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Spiders are ancient and highly successful predators, which use venom for both

predation and defense. Their venoms are complex mixtures of potent biological

molecules, emerging as a prolific source of biomolecular innovation in

agriculture, biomedicine, and bioeconomy. While small cysteine-rich

neurotoxins are typically considered the main components of spider venoms,

recent research has shown that spider venoms also contain many high-

molecular-weight proteins, especially enzymes. To date, very little is known

about the diversity, biochemistry and ecology of these components. Here, we

provide the first systematic overview of spider venom enzymes, describing all

known examples in terms of their properties and functions in the spider venom

system. We argue that the sheer diversity of these neglected spider venom

compounds offers significant translational potential and holds great potential for

the bioeconomy, reflecting a wide range of technical applications such as

industrial production, food processing, and waste management.
KEYWORDS
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1 Introduction

Spiders (order Araneae) are one of the most species-rich taxon of arthropods, abundant

in most terrestrial ecosystems, and occurring on all continents except Antarctica (Selden

and Penney, 2010; World Spider Catalog, 2024). They have evolved into highly effective

predators that primarily hunt insects, deploying potent venoms to subjugate their prey

(Lüddecke et al., 2022).

Spider venom is a complex mixture of proteins and peptides containing up to 3000

different bioactive molecules (Pineda et al., 2020). The main active principles of spider
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venoms are short neurotoxic peptides with an inhibitory cysteine

knot (ICK) motif (King and Hardy, 2013). These interact with ion

channels and receptors in the central nervous system of prey,

facilitating rapid immobilization (Vassilevski et al., 2009; Kuhn-

Nentwig et al., 2011; Langenegger et al., 2019). Many ICKs also

target disease-related ion channels, and are therefore promising for

biomedical applications (Saez et al., 2010). Accordingly,

biodiscovery programs have investigated venom profiles across

the spider tree of life, unveiling several different venom

compositions, and enabling the characterization of many novel

toxins. These studies mostly involved bioactivity-guided strategies

which, due to methodological limitations, restricted the available

range of examinable taxa to the few larger representatives (Herzig

et al., 2019; Lüddecke et al., 2019). More recently, modern venomics

technologies that combine genomics, transcriptomics and

proteomics with biotechnology have allowed the rapid, cost-

effective analysis of the smaller, less accessible spiders

representing the majority of the global arachnofauna (Lüddecke

et al., 2019).

Recently, several paradigm shifts in spider toxinology have been

promoted, one of them being the unanticipated prevalence and

potential biological significance of the high-molecular-weight

components present in spider venoms, particularly enzymes

(Lüddecke et al., 2022). Spider venoms were originally thought to

comprise mainly ICK peptides, although members of the RTA-

clade (i.e., wandering spiders) had also recruited a diverse range of

small linear cytolytic venom peptides (Langenegger et al., 2019;

Lüddecke et al., 2022). However, the expansion of venom

taxonomic space facilitated by venomics has shown that many

species also produce larger proteins and enzymes as major venom

components. This includes CAP (cysteine-rich secretory proteins,

antigen 5, and pathogenesis-related 1) proteins in orb-weaver

sp iders ( fami ly Araneidae) (Lüddecke et a l . , 2020) ,

metalloproteases in the family Pholcidae (Zobel-Thropp et al.,

2019), and phospholipase D in the family Sicariidae (Dantas

et al., 2016).

Spider venom enzymes fulfill important functions in the context

of venom system physiology, such as the cleavage of propeptides to

activate venom components and facilitate protein maturation

(Langenegger et al., 2018). They may also promote the synergistic

“dual prey-inactivation strategy”, in which an initial wave of non-

specific components attack a broad array of biochemical targets,

followed by a specific neurochemical salvo based on highly

specialized neurotoxins (Kuhn-Nentwig et al., 2019). In this

framework, enzymes are the principal components of the first

wave, interfering with various metabolic and physiological

processes to support the rapid onset of neurotoxic symptoms in

the second wave (Kuhn-Nentwig et al., 2019). Additionally,

functional overlap between venom enzymes and enzymes

involved in extra-intestinal digestion may also exist. Based on

these insights, we recently conducted the first meta-analysis of

spider venom databases paired with a re-analysis of all reported

spider venom proteomes, to determine whether enzymes are more

prominent than reported (Dresler et al., 2024). Our exploratory

work identified 144 enzyme families that span all known enzyme
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classes in the EC system across 17 spider venom families (Dresler

et al., 2024).

While the biological role of most spider venom enzymes remains

unclear, 34 of them have been assigned to known venom functions

(Figure 1). This initial functional assignment was based on a

classification established for scorpion venom enzymes, and the

following six functional classes are recognized: 1) toxic enzymes

that are used in hunting and defense, 2) pre-digestive enzymes that

break down tissue and support extra-intestinal digestion, 3) spreading

factor enzymes that support the uptake of co-secreted toxins, 4)

venom component activators that are involved in protein maturation,

5) preservative enzymes that defend the venom gland against noxious

molecules, 6) multifunctional enzymes (Delgado-Prudencio et al.,

2022). Furthermore, a wide variety of functionally uncharacterized

molecules with potential enzymatic activity exits in spider venoms.

The diverse biological processes mediated by enzymes suggest that

these venom components are indeed prominent but almost

completely neglected. Currently, little is known about the

biochemical ecology (i.e., structure, chemistry, and function) of

spider venom enzymes. However, given their biological refinement

and functionality in chemically challenging environments, such as

insect hemolymph, they may add to the translational potential in

bioeconomy, including chemical production, waste reduction, or food

processing (Singh et al., 2016; Mesbah, 2022). Exploiting such

evolutionary innovations requires a comprehensive analysis of the

different types of spider venom enzymes, their diversity, chemistry,

and translational aspects.

We hereby provide the first systematic overview of known

spider venom enzymes, categorizing and discussing them

hierarchically, based on their putative functions and utilization

potential in the bioeconomy. Our work adds to the body of

literature highlighting the unanticipated chemical and functional

diversity within spider venoms, and provides a basis for the future

investigation of spider venom systems. As most spider venom

enzymes have only been identified through proteo-transcriptomic

analyses and lack experimental evidence for their bioactivity and,

consequently, their biological function, we follow the functional

assignment previously established for scorpions. This classification

is currently the only available system for arachnid venom enzymes,

and is thus considered a good starting point. However, future

research on spider venom activity and function may require

revising our initial classification based on novel insights.
2 Functional classes of spider
venom enzymes

Although little is known about the function and biological roles

of spider venom enzymes, much more information is available

about the enzymes from non-spider arachnids, particularly

scorpions (Ahmadi et al., 2020; Delgado-Prudencio et al., 2022).

The principal role of spider and scorpion venom is similar (i.e.,

neurotoxic activity to facilitate prey capture; Ahmadi et al., 2020;

Delgado-Prudencio et al., 2022) and the two groups are relatively

closely phylogenetically related. Therefore, our functional
frontiersin.org
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assignment of spider venom enzymes is based on the classification

established for scorpions (Delgado-Prudencio et al., 2022).

However, this classification should be considered preliminary

because experimental data is missing for most enzyme families.

Accordingly, future work should validate the assignments described

herein. To date, 34 of 144 described spider venom enzyme families

have been assigned to the functional groups of toxicity, prey pre-

digestion, spreading factors, venom component activation and

venom preservation (Dresler et al., 2024). Whereas, 15 of the

remaining 110 enzyme families have been assigned to cellular

functions such as part of the metabolism or cellular components.

However, due to the lack of further information, 95 enzyme families

remain unclassified. This review explores only those enzyme

families with assignments to venom functions. These are

summarized in Table 1 and described in more detail below.
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2.1 Toxic enzymes

Toxic enzymes are directly involved in envenomation (Delgado-

Prudencio et al., 2022). Similarly to neurotoxins, these compounds

facilitate the fast incapacitation of prey, and can cause a range of

deleterious effects on tissues and/or physiological processes.

2.1.1 Phospholipase D
Phospholipase D (PLD, EC 3.1.4.4) from spider venom, also

known as choline phosphodiesterases, is a family of phospholipases

that catalyze cyclization, specifically transphophatidylation of

phosphodiester bonds in phospholipids resulting in the formation

of cyclic phosphatases (Lajoie et al., 2013). PLDs have been found in

the venoms of sicariid spiders, such as the genera Loxosceles

(Barbaro et al., 1996; Lee and Lynch, 2005; Kalapothakis et al.,
FIGURE 1

Enzymes found in spider venoms and their potential venom functions. Identified enzyme classes and putative function are plotted on a simplified
cladogram showing major phylogenetic spider clades and families (Dresler et al., 2024).
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2007; Catalán et al., 2011), Hexophtalma (Binford et al., 2009) and

Sicarius (Binford et al., 2009; Lajoie et al., 2015). Recent studies also

proposed the presence of PLDs in the venom of the theraphosid

spider Pamphobeteus verdolaga (Estrada-Gómez et al., 2017, 2021).

Earlier works on PLD evolution suggest that they originated via

horizontal gene transfer in the deep evolutionary history of

arthropods (Cordes and Binford, 2018).

