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de Biologı́a, Universidad de Panamá, Estafeta Universitaria, Avenida Simón Bolı́var, Panama
Scorpion venoms have been studied extensively, mostly aimed at applications for

human health, with strong evidence of antimicrobial properties. However,

ecological studies on the adaptive role of these antimicrobial properties have

been mostly neglected. Here, this study investigated in the scorpion

Centruroides granosus Thorell, 1876 (Scorpiones: Buthidae) whether the

venom provided protection against the consumption of crickets injected with

a pathogenic strain of the bacteria Escherichia coli. Preventing venom injection

when consuming contaminated prey decreased scorpion survival as compared

to their controls (phosphate-buffered saline (PBS) injection) and scorpions that

injected the venom. Scorpions that injected the venom did not show lower

survival when consuming contaminated prey as compared to their own control,

and there was no difference in survival for the controls of scorpions that were

prevented or allowed to inject the venom. Altogether, the results highlight the

adaptive benefit of the venom for scorpions when coping with potentially

hazardous prey. The implications of the findings are discussed, and this work

seeks to encourage more work on the neglected field of venom evolutionary

ecology of scorpions and other arthropods.
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Introduction

For invertebrates, arachnids possess some of the most unusual means of defense against

pathogens. For example, the silk of Tegenaria domestica has antibacterial properties

(Wright and Goodacre, 2012), the subsocial spider Diaea ergandros possesses cuticular

antifungals (González-Tokman et al., 2014), ticks can use fragments of the host blood for
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their own defense against bacteria in the midgut (Nakajima et al.,

2005), and social spiders use social immunity against parasites

(Straus and Avilés, 2018). Moreover, many venomous arachnids

possibly contain microbiomes in their venom glands that contribute

partially or completely to the production of antimicrobial

components in the venom (Ul-Hasan et al., 2019).

For scorpions and spiders, venoms are a mixture of peptides

that serve as protection against predators, for capturing prey,

and for pre-digestion of prey, and they are active against

bacteria, fungi, viruses, and protozoans (Wang and Wang,

2016). In addition to their importance in applied research,

venoms provide the opportunity to study the ecology and

evolution of adaptive traits of the toxins that they contain. For

instance, the best-known adaptive value is predator–prey

interactions (predation and defense); however, they fulfill

other functions that remain poorly understood (e.g., food

storage, digestion, and offspring care; Schendel et al., 2019).

Another potential function might be a defense against

pathogens, which is mostly overlooked in the literature on

animal venoms (van der Meijden et al., 2017; Schendel et al.,

2019). It is reasonable to imagine that the reported antimicrobial

properties of scorpion venoms have an adaptive benefit, and it is

not simply a byproduct. Still, few studies have investigated the

ecological role of scorpion venoms in host–pathogen

interactions. Gao et al. (2007) provided some indication that

the venom may protect the venom gland from infections, and the

spraying behavior of some species may relate to coping with

microbes (Torres-Larios et al., 2000). However, none of these

studies provide evidence in terms of improved survival.

Therefore, we decided to test in a seminatural setting whether

the venom may be an important component of the immune

weaponry of scorpions by improving survival.

Here, we investigated in vivo whether the inoculation of

the venom by the scorpion Centruroides granosus provides

protection in terms of survival against the consumption of prey

contaminated with the bacteria Escherichia coli. We used this

pathogen–host combination since we found that this bacteria

strain was virulent against this scorpion species, and their

immune system is able to respond against non-lethal

challenges (Gálvez et al., 2020). We predicted that when

consuming contaminated prey, 1) scorpions that were allowed

to inject their venom should show similar survival rates as

compared to their control (phosphate-buffered saline (PBS)

injection). 2) Scorpions that were not allowed to inject their

venom should show lower survival rates as compared to their

control. 3) Scorpions that were allowed to inject their venom

should show higher survival rates than scorpions that were

prevented. In addition, we studied the inhibitory capacity of

the venom on the growth of E. coli in vitro by spreading a

solution of the venom or the control together with the bacteria in

a solid medium. We predicted a lower number of colony-forming

units (CFUs) in the presence of venom. This study highlights the

relevance of studying scorpions’ venoms in an ecological context

beyond predation or defense.
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Materials and methods

C. granosus is an endemic species from Panama (de Armas

et al., 2011), and we collected scorpions from a dirt road in the town

of Sajalices (8.6815°N, 79.8661°W) and were fed in the laboratory

with the house cricket Acheta domesticus, 2 weeks before the

experiments and the venom extraction. Scorpions were placed in

separate 460-ml lidded containers provided with water on a piece of

cotton. The same type of container was used for the experiments.

