in a structural transformation from a disordered to ordered state. Tail – Size exclusion chromatography is used as an analytical and
preparatory method to quantify and separate proteins of various sizes. Similarly, Mass photometry can be used to rapidly quantify size distributions of
protein samples using the scattering light of protein molecules falling onto a glass slide. Sac – Absorbance measures can be used to generate maps
that illustrate protein-environment conditions. Points of interest on these maps can be visualised using microscopy to determine whether phase
separation is occurring. Droplet dynamics can then be quantified using Fluorescent Recovery after Photobleaching (FRAP) to understand protein
diffusion within phase separation entities. Duct – More advanced spectroscopic methods can be used to determine structural transformations at
various stages in the assembly process like Circular Dichroism (CD). Kinetics of this assembly can be monitored through UV-Vis spectroscopy where
monitoring of ThT Fluorescence can indicate b-sheet formation. Once fibres are generated morphology can be monitored and assessed using
electron microscopy methods.
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Microscopic analyses

Spectroscopic analyses coupled with microscopy-based

analytical methods offer a means for researchers to visualise

protein structural organisation in silk fibres across hierarchical

scales and spatial resolutions, thus, facilitating a greater

understanding of how environmental factors can influence silk

fibre properties.

Bright-field and confocal microscopy, in particular, have been

deployed to effectively characterise spidroin phase separation (Zhang

et al., 2023). Firstly, serving as a binary method to determine whether

a two-phase state is observed, image analysis techniques such as circle

detection offer valuable insights into droplet formation, growth, and

coacervation kinetics, shedding light on the crucial LLPS pre-

assembly step in fibril development (Figure 3).

An extension of these methods is Fluorescence Recovery after

Photobleaching (FRAP). Unlike image analysis methods, which assess

overall droplet characteristics such as size, morphology, and fusion

rates, FRAP is specifically used to determine the diffusion properties of

proteins within the dense proteinaceous droplets they form, providing

insights into the relationship between these proteins and their

environment (Figure 3). In this technique, a high-intensity laser

bleaches a specific region within the imaging field, removing the

fluorescence of a conjugated fluorophore or fluorescently expressed

tag. The time it takes for fluorescence to recover indicates the diffusion

rate and, ultimately, the mobility of proteins within the droplet

(Meyvis et al., 1999; Sprague et al., 2004). Recent work has utilised

FRAP analysis of a recombinantly expressed MaSp2 protein to

determine physical property shifts when buffered into a series of

environments with progressively decreasing pH (Lemetti et al., 2019;

Malay et al., 2020; Feng et al., 2023). Samples with lower pH

environments showed a significant decrease in fluorescence recovery

compared to higher pH environments, characterising the transition

from pre-assembly droplets into more rigid nanofibril structures

(Malay et al., 2020). Methods like FRAP will become increasingly

utilised to effectively measure changes in the physical properties of

spidroins at a molecular level, allowing inferences on residue-residue

interactions that drive structural development to be made.

In contrast to the dynamic, in situ observations provided by

confocal microscopy scanning electron microscopy (SEM) and

transmission electron microscopy (TEM) offer high-resolution,

static imaging that enables precise quantification of the structural

arrangement and fine details of nano to microscale entities allowing

for a more detailed analysis of their architecture and organisation at

the nanoscale (Henini, 2000; Putthanarat et al., 2000). TEM, which

utilises electrons passing through a sample, has enabled the

characterisation of spidroin protein arrangement in the pre-fibril

phase, providing a better understanding of the structural

organisation of various domains and the interactions between

monomers within the network (Parent et al., 2018). Conversely,

SEM provides high resolution images of the surface of a sample by

scanning samples with an electron beam. Imaging fibre topography

is extremely useful as it can rapidly determine stress, fractures and

void formation in fibres (Stark et al., 2007; dos Santos-Pinto et al.,

2018; Arakawa et al., 2022; Craig et al., 2022). SEM can be
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implemented as a quick and effective quality control step to

ensure fibre uniformity during production.
Machine learning and AI approaches
to predicting and evaluating structure

Protein structure prediction programs are frequently employed

to aid the design of protein constructs for expression and

purification. As these predictions provide critical information

about domain boundaries and allow researchers to determine the

effect of mutations, it is imperative that these programs can predict

protein structures with a high degree of accuracy.

The release of AlphaFold2 in 2021 has revolutionised the field of

protein structure prediction with an increase in accuracy of the

predicted structures even in instances where there are no known

structures of homologous proteins (Jumper et al., 2021). Figures 4A, B

provides an example of its use for predicting the structure of spider

silk proteins. The accurate and reliable protein structure predictions

afforded by AlphaFold2 have proven to be invaluable as a

replacement or complement to X-ray crystallography and cryo-EM

(Gupta et al., 2021; Pereira et al., 2021), thus enabling researchers to

make predictions about protein structure by combining experimental

data with integrative structural modelling.

ColabFold (Mirdita et al., 2022) further enhanced the

accessibility of fast, accurate protein structure prediction by

opening up AlphaFold2 and RosettaFold to the wider scientific

community (Mirdita et al., 2022). ColabFold is five times faster than

for single predictions than AlphaFold2 and AlphaFold-Colab.

These improvements, coupled with AlphaFold multimer that

opens up the possibility of investigating macromolecular

complexes, meaning that complex and previously intractable

protein systems – including spider silk proteins and fibres – are

more explorable than ever (Evans et al., 2022). AlphaFold3, which

was released during the preparation of this manuscript, offers even

more exciting improvements, with increased speed and ease of use

(Abramson et al., 2024).