Spider venom PLDs are typically monomeric proteins of 30–35

kDa (Chaim et al., 2006; Kalapothakis et al., 2007). They are

expressed as preproproteins of 302–307 amino acids (see Figure 2)

that are processed into the active protein by removing a 12-residue

signal peptide and a 10-residue propeptide, leaving 280–285 residues

that fold into the mature protein (Kalapothakis et al., 2002; Gremski

et al., 2014). Their three-dimensional structure typically features eight

a-helices encircling eight b-strands to form an (a/b)8 barrel or triose-
phosphate isomerase (TIM) barrel (Masood et al., 2018). The active

site includes the catalytically active amino acid residues His12 and

His47, however Trp230 and Asp233 have been shown to also play

important roles in substrate binding and catalytic activity (Murakami

et al., 2005, 2006; Catalán et al., 2014). Based on their structure, spider

venom PLDs can be assigned to class I, featuring three cysteine

residues, two forming a disulfide bridge, and five residues in an

extended flexible loop or class II, which features four cysteine residues
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forming two disulfide bridges, one connecting the catalytic region to a

flexible loop and reducing the size of the active site cavity (Murakami

et al., 2006; de Giuseppe et al., 2011).

The chemical reaction catalyzed by PLD involves the cleavage of

phosphodiester bonds in phospholipids, particularly lyso- and

sphingolipids, yielding cyclic phosphatases phosphatases (Lajoie

et al., 2013). Many lipids or lipid-derived products generated by

phospholipases acting on membrane phospholipids are mediators

or second messengers in signal transduction (Dennis et al., 1991).

The formation of lipid metabolites such as ceramide 1-phosphate

(C1P) or lysophosphatidic acid (LPA) may contribute to spider

venom toxicity triggering pathophysiological changes (Anliker and

Chun, 2004; Lee and Lynch, 2005). In contrast to most other spider

venom enzymes, PLDs have been studied in detail because they are

medically relevant. In Loxosceles venom, PLDs are the primary

component responsible for severe dermo-necrosis and even death

(Futrell, 1992; Senff-Ribeiro et al., 2008; Lajoie et al., 2013; Chaves-

Moreira et al., 2019).

2.1.2 Acetylcholinesterase
Acetylcholinesterase (AChE, EC 3.1.1.7), also known as choline

esterase I, cholinesterase, or true cholinesterase (Bairoch, 2000), is a

single polypeptide ~550 amino acids in length. The first AChE
TABLE 1 Spider venom enzymes grouped by potential functional group, EC numbers, and number of identified proteins in spider venoms (n).

Enzyme family EC n Enzyme family EC n

2.1 Toxic enzymes 2.5 Preservative enzymes

Phospholipase D 3.1.4.4 221 Peroxidase 1.11.1.- 2

Acetylcholinesterase 3.1.1.7 7 Superoxide dismutase 1.15.1.1 3

2.2 Pre-digestive enzymes Carbonic anhydrase 4.2.1.1 4

Triacylglycerol lipase 3.1.1.3 5 Thioredoxin-dependent
peroxiredoxin

1.11.1.24 1

a-Amylase 3.2.1.- 5

Chitinase 3.2.1.14 9 2.6 Multifunctional enzymes

a-Galactosidase 3.2.1.22 1 Phospholipase A2 3.1.1.4 7

Cathepsin L 3.4.22.15 1 Serine carboxypeptidases
(Carboxypeptidase C and D)

3.4.16.- 5

Ceramidase 3.5.1.23 2

2.3 Spreading factor Metallocarboxypeptidases
(Carboxypeptidase A, B, E, M) 3.4.17.- 7

5′ Nucleosidase 3.1.3.5 3

Hyaluronidase 3.2.1.- 13 Serine peptidases 3.4.21.- 14

Angiotensin-converting enzyme 3.4.15.1 10 Neprilysin 3.4.24.11 10

Coagulation factor Xa 3.4.21.6 1 Astacin 3.4.24.21 11

2.4 Precursor-activating enzymes 2.7 Unclear enzymatic activities

Dopamine b-monooxygenase 1.14.17.1 3 Phospholipase A1 3.1.1.32 1

Lysozyme 3.2.1.17 2 Reprolysin 3.4.24.- 1

Peptidylglycine monooxygenase 1.14.17.3 7 CAP – 3

Lectin – 1
Data extracted and summarized from Dresler et al. (2024).
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structure to be described was from the Pacific electric ray Torpedo

californica, featuring 14 a-helices surrounding a 12-stranded mixed

b-sheet with an active site comprising a planar array formed by

three residues in loops within highly conserved regions (Sussman

et al., 1991; Dvir et al., 2010). AChE has been identified in the

venom of three spider families: Barychelidae, Theraphosidae and

Ctenidae (Undheim et al., 2013; Diniz et al., 2018; Zobel-Thropp

et al., 2018; Câmara et al., 2020; Michálek et al., 2022; Nishiduka

et al., 2022).

The physiological function of AChE is to catalyze the rapid

hydrolysis of the neurotransmitter acetylcholine (ACh) into choline

and acetate (Colovic et al., 2013). This leads to the termination of

impulse transmission at cholinergic synapses, allowing cholinergic

neurons to return to their resting state after activation, thus

regulating normal cognitive and motor activities (Barnard et al.,

1975; Colovic et al., 2013). AChE is found not only in spider venom

(Undheim et al., 2013; Borges et al., 2016; Diniz et al., 2018;

Khamtorn et al., 2022), but also in the venom of ants (Cai et al.,

2022) and snakes (Frobert et al., 1997), suggesting a broad

functional role in envenomation. High levels of AChE lead to the

rapid depletion of ACh, negatively affecting the function of

neuromuscular junctions in prey. The spider venom AChE is

therefore likely to disrupt neuromuscular transmission in a

similar manner to cholinotoxins, potentially triggering symptoms

such as flaccid paralysis and respiratory depression/failure,

ultimately facilitating its subjugation (de Roodt et al., 2017;

Friedman et al., 2021). However, an AChE from spider venom

has yet to be isolated or expressed, so the function of this enzyme

has not been validated directly and is only in silico predicted.
2.2 Pre-digestive enzymes

Enzymes with digestive functions are important for extra-

intestinal digestive processes. They are present in spider digestive
Frontiers in Arachnid Science 05
fluids, but have also been identified repeatedly in their venoms

(Fuzita et al., 2016; Walter et al., 2017; Valladão et al., 2023). This

indicates that the extra-intestinal digestion begins soon after

envenomation (Fuzita et al., 2016; Walter et al., 2017). Once

injected, the enzymes begin to break down larger biomolecules,

resulting in the rapid dissolution of prey tissue (Vanthournout et al.,

2016). Insects, the main prey of spiders, are rich in proteins and

lipids. In line with this, the digestive enzymes typically found in

spider venoms are hydrolases such as proteases and lipases (Fuzita

et al., 2016; Walter et al., 2017; Lüddecke et al., 2022; Valladão

et al., 2023).
2.2.1 Triacylglycerol lipase
Triacylglycerol lipase (EC 3.1.1.3), also known as lipase,

tributyrase and triglyceride lipase, is characterized by an a/b
hydrolase fold and a conserved catalytic triad stabilized by a

variable number of disulfide bonds (Casas-Godoy et al., 2012).

The a/b fold exhibits a central b-sheet with eight b-strands, seven of
them parallel and one (b2) antiparallel, and the a-helices are

forming connections between b-strands b3–b8. The catalytic triad
features serine, aspartate/glutamate and histidine residues similar to

that of serine proteases (Brady et al., 1990). In contrast to the

conserved catalytic triad, the substrate binding site is variable, but

includes hydrophobic residues inside a pocket of the central b-sheet
(Pleiss et al., 1998). Triacylglycerol lipases catalyze the cleavage of

carboxylester bonds in long-chain alcylglycerols (>10 carbon

atoms), specifically the hydrolytic cleavage of triacylglycerol into

diacylglycerol and a fatty acid. This differentiates them from

esterases, which cleave shorter chains (<10 carbon atoms) (Casas-

Godoy et al., 2012). Depending on the thermodynamic conditions,

lipases can also be involved in a variety of anabolic reactions, such

as esterification and transesterification (Casas-Godoy et al., 2012)

and may also feature additional cholesterol esterase, chitinase or

amidase activities (Svendsen, 2000).
FIGURE 2

Alignment of selected phospholipase Ds, identified in spider venom with additional data corresponding to the UniProt entries. Alignments were
visualized with TEXshade in identical mode (Beitz, 2000).
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Triacylglycerol lipases have been found in the venom of

Stegodyphus mimosarum, Tibellus oblongus, Tetragnatha versicolor

and Acanthoscurria sp (Sanggaard et al., 2014; Zobel-Thropp et al.,

2018; Nishiduka et al., 2022; Korolkova et al., 2023). In addition,

potential triacylglycerol lipases have been retrieved from the venoms

of Phoneutria nigriventer, Lampona sp., Acanthoscurria natalensis,

Parasteatoda tepidariorum and Steatoda nobilis, but these require

further analysis to validate their family-level assignment (Diniz et al.,

2018; Haney et al., 2019; Câmara et al., 2020; Dunbar et al., 2020;

Michálek et al., 2022). Lipases fulfill diverse physiological functions in

lipid and lipoprotein metabolism, most importantly in the

triglyceride catabolism (Sharma et al., 2001). In spiders, lipases are

found in both digestive secretions and venom, indicating a role in

extra-intestinal digestion (Walter et al., 2017).

2.2.2 a-amylase
The a-amylases (EC 3.2.1.1), also known as glycogenases, are

hydrolases that are assigned to glycoside hydrolase family 13 (GH13),

GH57 or GH119, depending on their sequence (Janecek et al., 2014).

They contain seven conserved regions that form the characteristic (a/
b)8 barrel and share a conserved catalytic triad (Asp206, Glu230 and

Asp297) (Figure 3). These enzymes catalyze the cleavage of a-1,4-
glycosidic bonds in polysaccharides, so their main function is

carbohydrate catabolism (Da Lage, 2018; Kumar and Chakravarty,

2018). They have been found in the venom of several spiders,

including Stegodyphus mimosarum, Tetragnatha versicolor,
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Parasteatoda tepidariorum, Steatoda nobilis and Cupiennius salei

(Sanggaard et al., 2014; Walter et al., 2017; Zobel-Thropp et al.,

2018; Haney et al., 2019; Kuhn-Nentwig et al., 2019; Dunbar

et al., 2020).