All scorpions were collected under the permit SE/AH-2-18 issued

by the “Ministerio de Ambiente”.
In vivo experiment

A strain of E. coli—which is virulent for C. granosus (Gálvez

et al., 2020)—was used to test whether inoculation of the venom to

contaminated cricket increases the survival of the scorpion after

consumption. The bacteria were cultured overnight on lysogeny

broth at 27°C. Then, 14 ml of the culture (LD50 1 × 107 cells/ml) was

centrifuged at 4,000 rpm for 5 min, and the pellet was washed with

PBS and resuspended in 14 ml of PBS.

To increase the chances that the scorpions would accept the

crickets, all the scorpions were subjected to a week of starvation.

Out of the total of scorpions, 94 individuals had their stinger

temporarily blocked (SB), which consisted of wrapping around a

piece of adhesive tape (1.3 × 3.0 cm), with the help of forceps and

CO2 anesthesia. The taping did not allow the scorpions to inject the

venom into the cricket. Stinger-free scorpions (SF) did not have a

piece of tape and were handled with forceps in a similar manner to

the SB scorpions, including the use of CO2 anesthesia.

As a control, half of both the SB and SF scorpions were offered a

cricket injected with 50 ml of PBS (SB-Control, n = 47; SF-Control,

n = 45). For the bacterial challenge, half of both the SB and SF

scorpions were offered a cricket injected with 50 ml of E. coli in PBS

(SB-E. coli, n = 47; SF-E. coli, n = 46). All the crickets were offered

immediately after injections, and SF scorpions were monitored to

assure that the prey was stung. Scorpions of similar sizes (trying to

allocate same-sex individuals) were placed in the four treatments,

and all the scorpions consumed the crickets, and survival was

monitored for 35 days. The tape from the SB scorpions was

removed after they consumed the crickets, and SF scorpions were

handled in a similar way after consuming the cricket.
In vitro experiment

We performed a single manual extraction of each scorpion by

exciting the scorpion to sting repeatedly on a piece of stretched

Parafilm, and we used only female scorpions. E. coli was cultured as

described before, and it was diluted to 1 × 106 cells/ml in PBS. A

volume of 138 nl of venom was placed in an Eppendorf tube, and

then 0.5 ml of the cell culture was added with 50 ml of PBS. For the
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controls, 138 nl of venom was replaced with 138 nl PBS. By using an

L-shaped glass spreader, the solution with the venom was placed in

one half of a Petri dish (⌀ = 90 mm) and the control solution in the

other half. The plates were cultured overnight (14 h), and the

number of CFUs was counted. This was replicated with venoms

from 14 scorpions that were not used in the in vivo experiment.
Statistical analysis

For the in vivo experiment, we performed a survival analysis to

test for differences in survival rates in R (R Core Team, 2023). The

type of cricket (bacteria-injected/control-injected) and stinger

treatment (blocked/free) were specified as fixed factors with full

interactions. Scorpions’ sex was added as a factor as well. For the in

vitro experiment, the number of CFUs when mixing the bacteria

with the venom solution or the control was compared by

implementing a paired Wilcoxon test.
Results

In vivo experiment

Stinger treatment had no effect on the survival of scorpions

(X2 = 0.51, d.f. = 182, p = 0.47), and the type of cricket neither

influenced the survival of scorpions (X2 = 3.03, d.f. = 181, p = 0.08).