As a result of these innovations, structural coverage of large

proteomes has been estimated to have increased from 48% to 76%

(Porta-Pardo et al., 2022). AlphaFold has also democratised the use

of protein structures with millions of structure predictions for a

range of species readily available via the AlphaFold database to

researchers who had not routinely considered protein structure

when presenting their findings (Varadi et al., 2022). Current

limitations of AlphaFold include an inclination to overpredict

folded regions. With the algorithm being largely trained on X-ray

derived crystalline structures, there is an inability to include ligands

in the predictions (although AlphaFold3 now offers the inclusion of

certain ligands, ions, and post-translational modifications), and size

limitations exist in the complexes that can be predicted. AlphaFold3

has improved this situation significantly but is still limited to 5000

‘‘tokens’’ per run which equates to a maximum of about 14

MaSp1 units.

Many computational researchers have built on the foundations

of AlphaFold introducing new algorithms that combine it with
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larger templating and other molecular dynamics-based methods to

explore larger complexes and potential conformers and movements

within them (Bryant et al., 2022; Mirabello et al., 2023). These

experiments are producing vast, and difficult to interpret, arrays of

data and offer opportunities for iterative and symbiotic marriages

between experimental and computational work. The recombinant

spider silk field seems ripe for such collaborations given the

modular nature and unique properties of these materials.

Fold prediction tools are capable of estimating terminal domain

structures and binding interactions of spidroins with high

confidence. Their ability to confidently estimate the structure of

the repetitive domain of spidroin proteins is, nevertheless, only

capable of outputting low confidence and minimal structural

conformations (Figures 4A, B). Recent developments, allow for

comparative queries of sequences with residue-per-residue data

output on the structure promoting and disorder promoting

residues with a protein (Linding et al., 2003; Hu et al., 2021).

Further to this, applying deep learning on proteome datasets has

enabled accurate and efficient predictions of radius of gyration, end-

to-end distance, polymer-scaling exponents, asphericity and phase

separation propensity of proteins (Vendruscolo and Fuxreiter, 2022;
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Lotthammer et al., 2024) The ability to computationally determine

these values provides an opportunity to compare experimentally

compare native spidroins to recombinantly produced variants and

allow more informed sequence design. While the surge in

popularity of deep learning implementation at a generalised

proteomic level has occurred, specialised spidroin tools have also

been developed. These range from coarse-grained modelling of silk

synthesis and behaviour throughout the gland to generative design

of novel spidroin sequences with advanced mechanical properties

trained on a dataset of over 1,000 silk sequences and motifs,

annotated with physical properties such as elasticity, tensile

strength, and water content (Figure 4C) (Lin et al., 2015; Ni et al.,

2023; Lu et al., 2024). The wide range of in silico tools now available

provides unprecedented potential to high-throughput screening

and development of high-performing recombinant spidroins.
Conclusion

The production of recombinant spider silk proteins represents a

promising yet complex endeavour that leverages advances in
FIGURE 4

Predictive and generative AI tools can be used to inform and design spidroin materials. (A) (Top) Triconephila clavipes MaSp1 N-terminal domain
(PDB – 7WIO) experimentally solved using NMR depicts a conserved and well formed 5 helical domain (Oktaviani et al., 2023). (Bottom) AlphaFold
prediction (AF-B5S7S5-F1) of the same terminal domain shows a highly confident 5 helical structure in blue with similarities to that of the NMR
solved structure with the exception of an intrinsically disordered low confidence “noodle-like” structure in red representing the start of the repetitive
domain. (B) (Top) Euprosthenops australis N-terminal MaSp1 N-terminal domain (PDB – 6QJY) experimentally solved using X-Ray Crystallography
with a similar helical domain conformation that is conserved amongst all spidroin proteins (RCSB PDB – 6QJY: Solution NMR structure of a mutant
major ampullate spidroin 1 N-terminal domain, https://www.rcsb.org/structure/6qjy). (Bottom) AlphaFold prediction (AF-Q05H60-F1) shows a similar
well conserved helical domain in blue and start of the repetitive domain in red.
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molecular biology, protein engineering, and materials science.

While significant strides have been made in expressing and

purifying the requisite spidroins using heterologous hosts,

challenges remain in replicating the natural silk spinning process,

particularly with regard to maintaining protein stability, scaling up

production, and emulating the hierarchical structural features of

native spider silk. Continued research into the roles of the N- and

C-termini, as well as the repetitive domains of spidroins, will be vital

in overcoming these obstacles. Further investigation into liquid–

liquid phase separation and other pre-assembly processes offers

exciting avenues for enhancing the quality and consistency of the

fibres produced. Coupled with advances in analytical techniques

such as mass photometry and spectrofluorimetric analysis, the

future of recombinant spider silk production lies in optimising

both expression systems and spinning methodologies to develop

economically viable methods to create fibres with properties

approaching those of their natural counterparts.

Addressing the urgency and direction for future research should

prioritise understanding the unique silk gland environments across

spider species, as this may hold key insights into the optimisation of

synthetic spinning techniques. How factors such as the roles of pH

shifts, shear forces, ion concentrations and duct physiology

influence the silks mechanical properties requires closer

examination. Comparative studies across species could reveal

crucial differences in gland morphology and function, offering

clues to refining recombinant processes. Additionally,

advancements in bioengineering approaches, such as gene editing

and expression systems, alongside improvements in synthetic

spinning methodologies, are likely to drive advancements in fibre

quality and production scalability.
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