In addition to pre-digestion, a-amylases may help to digest

pollen attached to insect prey (Fuzita et al., 2016; Walter et al., 2017;

Valladão et al., 2023). Additionally, neofunctionalization may have

conferred an active role in prey incapacitation as predicted by the

dual prey-inactivation strategy (Kuhn-Nentwig et al., 2019). This

may be achieved by releasing large amounts of glucose from

glycogen stored in the hemolymph and muscles of insect prey,

which disrupts energy homeostasis leading to potentially fatal

hyperglycemia (Kuhn-Nentwig et al., 2019).

2.2.3 Chitinase
Chitinase (EC 3.2.1.14), also known as 1,4-b-poly-N-

ace ty lg lucosamin idase , ch i todext r inase and po ly-b -
glucosaminidase (Bairoch, 2000), can refer to glycoside hydrolases

representing families GH18, GH19 or GH20 (Henrissat and

Bairoch, 1993) and are found in most living organisms (Patil

et al., 2000). Their size ranges from 20–90 kDa (Bhattacharya

et al., 2007) and they are diverse in terms of molecular structure,

surface specificity and catalytic mechanism (Muzzarelli, 1999;

Kasprzewska, 2003; Hamid et al., 2013). Chitinases have been

found in venom from the araneomorph species Argiope

bruennichi and Araneus ventricosus, Phoneutria nigriventer,
FIGURE 3

Molecular structure of selected spider venom enzymes with surface and cartoon presentation of secondary structures in cyan (helix), magenta
(sheet), marine (loop). Sequences were taken from the literature (Haney et al., 2019; Michálek et al., 2022) and structures were modeled using
Alphafold 3 (Abramson et al., 2024) and illustrated using chimera X under default settings. For each enzyme, the respective enzyme class, its
identifier from the venomic dataset and the analyzed species are given. Full data, including sequences, are presented in Supplementary Table S1.
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Stegodyphus mimosarum, Lampona sp., Physocyclus mexicanus,

Tetragnatha versicolor, Parasteatoda tepidariorum and Steatoda

nobilis (Duan et al., 2013; Sanggaard et al., 2014; Diniz et al.,

2018; Zobel-Thropp et al., 2018, 2019; Haney et al., 2019; Dunbar

et al., 2020; Lüddecke et al., 2020; Michálek et al., 2022).

Given the diversity of the chitinase family, there is no general

structure or mode of action, but many chitinases contain a serine/

threonine-rich glycosylated domain and a cysteine-rich chitin-

binding site as catalytic domains (Blaxter, 1996).

In invertebrates, a C-terminal structural motif containing six

cysteine residues forms the chitin-binding domain (Venegas et al.,

1996). Chitinases cleave internal bonds (endochitinases) or

progressively remove external residues (exochitinases) to form

small chito-oligomers (Yuli et al., 2004). Moreover, the degradation

of chitinase products to N -acetylglucosamine dimers or monomers

ultimately involves at least one additional enzyme, which has been

identified as b- N -hexosaminidase in the digestive fluids of spiders

(Mommsen, 1980; Harman et al., 1993; Sahai and Manocha, 1993).

Invertebrate chitinases facilitate ecdysis, which breaks down the

cuticle into chito-oligomers, and may also provide a defensive tool

against insect parasites (Koga et al., 1997). In arachnid venom,

chitinases may facilitate prey capture and feeding by breaking down

the exoskeletons of insect prey (Mommsen, 1980; Fuzita et al., 2016;

Liberato et al., 2016; Walter et al., 2017; Delgado-Prudencio et al.,

2022). Additionally, they may serve as immune response proteins,

given their potency in attacking cell walls of bacteria and fungi

(Walter et al., 2017). Similar key functions are reported from other

arthropods as well (Bolognesi et al., 2005; Genta et al., 2006).
2.2.4 a-galactosidase
The a-galactosidases (EC 3.2.1.22), also known as melibiases

(Bairoch, 2000), represent four families of glycoside hydrolases from

bacteria, fungi, plants and animals (Anisha, 2017; Kote et al., 2020),

although all animal enzymes are assigned to family GH27 (Weignerová

et al., 2009). The enzymes range in size from 30–65 kDa (E et al., 2015).

These enzymes have been found in the venom of the theraphosid

spider Acanthoscurria geniculata (Sanggaard et al., 2014). They

generally occur as homodimers, with each monomer containing an

active site featuring a (b/a)8 domain and an antiparallel b domain

(Garman and Garboczi, 2004; Golubev et al., 2004).

They catalyze the cleavage of glycoproteins, glycolipids and

polysaccharides (Guce et al., 2010), as well as the cleavage of

terminal a-D-galactopyranosyl residues from galactomannans and

oligosaccharides (Golubev et al., 2004; Katrolia et al., 2014). They

are typically associated with the degradation of larger polymeric

substrates (Kim et al., 2011; Benzertiha et al., 2019).
2.2.5 Cathepsin L
Cathepsin L (EC 3.4.22.15) is a cysteine endopeptidase involved

in multiple intracellular processes (Turk et al., 2012) but it is also

secreted from lysosomes, suggesting an additional extracellular role

(Yadati et al., 2020). This enzyme has been found in the venom of
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the eresid Stegodyphus mimosarum and theridiid Parasteatoda

tepidariorum (Sanggaard et al., 2014; Haney et al., 2019), and

have been predicted in the venoms of four other spiders (Diniz

et al., 2018; Dunbar et al., 2020; Michálek et al., 2022; Nishiduka

et al., 2022). The structure of cathepsin L (Figure 3) is similar to that

of papain-like cysteine proteases and it is characterized by ERFNIN

and GNFD motifs, as well as L and R domains featuring a-helices
and b-sheets, respectively. These domains are separated in a V-

shape that forms the catalytic site, which contains the key residues

Cys25 and His163. The molecular weight of cathepsin L ranges

from 25–35 kDa (Gunčar et al., 1999; Dong-hui, 2012). The

hydrolytic function of the enzyme is similar to that of papain

(BRENDA Enzyme Database, 2024).

Cathepsin L is the most abundant lysosomal protease and is

known for its role in intracellular protein degradation, immune

response, and metabolism (Yadati et al., 2020). It processes peptide

neurotransmitters within secretory vesicles (Yadati et al., 2020) and is

also a pheromone processing enzyme (Yasothornsrikul et al., 2003).

The biological role of cathepsin L in spider venom is unclear, however

it has been shown to be the most abundant enzyme in the digestive

fluids of arachnids (Santamarıá et al., 2012; Fuzita et al., 2015b).

Additionally, cathepsin L is an important digestive enzyme in ticks

(Franta et al., 2010), mites (Carrillo et al., 2011) and scorpions (Fuzita

et al., 2015a). Therefore it may be involved in pre-digestion in spider

venom or may act on neurological pathways in the prey or in the

venom gland (Yasothornsrikul et al., 2003; Zhang et al., 2010; Fuzita

et al., 2015b; Delgado-Prudencio et al., 2022).

2.2.6 Ceramidase
Ceramidases (EC 3.5.1.23), also known as acylsphingosine

deacylases, are classified as acid, neutral (NCs) or alkaline

ceramidases (ACERs) according to their optimal pH cleaving fatty

acids from ceramides (Coant et al., 2017). The different subgroups

show low degrees of sequence similarity and have different reaction

mechanisms (Ito et al., 2014). A single NC has been found in spider

venom thus far (Lampona sp.) and a putative NC/ACER has been

predicted in Acanthoscurria natalensis (Câmara et al., 2020;

Michálek et al., 2022). NCs consist of a catalytic N-terminal

domain, a short linker and an immunoglobulin-like C-terminal

domain (Figure 3) (Ito et al., 2014). They exist as soluble or single-

pass transmembrane proteins (Ito et al., 2014). Their active site

consists of a narrow hydrophobic pocket with a coordinated Zn2+

ion cleaving the amide bond of ceramides, producing sphingosine

and a fatty acid (Ito et al., 2014). Sphingolipids were originally

thought to act solely as structural components of cell membranes,

but recently were recognized as bioactive lipids involved in

processes such as growth, differentiation and angiogenesis (Coant

et al., 2017). By converting ceramides to sphingosines, ceramidases

may regulate the availability of these versatile bioactive lipids

(Coant et al., 2017). The functional role of ceramidases in spider

venom remains unknown, but they may contribute to prey

digestion because ceramide is a key building block of insect cell

membranes (Shi et al., 2021).
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2.3 Spreading factors

Spreading factors target the extracellular matrix (ECM),

disrupting the integrity of cells and tissues to promote the uptake

and distribution of co-secreted toxins. This can be achieved via

various mechanisms, including the cleavage of proteins, the

degradation of lipid bilayers, or pore formation. Spreading factors

are therefore important determinants of venom activity because

they directly contribute to the rapid onset of envenomation

symptoms, which is particularly important in the case of

predatory venoms (Langenegger et al., 2019; Delgado-Prudencio

et al., 2022).

2.3.1 5′ Nucleotidase
The 5′ nucleotidases (EC 3.1.3.5) are hydrolases that catalyze the

hydrolysis of phosphodiester bonds in ribonucleotides. They have a

monomeric mass of 60–100 kDa but are found as soluble or membrane-

bound dimers and tetramers (Zimmermann, 1992). Many such enzymes

feature disulfide bonds, glycosylation, coordinated Zn2+ ions, and (in the

case of membrane-bound enzymes) ecto-5′ nucleotidase lipidation via a

glycophosphatidylinositol (GPI) anchor (Zimmermann, 1992).

The physiological role of 5′ nucleotidases is to control the intra-
and extracellular level of nucleoside 5′-monophosphates

(Schetinger et al., 2007). Such enzymes have also been detected in

the venom of insects, cnidarians and reptiles (Dhananjaya and

D’Souza, 2010; Macrander et al., 2016; Walker et al., 2018; Fischer

et al., 2023) as well as the spiders Argiope bruennichi, Stegodyphus

mimosarum and Pamphobeteus verdolaga (Sanggaard et al., 2014;

Lüddecke et al., 2020; Estrada-Gómez et al., 2021). Although their

precise role is not clear, structurally related enzymes identified in

fish-hunting bugs and snakes are known to inhibit ATP-induced

thrombocyte aggregation (Trummal et al., 2015; Walker et al.,

2018). Nucleotide-cleaving enzymes may also interfere with the

prey’s nucleotide metabolism and nucleotide-dependent signaling

(Aird, 2002; Hunsucker et al., 2005).

2.3.2 Hyaluronidase
Hyaluronidases (EC 3.2.1.35) are hydrolases that break down

hyaluronic acid and chondroitin sulfate into oligosaccharides

(Bordon et al., 2015). All hyaluronidases found thus far in spider

venom belong to family GH56 and are monomers of 30–60 kDa,

featuring disulfide bonds and glycans (Sutti et al., 2014). They have

been found in venom from eight spider families, including Atracidae,

Ctenidae and Sicariidae (Duan et al., 2008; Diniz et al., 2018; Zobel-

Thropp et al., 2018; Haney et al., 2019; Kuhn-Nentwig et al., 2019;

Câmara et al., 2020; Koua et al., 2020; Estrada-Gómez et al., 2021;

Cardoso et al., 2022; Michálek et al., 2022; Nishiduka et al., 2022).

Hyaluronic acid is a key component of the vertebrate ECM

(Yamada et al., 2011; Nagaraju, 2016). Accordingly, hyaluronidases

are involved in a number of physiological processes that require

ECM remodeling, such as cell migration, inflammation, and wound

healing (Dos Santos et al., 2009). They are presumed to act as

spreading factors when expressed in venom systems (Futrell, 1992;

Ferrer et al., 2013) but the insect ECM lacks hyaluronic acid and the

role of such enzymes must therefore be restricted to vertebrate prey
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(Hynes and Walton, 2000; Buhren et al., 2016). This is most likely

the case for large spiders, which can predate small vertebrates

(Gudger, 1931; Nyffeler and Knörnschild, 2013; Kuhn-Nentwig

et al., 2019; Reyes-Olivares et al., 2020; Nyffeler and Gibbons,

2022). Furthermore, hyaluronidases may be utilized as a defensive

mechanism against vertebrate predators, potentially facilitating the

dispersal of other venom components (Girish and Kemparaju,

2007). Recent studies have demonstrated that, in addition to

hyaluronic acid, chondroitin serves as a substrate for most spider

venom hyaluronidase-like enzymes. Given that invertebrates

contain chondroitin and its sulfated form (chondroitin sulfate) in

place of hyaluronic acid, the degradation of these may present the

spreading properties observed (Biner et al., 2015).
2.3.3 Angiotensin-converting enzyme
Angiotensin-converting enzyme (ACE, EC 3.4.15.1), also

known as peptidyl-dipeptidase A, carboxycathepsin, dipeptidyl

carboxypeptidase I, kininase II, peptidase P or peptidyl

dipeptidase I, cleaves dipeptides from the C-terminus and occurs

as two isoforms in mammals (Bairoch, 2000). Somatic ACE (150–

180 kDa) has two catalytic sites, whereas testicular ACE (90–110

kDa) has only one (Langford et al., 1993; Kondoh et al., 2005; Zhang

et al., 2013). Similar to carboxypeptidase A the catalysis is facilitated

by the activation of a water nucleophile and an acid, leading to the

cleavage of amide C-N bonds (Zhang et al., 2013). Yet there is little

sequence similarity between these enzymes other than the

conserved HEXXH Zn2+-binding motif (Zhang et al., 2013).

Invertebrate homologs of mammalian ACE are single-domain

M2-type zinc metalloproteases lacking the C-terminal membrane

anchor found in mammals, and are therefore soluble extracellular

proteins (Coates et al., 2000; Salzet et al., 2001). Most invertebrate

ACEs have a catalytic site similar to mammalian ACE, but some

variants lack the catalytic domain (Turner and Hooper, 2002).

Plesiotypic ACE is a key component of the renin-angiotensin

system (RAS) that converts angiotensin to its active form thereby

regulating e.g. blood pressure in vertebrates (Coates, 2003). In case

of invertebrates, the RAS is involved in osmoregulation, memory

processes, reproduction, and immune responses (Salzet et al., 2001).

ACE has been found in the venom of 10 spiders, including

Phoneutria nigriventer, Acanthoscurria sp. and Parasteatoda

tepidariorum (Sanggaard et al., 2014; Diniz et al., 2018; Haney

et al., 2019; Nishiduka et al., 2022). The function of ACE in spider

venom is unclear, but ACE-like venom compounds may induce

hypertensive effects in vertebrate prey (Murthy and Vakil, 1988;

Safavi-Hemami et al., 2013; Kuhn-Nentwig et al., 2019) and may

cleave neuropeptides to compromise the physiological functions of

prey, thus preventing escape (Cajado-Carvalho et al., 2016).

ACE-like venom compounds may also be important for venom

gland physiology, similar to other venom peptidases (Langenegger

et al., 2018). Facing their activity in osmoregulation they may also

be involved in trophic interactions and serving as unspecific

effectors targeting the metabolism of invertebrate prey (Kuhn-

Nentwig et al., 2019). Thus, although these enzymes have been

primarily assigned as potential spreading factors, they may equally

well serve as toxic components.
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2.3.4 Coagulation factor Xa
Coagulation factor Xa (FXa, EC 3.4.21.6), sometimes described

as Stuart factor, is the activated form of the zymogen factor X (FX)

in the blood coagulation cascade. FXa is composed of a light chain

and a heavy chain joined by a disulfide bond. The light chain

features an N-terminal g-carboxyglutamic acid domain that binds

to negatively charged phospholipid membranes in the presence of

Ca2+ ions, along with two epidermal growth factor (EGF)-like

domains (Furie and Furie, 1988; Mann et al., 1990; Brown et al.,

2013). The heavy chain contains a trypsin-like serine protease

domain (Padmanabhan et al., 1993; Kamata et al., 1998).

FXa is an arginine-specific serine protease that activates

prothrombin by hydrolytic cleavage, forming thrombin (Rabiet

et al., 1986; Mann et al., 1990; Brufatto and Nesheim, 2003;

Brown et al., 2013). By directly contributing to the production of

thrombin, it plays a key role in the process of blood clotting. FXa

also interacts with cell-surface receptors, triggering responses such

as cell activation, gene expression, and mitosis (Borensztajn et al.,

2007, 2009). Components potentiating the effect of FXa and other

coagulation factors, as well as those with FXa-like pro-coagulant

activity, have been identified in the venoms of spiders such as

Hippasa agelenoides (Devaraja et al., 2010), Lycosa singoriensis (Li

et al., 2020a) and Acanthoscurria natalensis (Câmara et al., 2020).

Given its proteolytic activity, FXa has been assigned as a putative

spreading factor but may serve other, as of yet unknown activities in

insect prey envenoming.
2.4 Precursor-activating enzymes

Spider venom components are typically expressed as

propeptides or prepropeptides that undergo enzymatic cleavage

during maturation. The signal peptide is removed during

translocation through the endoplasmic reticulum membrane,

whereas additional maturation steps are required to convert the

propeptide into a biologically active mature molecule (Kozlov and

Grishin, 2007; Kuhn-Nentwig et al., 2019). Precursor-activating

enzymes are part of this machinery, which involves not only limited

proteolysis but also C-terminal amidation and other

posttranslational modifications (Kozlov and Grishin, 2007;

Langenegger et al., 2018; Kuhn-Nentwig et al., 2019).

2.4.1 Dopamine b-monooxygenase
Dopamine b-monooxygenase (EC 1.14.17.1), also known as

dopamine b-hydroxylase (DBH) or (3,4-dihydroxy-phenethylamine)

b-monooxygenase, is a Cu-containing enzyme (Bairoch, 2000).

Vertebrate DBH contains a conserved dopamine-binding domain

(Ponting, 2001) and a Cu2_monoonxygen domain that converts

dopamine to noradrenaline (Menniti et al., 1986; Klinman, 2006).

The enzyme is glycosylated, contains disulfide bonds, and requires not

only copper as a cofactor, but also L-ascorbate as an electron donor and

molecular oxygen (Kobayashi et al., 1989; Lewis et al., 1990).

Vertebrate DBH is required for the biosynthesis of

neurotransmitters such as catecholamine, dopamine, norepinephrine
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and epinephrine (Cheng et al., 2016). Norepinephrine is the major

neurotransmitter in vertebrates, promoting wakefulness, regulating

aggression, and controlling autonomic functions such as the

heartbeat (Kim et al., 2002; Marino et al., 2005; Singh et al., 2015).

The release of norepinephrine in both vertebrates and invertebrates

during stress influences the function of the immune system (De Barros

et al., 2012; Gallo et al., 2016). Specifically in arthropods,

norepinephrine reduces phenoloxidase and superoxide dismutase

(SOD) activity in the hemolymph of Penaeus vannamei (Li et al.,

2020b). DBH has been found in the venom of three spiders: the ctenid

Phoneutria nigriventer, the lamponid Lampona sp. and the theraphosid

Acanthoscurria juruenicola (Diniz et al., 2018; Michálek et al., 2022;

Nishiduka et al., 2022). The characteristics and associated functions of

spider DBH proteins remain unknown.

2.4.2 Lysozyme
Lysozyme (EC 3.2.1.17), also known as muramidase, occurs as a

monomer and is found in all living organisms (Bairoch, 2000;

Leśnierowski and Yang, 2021). The three major families are the

chicken-type (c-type), goose-type (g-type) and invertebrate-type

(i-type) lysozymes (Leśnierowski and Yang, 2021). The c-type and

i-type typically have a molecular weight of 11–15 kDa, whereas the

g-type lysozymes are slightly larger with 20–22 kDa (Wu et al.,

2019). Only the c-type lysozymes have been found in spider venom,

specifically in Araneus ventricosus and Latrodectus tredecimguttatus

(Duan et al., 2006, 2013).

The c-type lysozyme features 129 amino acids that fold into two

domains linked by a long a-helix and stabilized by four disulfide bonds
(Leśnierowski and Yang, 2021). The active site is located between the

two domains and comprises six sugar-binding motifs defined as A, B,

C, D, E and F (Leśnierowski and Yang, 2021). Monomeric lysozyme

mainly catalyzes the hydrolysis of b-(1,4) bonds between N-

acetylmuramic acid and N-acetyl-D-glucosamine in peptidoglycans,

the major component of the bacterial cell wall (Leśnierowski and

Yang, 2021). Therefore, lysozymes are mainly antimicrobial proteins

that inhibit the growth of Gram-positive bacteria, but they are also

considered as digestive enzymes and anti-inflammatory factors

(Leśnierowski and Yang, 2021). Importantly, they are not present in

the digestive fluids but in the venom of spiders, suggesting a role in

precursor activation rather than digestion (Sanggaard et al., 2014;

Fuzita et al., 2016; Valladão et al., 2023).

2.4.3 Peptidylglycine monooxygenase
Peptidylglycine monooxygenase (EC 1.14.17.3) is a bifunctional

enzyme also known as peptidyl a-amidating enzyme,

peptidylglycine 3-hydroxylase or peptidylglycine a-amidating

monooxygenase (PAM) (Bairoch, 2000). PAMs have been found

in four spider families: Eresidae (Stegodyphus mimosarum),

Theraphosidae (three species), Theridiidae (two species), and

Trechaleidae (Cupennius salei) (Sanggaard et al., 2014; Haney

et al., 2019; Kuhn-Nentwig et al., 2019; Câmara et al., 2020;

Dunbar et al., 2020; Nishiduka et al., 2022).

PAMs consist of two catalytic domains that activate precursor

peptides in a two-step reaction (Figure 3). The first step is catalyzed
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by the peptidylglycine a-hydroxylating monooxygenase (PHM)

domain, which hydroxylates the C-terminal glycine of a precursor

peptide together with cofactors L-ascoborabate, molecular oxygen

and Cu2+ (McIntyre et al., 2010). The second step involves the

peptidylglycine amidoglycolate lyase (PAL) domain, which

catalyzes the Zn2+-dependent dealkylation of carbinolamide

intermediates (McIntyre et al., 2010). The PHM domain shares

mechanistic, sequence and structural homology with DBH: both

require two coordinated Cu+ ions for catalytic activity and transfer a

hydrogen atom from the substrate to an activated Cu/O species,

which results in the hydroxylation of the product (Ash et al., 1984;

Kulathila et al., 1994). Posttranslational modifications catalyzed by

PAM, such as C-terminal amidation, are often the final step in

protein/peptide maturation (Vassilevski et al., 2009; Kuhn-Nentwig

et al., 2019). These data suggest that PAMs are precursor activator

enzymes in spider venom.
2.5 Preservative enzymes

Preservative enzymes help regulate oxidative stress, for example

by eliminating reactive oxygen species (ROS) and reactive nitrogen

species (RNS) (Colinet et al., 2011; Borges et al., 2016; Su et al., 2018;

Zhang et al., 2020). ROS are metabolic intermediates or end

products that directly mediate oxidative stress and peptide

degradation. Venom components are sensitive to ROS, which

reduce their half-life, so preservative enzymes are required to

maintain venom efficacy (Peiren et al., 2008).

2.5.1 Peroxidase
Peroxidases (EC 1.11.1.-) form a large family of enzymes that

can be divided into heme- and non-heme-containing members,

each with multiple subclasses that utilize different substrates and

electron donors (O’Brien, 2000). These enzymes break down

phenolic compounds and remove peroxides, and are therefore

components of many metabolic pathways as well as stress-

response, defense and detoxification systems (De Oliveira et al.,

2021). The catalytic center was originally proposed as a triad

composed of Gln, Trp and Sec/Cys residues, but was later

redefined as a tetrad with an additional Asn (Tosatto et al., 2008;

Brigelius-Flohé and Maiorino, 2013).

Peroxidases have been found in the venom of Lampona sp. and

Acanthoscurria geniculata (Sanggaard et al., 2014; Michálek et al., 2022)

and may contribute to the preservation of toxins by protecting them

from oxidative damage in the venom glands (De Oliveira et al., 2021;

Delgado-Prudencio et al., 2022).

2.5.2 Superoxide dismutase
Superoxide dismutase (SOD, EC 1.15.1.1) is the main enzymatic

regulator of ROS, protecting cells and tissues against oxidative stress

by converting superoxide radicals to oxygen and hydrogen peroxide

(Finkel and Holbrook, 2000; Serra et al., 2003). In most species,

SOD is a homotetramer or-dimer of ~30 kDa subunits (Keele et al.,

1971). SOD can be found inside cells but is also released into the
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ECM (Nozik-Grayck et al., 2005). They can be classified based on

their metal cofactor requirements (Fe, Mn, or Cu/Zn), cellular

location and fold, which leads to three distinct classes (Perry

et al., 2010). Secreted SOD is usually connected to the ECM via

the C-terminal region, which consists mostly of basic amino acids

(Hjalmarsson et al., 1987; Bowler et al., 2002).

SOD has been found in the venom of three spider species, namely

Phoneutria nigriventer, Tibellus oblongus and Acanthoscurria

geniculata (Sanggaard et al., 2014; Diniz et al., 2018; Korolkova

et al., 2023), where it may contribute to venom conservation

(Delgado-Prudencio et al., 2022).

2.5.3 Carbonic anhydrase
Carbonic anhydrase (EC 4.2.1.1) is a zinc-dependent carbonate

hydrolyase also known as carbonate dehydratase or carbonic

dehydratase (Bairoch, 2000). Seven isoforms have been isolated

from mammals, one of which is a membrane-bound protein while

the others are free enzymes found in erythrocytes or in the

mitochondrial matrix (Dodgson et al., 1991; Stams et al., 1996).

Carbonic anhydrase II has one of the highest turnover numbers in

nature (Dodgson et al., 1991; Stams et al., 1996). The human

isoforms I, II, III and IV are homologous, with a b-sheet
superstructure and an active site that is 15 Å deep, but the

structure surrounding the active site differs between individual

enzymes resulting in a 103-fold difference in catalytic activity

(Figure 3) (Dodgson et al., 1991; Stams et al., 1996).

Carbonic anhydrase catalyzes the reversible reaction of

hydrogen ions with hydrogen carbonate (HCO3
-) to form carbon

dioxide (CO2) and water (H2O) (Stams et al., 1996; Bairoch, 2000).

In the spider Nephila clavipes, carbonic anhydrase regulates the pH

gradient in the silk glands (Andersson et al., 2014). The enzyme is

also found in the venom of the Brazilian tarantula Grammostola

iheringi and is functionally annotated as a regulatory protein

(Borges et al., 2016). Carbonic anhydrase is also found in the

venom of Lampona sp. and Acanthoscurria sp (Sanggaard et al.,

2014; Câmara et al., 2020; Michálek et al., 2022; Nishiduka

et al., 2022).

2.5.4 Thioredoxin-dependent peroxidase
Thioredoxin-dependent peroxidase (EC 1.11.1.24), or

thioredoxin peroxidase (Bairoch, 2000), is a ubiquitous cysteine-

based peroxidase that exists as a 10–25 kDa monomer in its reduced

state (Zhang et al., 2020) and functions as a highly efficient

reductase (Reyes et al., 2016). It contains a highly conserved

redox-active cysteine motif, which from the catalytic center to

interact with peroxide substrate (Reyes et al., 2016; Zhang

et al., 2020).

Thioredoxin-dependent peroxidases catalyze the conversion of

hydroperoxide, alkyl hydroperoxides and peroxinitrite into water

and corresponding alcohols (Sen, 2000; Su et al., 2018). Thioredoxin

peroxidase has been found in the venom of a single theraphosid

spider, Acanthoscurria geniculata (Sanggaard et al., 2014), where it

may counter oxidative stress in the venom gland, thus contributing

to venom conservation (Delgado-Prudencio et al., 2022).
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2.6 Multifunctional enzymes

Venom enzymes described as multifunctional have been

assigned several of the functions discussed above. For example,

proteases are often multifunctional because they can facilitate the

processing and activation of other venom components, diversify the

toxin repertoire, and digest captured prey (Sarras, 1996; Borges

et al., 2016). The majority of venom enzymes may have multiple

functions, enhancing their ecological significance.

2.6.1 Phospholipase A2

Phospholipase A2 (PLA2, EC 3.1.1.4), also known as lecithinase

A, phosphatidase, phosphatidolipase, and phosphatidylcholine 2-

acylhydrolase, is a common venom component in its secretory

form, sPLA2 (Kini, 2003; Dennis et al., 2011; Kuhn-Nentwig et al.,

2011). The protein typically has a molecular weight of 14–18 kDa,

features 6–8 disulfide bonds, and often requires Ca2+ as a cofactor.

Many sPLA2 proteins feature three elongated a-helices and two

antiparallel b-sheets (often described as b-wings) stabilized by

disulfide bonds, and a conserved Ca2+ binding loop (Dennis et al.,

2011). However, some sPLA2 lack b-wings, contain only a-helical
motifs or enzymatically fully inactive (Matoba et al., 2002; Guy

et al., 2009; Harris and Scott-Davey, 2013).

Secreted PLA2 enzymes catalyze the hydrolysis of phospholipids

at the glycerin b-C-atom. They are prominent constituents of many

snake venoms (Kini, 2003; Murakami et al., 2011) and have multiple

physiological effects, including neurotoxic symptoms (Wernicke

et al., 1975; Ritonja and Gubenek, 1985), the inhibition of blood

coagulation (Boffa and Boffa, 1976), and the modulation of platelet

functions (Landucci et al., 1994). In spider venoms, PLA2 enzymes

are thought to promote coagulopathy (Usmanov and Nuritova,

1994), cell lysis and apoptosis (Kuhn-Nentwig et al., 2011). Such

enzymes have been found in the venoms of seven spiders (Dresler

et al., 2024), including Hylyphantes graminicola, Physocyclus

mexicanus and Cupiennius salei (Zobel-Thropp et al., 2018;

Kuhn-Nentwig et al., 2019; Zhu et al., 2022), but their functions

have yet to be characterized in detail.

2.6.2 S10 serine carboxypeptidase family
The S10 serine carboxypeptidase family (EC 3.4.16.-) consists of

the carboxypeptidases C and D, which are the only serine peptidases

active at acidic pH (Rawlings and Salvesen, 2013c). Their secondary

structure features b-strands and a-helices bracketing the three

residues of the active site. The tertiary structure is unlike any other

serine peptidase, mainly consisting of parallel b-sheets forming b/a/b
units (a/b-hydrolase fold). Both serine carboxypeptidases require

serine as a cofactor but differ in their specificity, mirroring the

specificity of M14 metallocarboxypeptidases (Rawlings and

Salvesen, 2013c). Serine carboxypeptidases have been found in

spider venom (see 2.6.2.1 and 2.6.2.2) (Hayashi et al., 1973;

Rawlings and Salvesen, 2013c). They are involved in multiple

physiological and cellular processes, ranging from protein digestion

in animals to the mobilization of seed storage proteins in plants, and

the post-translational processing of other enzymes (Mikola, 1986;

Galjart et al., 1990; Bown et al., 1998; Valladão et al., 2023). Based on
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these diverse activities, serine carboxypeptidases in spider venommay

also fulfil multiple functions, although more work is required to

achieve experimental confirmation.

2.6.2.1 Carboxypeptidase C

The carboxypeptidase C (EC 3.4.16.5) is also known as

carboxypeptidase Y, cathepsin A, lysosomal protective protein

and serine-type carboxypeptidase I (Bairoch, 2000; Rawlings and

Salvesen, 2013a). The best-characterized member is yeast

carboxypeptidase Y, a single-chain 65 kDa protein glycosylated at

four positions (Johansen et al., 1976; Winther et al., 1991). It is

produced as a prepropeptide that is modified during maturation

(Bairoch, 2000; Rawlings and Salvesen, 2013c). Carboxypeptidase C

has been found in the venom of the spiders Argiope bruennichi and

Lampona sp (Lüddecke et al., 2020; Michálek et al., 2022). The

ancestral enzyme might have been essential for the correct assembly

and function of a proteins containing b-galactosidase and

neuraminidase in the lysosomal compartment (Rawlings and

Salvesen, 2013c). In spider venom, carboxypeptidase C may

activate precursors by processing their C-termini and play a role

in pre-digestion as it is also found in the digestive fluids of

Nephilengis cruentata (Fuzita et al., 2016).

2.6.2.2 Carboxypeptidase D

Carboxypeptidase D (EC 3.4.16.6) is also known as

carboxypeptidase KEX1 or carboxypeptidase S1. It is exclusively

found in eukaryotes and is ubiquitous in higher organisms

(Rawlings and Salvesen, 2013c). It preferentially cleaves C-

terminal arginine or lysine residues (Xin et al., 1997; Bairoch,

2000; Rawlings and Salvesen, 2013c). The enzyme is typically a

50–70 kDa glycoprotein with one or two chains interconnected by

disulfide bonds (Rawlings and Salvesen, 2013c). In plants and

mammals, this exopeptidase is broadly distributed in many tissues

and is thought to process secreted proteins (Xin et al., 1997) and

peptides (Galjart et al., 1990; Lehfeldt et al., 2000; Rawlings and

Salvesen, 2013c). Carboxypeptidase D has been detected in the

venom of the spiders Stegodyphus mimosarum, Acanthoscurria

geniculata and Parasteatoda tepidariorum (Sanggaard et al., 2014;

Haney et al., 2019).

2.6.3 M14 metallocarboxypeptidase family
The M14 metallocarboxypeptidase family (EC 3.4.17.-) includes

carboxypeptidases A, B, M and E, as well as bacterial

carboxypeptidase T and g-D-glutamyl-(L)-meso-diaminopilmelate

peptidase I (Rawlings and Salvesen, 2013a). The M14 family is

partially subdivided into subfamilies. Subfamily M14A contains

carboxypeptidases A and B, which in mammals are digestive

enzymes, while subfamily M14B comprises a number of

carboxypeptidases, including carboxypeptidases E, which are

regulatory proteins that determine the availability of peptide

mediators and hormones (Rawlings and Salvesen, 2013a).

Although most members of the M14 family are soluble,

carboxypeptidase M is a membrane-bound enzyme. All M14

peptidases feature an a/b/a sandwich with an antiparallel b-sheet
of eight strands, similar to the a/b hydrolases, including the S10
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family mentioned above (Rawlings and Salvesen, 2013a). These

enzymes require a Zn2+ ion that is tetrahedrally coordinated by a

water molecule, two histidine residues and glutamate (Rawlings and

Salvesen, 2013a). M14 peptidases in spider venom are yet to be

validated on functional level and could belong to several subfamilies

with diverse functions.

2.6.3.1 Carboxypeptidase A

Carboxypeptidase A (EC 3.4.17.1), also known as

carboxypolypeptidase (Bairoch, 2000; Kuhn-Nentwig et al., 2019)

is produced as an inactive propeptide. The crystal structure of

monomeric porcine procarboxypepdiase A1 consists of two

domains: a N-terminal 95-amino-acid propeptide activation

segment and a 308-amino-acid enzyme domain (Guasch et al.,

1992). The monomeric enzyme is found in most species, but the

proenzyme sometimes occurs as a binary or ternary complex with

other proteases (Vendrell et al., 2000). Carboxypeptidase A

catalyzes the cleavage of C-terminal peptide or ester bonds

(Davies et al., 1968). Physiologically, it is an important

exopeptidase involved in the degradation of diet proteins

(Rawlings and Salvesen, 2013a). Carboxypeptidase A has been

found in the venom of the spiders Acanthoscurria natalensis and

Cupiennius salei, where it may be involved in pre-digestion and

precursor activation (Kuhn-Nentwig et al., 2019; Câmara

et al., 2020).

2.6.3.2 Carboxypeptidase B

Carboxypeptidase B (EC 3.4.17.2), also known as protaminase

(Bairoch, 2000; Barrett et al., 2012), is structurally similar to the

carboxypeptidase A (Villegas et al., 1995; Bairoch, 2000; Barrett et al.,

2012) and features conserved Zn-coordinated residues (Avilés et al.,

1993). In humans, the enzyme consists of an activation and an

enzyme domain, including a 94-amino-acid N-terminal propeptide

that functions as a chaperone to assist with folding (Billeter et al.,

1992; Rawlings and Salvesen, 2013a). Carboxypeptidase B is an

exopeptidase with moderate affinity for C-terminal, non-basic

amino acids such as arginine, valine, leucine and isoleucine, among

others (Nishihira et al., 1995; Villegas et al., 1995; Bairoch, 2000). This

enzyme is important for the digestion of food (Barrett et al., 2012) but

also breaks down effector molecules (Villegas et al., 1995). It has been

found in the venom of the spider Parasteatoda tepidariorum and, like

carboxypeptidase A, may be involved in pre-digestion and precursor

activation (Haney et al., 2019).

2.6.3.3 Carboxypeptidase E

Carboxypeptidase E (EC 3.4.17.10), also known as

carboxypeptidase H or enkephalin convertase (Fricker, 1988;

Bairoch, 2000), is closely related to carboxypeptidases A, B and D

and may share the amino acids required for catalytic activity and

substrate binding (Fricker et al., 1986; Aloy et al., 2001). It consists

of a ~300-amino-acid carboxypeptidase A/B-like and an ~80-

amino-acid transthyretin-like domain, both of which are present

in all members of the carboxypeptidase E subfamily (Rawlings and

Salvesen, 2013a). In contrast to other metallocarboxypeptidases,

carboxypeptidase E contains a unique C-terminal region of ~40
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amino acids required for pH-dependent peripheral association with

membranes (Varlamov and Fricker, 1996). In mammals, this

enzyme has a high specificity for the release of C-terminal

arginine or lysine residues from polypeptides, and needs Co+ as a

cofactor. It is associated with the biosynthesis of peptidic

neurotransmitters and hormones (Fricker, 1988). The

evolutionary relationship between carboxypeptidases E and B

suggests that both proteins were originally digestive enzymes

(Fricker, 1988). Carboxypeptidase E has been found in the venom

of Acanthoscurria juruenicola and may, like its relatives described

above, be involved in pre-digestion and precursor activation

(Nishiduka et al., 2022).

2.6.3.4 Carboxypeptidase M

Carboxypeptidase M (EC 3.4.17.12) is the only membrane-

bound member of the M14 peptidase family. The human enzyme is

a single polypeptide chain with a molecular weight of 62 kDa

(Skidgel et al., 1989). It consists of an N-terminal catalytic domain

and a GPI membrane anchor attached to the C-terminal extension

of the protein (Blake and Oatley, 1977; Stams et al., 1996; Reverter

et al., 2004). Carboxypeptidase M catalyzes the C-terminal

hydrolysis behind of arginine or lysine residues from peptides

such as bradykinin and kallidin and controls peptide hormone

activity at the cell surface, process extracellular proteins and process

extracellular prohormones (Skidgel, 1988; Skidgel and Erdös, 1998),

as well as facilitating the inflammatory response by activating

inflammatory mediators such as bradykinin and kallidin (Bhoola

et al., 1992; Leeb-Lundberg et al., 2005). It has been detected only

once in spider venom, in Tetragnatha versicolor (Zobel-Thropp

et al., 2018). The structure of carboxypeptidase M in spider venom

is unknown, so it may be a soluble protein without a GPI anchor

and may be involved in precursor activation and pre-digestion.
2.6.4 Serine peptidases
Serine peptidases (EC 3.4.21.-), also known as S1 serine

proteases, are endopeptidases characterized by conserved catalytic

triad comprising residues of histidine and aspartate and the name

giving serine (Bairoch, 2000; Hedstrom, 2002). They have a

distinctive structure, typically featuring a single domain with a

“chymotrypsin fold” consisting of several a-helices and b-sheets in
different arrangements (Hedstrom, 2002). Their classification as

trypsin-like, chymotrypsin-like and elastase-like enzymes is based

on substrate specificity (Ovaere et al., 2009). S1 proteases disrupt

the physiology of envenomed prey by interfering with multiple

processes (Devaraja et al., 2011), thus enhancing the overall efficacy

and potency of the venom (Sannaningaiah et al., 2014; Langenegger

et al., 2019) or promoting toxin maturation (Langenegger

et al., 2018).

S1 serine peptidases have been identified in many spider

venoms, including Argiope bruennichi, Phoneutria nigriventer and

Tibellus oblongus (Diniz et al., 2018; Lüddecke et al., 2020;

Korolkova et al., 2023), but have yet to be classified to a specific

enzyme. Furthermore, trypsin homologs (EC 3.4.21.4) have been

identified in the venom of Acanthoscurria geniculate, Steatoda

nobilis, Cyriopagopus schmidti and Lampona sp (Yuan et al.,
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2007; Sanggaard et al., 2014; Dunbar et al., 2020; Michálek et al.,

2022). This enzyme has a molecular weight of 23 kDa and has

different activated forms mainly a-trypsin and b-trypsin (Bartunik

et al., 1989). Trypsin cleaves highly specific the peptide bond C-

terminal of the positive charged amino acids lysine and arginine

(Olsen et al., 2004). In addition to its digestive function, trypsin

contributes to physiological processes such as the regulation of

immunity, blood coagulation, and tissue remodeling through the

activation of protease-activated receptors and the modulation of

signaling pathways (Yin, 1964; Ossovskaya and Bunnett, 2004;

Wang et al., 2008).

2.6.5 Neprilysin
Neprilysin (EC 3.4.24.11), also known as endopeptidase-2,

enkephalinase, kidney-brush-border neutral protease, membrane

metalloendopeptidase and neutral endopeptidase (Bairoch, 2000), is

a 70kDa zinc metalloendopeptidase with several disulfide bonds

and predicted glycosylation sites (Turner et al., 2001). Like many

other metallopeptidases, neprilysin is ubiquitous in mammals and

cleaves a broad range of targets, including pain-regulating

enkephalins, tachykinin neuropeptides, and proteins involved in

tissue development (Nalivaeva et al., 2020). Although this enzyme is

often found as a membrane-bound glycoprotein, it is also present

(presumably without a membrane anchor) in venoms (Do

Nascimento et al., 2022). It has been detected in the venoms of

multiple spiders, including Hadronyche sp., Trittame loki,

Acanthoscurria sp (Undheim et al., 2013; Abreu et al., 2017;

Câmara et al., 2020; Cardoso et al., 2022; Nishiduka et al., 2022).

and several others (Dresler et al., 2024).

In spider venom, it may facilitate the spreading of other venom

components by breaking up proteins in the ECM, or it may be

involved in the paralysis of envenomated prey by degrading peptide

neurotransmitters and neuromodulators (Casewell et al., 2009;

Undheim et al., 2013; Liu et al., 2015; Zobel-Thropp et al., 2019;

Yoon et al., 2020). In the venom of the mygalomorph spider

Avicularia juruensis, Neprilysins showed caseinolytic activity,

supporting its role as a spreading factor (Do Nascimento et al., 2022).

2.6.6 Astacin
Astacin (EC 3.4.24.21), also known as astacus protease and

crayfish small-molecule protease (Bairoch, 2000), is a small (20–30

kDa) metalloprotease from the M12 family, featuring a single zinc-

dependent metallopeptidase domain, intramolecular disulfide

bonds and several predicted glycosylation sites (Trevisan-Silva

et al., 2010; Gremski et al., 2021; Gomis-Rüth and Stöcker, 2023).

Astacins have been found in the venoms of the spiders Argiope

bruennichi, Phoneutria nigriventer and Loxosceles sp (Trevisan-

Silva et al., 2010; Lüddecke et al., 2020; Cardoso et al., 2022).

among others (Dresler et al., 2024). Loxosceles astacin breaks down

ECM components such as fibronectin, fibrinogen and gelatin,

potentially acting as spreading factors to enhance the systemic

effect of toxins (da Silveira et al., 2007; Gremski et al., 2021).

Astacins also digest the proteins of captured prey, facilitating the

process of liquefaction (Gremski et al., 2021; Gomis-Rüth and

Stöcker, 2023). Selected spider venom Astacin sequences are

illustrated in Figure 4.
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2.7 Venom enzymes without functional
assignment or with unclear
enzymatic activities

In addition to the spider venom enzymes that have been

functionally classified based on knowledge from other arachnids,

many additional, unclassified enzymes were identified that show

similarity to venom components from other animals (Dresler et al.,

2024). Future work should focus on the functional analysis of these

molecules to shed light on the ecology of spider venoms.

For example, phospholipase A1 (PLA1) proteins (EC 3.1.1.32)

are widely distributed across metazoan and protozoan organisms,

and are often regarded as ubiquitous, although their functions are

not clearly understood (Richmond and Smith, 2011). PLA1 proteins

have been found in the venom of the spider Chilobrachys

guangxiensis, but their targets and overall role are still unknown

(Liao et al., 2007). Reprolysin (EC 3.4.24.-), another member of the

M12 metallopeptidase family, is also occasionally found in spider

venoms. These enzymes are dependent on a catalytic Zn2+ ion and

are stabilized by disulfide bonds (Rawlings and Salvesen, 2013b).

The related enzyme astacin (see section 2.6.6) belongs to the M12A

subfamily, whereas reprolysin represents the M12B subfamily

(Bjarnason and Fox, 1994). Interestingly, not all reprolysins are

active proteases (Rawlings and Salvesen, 2013b). They have multiple

domains, including C-terminal disintegrin, EGF-like, cysteine-rich,

and transmembrane domains (Rawlings and Salvesen, 2013b). In

snake venoms, these added domains can act as independent toxins

after maturation (Olaoba et al., 2020). One reprolysin has been

detected in the venom of the spiderHippasa partita (Nagaraju et al.,

2007). As components of snake and spider venoms, reprolysins can

proteolytically degrade ECM components, inducing hemorrhage

and tissue necrosis (Zigrino et al., 2002; Fox and Serrano, 2005;

Nagaraju et al., 2007). Reprolysin may therefore act as a spreading

factor in spider venom, and/or facilitate the pre-digestion of prey.

Besides known enzymatic components, a range of biomolecules

is known to occur in spider venoms that are awaiting clarification of

their potential enzymatic activities. This specifically includes two

protein groups, namely CAP proteins and lectins. Both are generally

not enzymatic, but some of them display strong similarity to known

enzymes or, in rare cases, include enzymatic isoforms.

The CAP superfamily contains Cysteine-rich secretory proteins

(CRISPs), as well as Antigen 5 and Pathogenesis-related protein 1,

and is commonly found in animal venoms (Gibbs et al., 2008;

Kuhn-Nentwig et al., 2019). Outside the conserved region, the

structure of CAPs is diverse, as is their target specificity and

therefore their biological function (Gibbs et al., 2008). CAPs have

been detected in the venom of multiple spiders (Dresler et al., 2024)

including Lycosa singoriensis, Trittame loki and Argiope bruennichi

(Zhang et al., 2010; Undheim et al., 2013; Lüddecke et al., 2020).

The venom of the wasp spider Argiope bruennichi contains CAP

proteins that are similar to proteolytic cone snail CAPs and lack the

C-terminal cysteine-rich domain that correlates with neurotoxic

activity in snake venom CAPs (Lüddecke et al., 2020). Based on this

similarity with a putatively enzymatic CAP from Conus textile,

some spider venom CAPs are speculated to be proteases as well

(Lüddecke et al., 2020). However, so far none of these proteins has
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ever been functionally characterized. Based on their putative

proteolytic activity, the CAP superfamily in spider venom may

degrade prey enzymes, act as a spreading factor, contribute to prey

digestion, and/or facilitate precursor activation, as well as trigger

allergic effects after envenomation.

The other important group, the lectin family, is a widely-studied

superfamily of carbohydrate-binding glycoproteins (Manning et al.,

2017; Chettri et al., 2021). They can be classified by source,

localization, carbohydrate-binding specificity, number of binding

sites, sequence, structure, and evolutionary similarity (Chettri et al.,

2021). In functional terms, these compounds enable cell–

environment interactions by binding to carbohydrate structures

on the cell surface, for transport or for storage (Berg et al., 2002;

Santos et al., 2014; Nizet et al., 2015; Chettri et al., 2021). Unlike

other carbohydrate-binding proteins, lectins have the unique ability

to agglutinate cells (Mel’nikova et al., 2000; Olsnes and Kozlov,

2001; Manning et al., 2017). Most lectins have a single

carbohydrate-binding domain, but some bacterial and plant

lectins have an additional enzymatic domain linked by a disulfide

bond (Mel’nikova et al., 2000; Olsnes and Kozlov, 2001; Manning

et al., 2017). Other polyvalent glycosidases can agglutinate cells

under certain conditions and are therefore considered to “act as a

lectin” (Barondes, 1981). Lectins have been identified in five spider

venoms (Dresler et al., 2024), including species of the genera

Phoneutria and Acanthoscurria (Sanggaard et al., 2014; Diniz

et al., 2018; Nishiduka et al., 2022). In snake venoms two groups

with robust C-type lectin domains (CTLD) are known, the sugar-

binding C-type lectins (CTLs) and the second group lacking sugar-

binding capabilities C-type lectin-related proteins, referred as

CLRPs or snaclecs (Sartim and Sampaio, 2015; Eble, 2019). This

toxin class form supramolecular structures up to heterooctameric

(ab)4 complexes and even larger, as known from convulxin and has

a highly promiscuous ligand spectrum (Eble, 2019). They target

various receptors and clotting factors, e.g. glycoprotein (GP) Ib,

integrin a2b1, and von Willebrand factor, with a strong
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translational potential, like the GPIb-blocking SV-CLRP agkicetin

(anfibatide) from Agkistridon acutus (Eble, 2019). As with the CAP

proteins described above, the presence of catalytically active sites

must be validated before we can confirm that these putative venom

components are functional enzymes.
3 Spider venom enzymes as catalysts
for bioeconomic innovation

Spiders are one of the most prolific sources of venom-derived

bioactive molecules suitable for a wide range of applications (Saez

et al., 2010; King and Hardy, 2013). Based on the potent and

highly selective interaction with targets in the central nervous

system, spider toxins have been studied intensively as drug leads

and agrochemical candidates to combat insect pests (King and

Hardy, 2013). The recent discovery of diverse enzymes in spider

venoms adds a novel dimension to their translational potential in

the bioeconomy. Enzymes are widely used in the pharmaceutical,

analytical, and food and feed industries. For example, they are

employed as catalysts for the synthesis of biopolymers, for waste

treatment, or as detergents (Singh et al., 2016; Mesbah, 2022). Due

to their high selectivity, low by-product formation, and eco-

friendly characteristics, enzyme utilization has increased over

the years. Consequently, the global market for enzymes with

specialized applications is experiencing rapid growth (Singh

et al., 2016).

Venom enzymes are active under diverse environmental

conditions, and catalyze rapid reactions to prevent the prey from

escaping or retaliating. These are desirable properties for industrial

applications (Lorenz and Eck, 2005). Chitinases, serine peptidases

and astacins are already used in the pharmaceutical, food

processing, and plant protection industries (Puente et al., 2005;

Trevisan-Silva et al., 2010; Rathore and Gupta, 2015; Chakraborty

et al., 2017). For example, spider chitinases break down the chitin in
FIGURE 4

Alignment of selected astacins, identified in spider venom with additional data corresponding to the UniProt entries. Sequences lacking an UniProt
identifier have been described in Zobel-Thropp et al., 2014, 2019; Lüddecke et al., 2020, and Cardoso et al., 2023. Alignments were visualized with
TEXshade in identical mode (Beitz, 2000).
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fungal cell walls, insect exoskeletons and crustacean shells, and

could therefore, similar to other chitinases, be used to protect plants

against fungal diseases and insect pests, and to convert shellfish

waste into useful products (Rathore and Gupta, 2015). The toxic

enzyme phospholipase D could be used as a positive control reagent

in laboratory protocols investigating the aggregation of platelets, in

hemolytic assays, or as a model to study responses to anti-

inflammatory and endothelial-modulating drug candidates (Senff-

Ribeiro et al., 2008). Many spider venom enzymes serve digestive

purposes and belong to classes used within the food and feed

industry, such as lipases, amylases, proteases, and a-
galactosidases. These enzymes improve the digestibility and

nutritional value of various products including bread, beer, and

fruit juices (Singh et al., 2016). Detergents for dishwashing, laundry

and industrial cleaning make up almost 30% of sales in the

industrial enzyme sector, by far the largest segment of this market

(Singh et al., 2016). Most such enzymes are hydrolases (e.g.,

proteases, amylases, lipases) that are used to remove protein,

starch, oil, and fat stains or food particles, reducing the use of

phosphates and bleaching agents, which are harmful to the public

and environment (Singh et al., 2016; Mesbah, 2022). Pre-digestive
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enzymes from spider venom may be of interest for waste

management, the upcycling of industrial side streams, or as

detergents. Furthermore, hyaluronidases and FXa homologs could

be used to develop pharmacological assays (Borensztajn et al., 2007,

2009; Senff-Ribeiro et al., 2008). Precursor-activating enzymes such

as some carboxypeptidases, DBH and PAM may be useful in

bioassays or biochemical reactions (Menniti et al., 1986; Klinman,

2006; McIntyre et al . , 2010). FXa homologs and the

carboxypeptidases A and Y, for instance, are already applied for

the cleavage of fusion proteins (Jenny et al., 2003; Wu et al., 2022).

Preservative enzymes such as peroxidases are already used in the

textile industry as antimicrobial agents or to remove excess dye

(Kirk et al., 2002), whereas carbonic anhydrases are used to remove

CO2 in industrial processes including carbon sequestration and

biofuel production (González and Fisher, 2014). The sourcing of

robust, specific, and fast-acting enzymes from spider venoms

representing all of the industrial categories discussed above could

therefore help improve existing industrial processes and develop

new strategies for the recycling of industrial side streams and waste.

Figure 5 illustrates the potential areas of application versus those of

traditionally investigated components.
FIGURE 5

The value of spider venom enzymes. The image depicts the areas of application of traditionally investigated spider venom neurotoxins versus those
of enzymes. For selected enzymatic classes, examples of potential areas of application are outlined.
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4 Conclusion

This review provides the first systematic overview of spider

venom enzymes and their potential functions in venom systems.

Following the classification available for other arachnids (Delgado-

Prudencio et al., 2022; Dresler et al., 2024), we have described the 34

of 144 families of enzymes that could be assigned to potential

venom functions. With the exception of phospholipase D, which

has been studied extensively due to its clinical relevance, spider

venom enzymes have been largely overlooked by the industrial and

research communities. In addition to their natural functions, these

enzymes may have the potential to act in diverse industrial

applications including waste management, cleaning, plant

protection, and pharmaceutical assays. The experimental

validation of structure and functions of such enzymes will not

only improve our understanding of their natural functions and

ecological roles, but also facilitate the development of novel

enzyme-based products and processes to enhance the bioeconomy.
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González, J. M., and Fisher, S. Z. (2014). Carbonic anhydrases in industrial
applications. Subcell Biochem. 75, 405–426. doi: 10.1007/978-94-007-7359-2_20

Gremski, L. H., Matsubara, F. H., Justa, H. C., Schemczssen-Graeff, Z., Baldissera, A.
B., de C., P. H., et al. (2021). Brown spider venom toxins: what are the functions of
astacins, serine proteases, hyaluronidases, allergens, TCTP, serpins and knottins? J.
Venom Anim. Toxins Incl Trop. Dis. 27, e20200188. doi: 10.1590/1678-9199-JVATITD-
2020-0188

Gremski, L. H., Trevisan-Silva, D., Ferrer, V. P., Matsubara, F. H., Meissner, G. O.,
Wille, A. C. M., et al. (2014). Recent advances in the understanding of brown spider
venoms: from the biology of spiders to the molecular mechanisms of toxins. Toxicon
83, 91–120. doi: 10.1016/j.toxicon.2014.02.023

Guasch, A., Coll, M., Avilés, F. X., and Huber, R. (1992). Three-dimensional
structure of porcine pancreatic procarboxypeptidase A. J. Mol. Biol. 224, 141–157.
doi: 10.1016/0022-2836(92)90581-4

Guce, A. I., Clark, N. E., Salgado, E. N., Ivanen, D. R., Kulminskaya, A. A., Brumer,
H., et al. (2010). Catalytic mechanism of human a-galactosidase. J. Biol. Chem. 285,
3625–3632. doi: 10.1074/jbc.M109.060145

Gudger, E. W. (1931). More spider hunters accounts of arachnids which attack and
devour vertebrates other than fishes. Sci. Monthly 32, 422–433.
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