However, an interaction between stinger treatment and type of

cricket (X2 = 4.1, d.f. = 180, p = 0.04) indicates that contaminated

crickets reduced the survival of scorpions that had their stinger

blocked (X2 = 7.3, d.f. = 91, p = 0.007, Figure 1A) but had no effect

for scorpions that had their stingers free (X2 = 0.10, d.f. = 88, p =

0.75, Figure 1B). Stinger-free scorpions show higher survival when

consuming contaminated crickets as compared to stinger-blocked

scorpions (X2 = 3.7, d.f. = 90, p = 0.05, Figure 1C), and feeding on

control crickets did not cause differences in survival for stinger-free
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or stinger-blocked scorpions (X2 = 1.05, d.f. = 89, p = 0.30,

Figure 1D). The sex of the scorpion had no effect on survival

(X2 = 1.04, d.f. = 180, p = 0.31, Supplementary Figure 1).
In vitro experiment

The venom of the scorpions inhibited the growth of E. coli, as

compared to the control solution in terms of CFUs (436 ± 241 vs.

340 ± 292, respectively: V = 84, p = 0.05, n =14, Figure 2).
Discussion

Venom use is a fundamental component in the ecology of

scorpions for both predation and defense, and this work shows its

relevance as part of the immunological repertoire of scorpions.

Overall, the three predictions were supported. For instance,

preventing the scorpions from injecting venom into contaminated

prey reduced their survival after consumption as compared to the

individuals that were allowed to inject it. Possessing a simpler adaptive

immune system, as compared to insects (Bechsgaard et al., 2016),

venoms would provide an extra layer of defense against pathogens.

Although a dual role for antimicrobial peptides (AMPs) in their

venoms had been suggested for prey digestion and defense against

microbes (Yacoub et al., 2020), this study demonstrates experimentally

for the first time its immune benefit when foraging on potentially

hazardous prey contaminated with pathogenic bacteria.

The result from the in vitro experiment implies that the venom

acting on the bacteria is responsible for the improved survival of the

scorpions. The efficacy of scorpion venoms to inhibit bacterial

growth is well known (Wang and Wang, 2016); including the

venom of several Centruroides species (e.g. Dueñas-Cuellar et al.,

2015; Valdez-Velazquéz et al., 2016). Moreover, the inactivation of

the bacteria by the venom may trigger an immune priming

response. In a previous study, C. granosus injected with
DA B C

FIGURE 1

Kaplan–Meier survival curves of scorpions under different stinger treatments (blocked, SB; free, SF) and fed with crickets subjected to different
injections (Control or Escherichia coli). The curves have been split into four panels for clarity: (A) SB scorpions, (B) SF scorpions, (C) SB vs SF
scorpions fed with E.coli-injected crickets and (D) SB vs SF scorpions fed with Control-injected crickets. The * indicates significant differences
frontiersin.org

https://doi.org/10.3389/frchs.2023.1166039
https://www.frontiersin.org/journals/arachnid-science
https://www.frontiersin.org


Gálvez et al. 10.3389/frchs.2023.1166039
lipopolysaccharides from E. coli showed higher survival against a

lethal dose of the same bacteria as compared to naïve individuals

(Gálvez et al., 2020).

One could imagine that this benefit makes scorpions less

meticulous when facing infected prey. Theoretical models should

consider the implementation of venom in the interaction of infected

prey and predator, together with epidemiological consequences,

particularly when the predator population is also at risk of infection

(Hsieh and Hsiao, 2008), with the venom reducing the risk.

Moreover, scorpions could stop or reduce the spread of a

pathogen across prey and conspecifics by consuming vulnerable

prey (Hethcote et al., 2004). Scorpion venoms may also mitigate the

negative effects of consuming infected prey (Flick et al., 2016), but

further work is required to measure variables like longevity and

fecundity. Experiments with other bacteria are also needed because

some bacteria may not be inhibited by the venom (Gao et al., 2007).

Moreover, since venom production is costly (Evans et al., 2019) and

scorpions optimize their use (“venom optimization hypothesis”,

Morgenstern and King, 2013), perhaps scorpions evaluate the

health status of prey (e.g., odor) and adjust venom use

accordingly. A similar scenario is known from other arthropods;

ants can recognize the infectious potential of prey (Pereira and

Detrain, 2020) and use venom and behavioral responses as immune

defenses (Baracchi and Tragust, 2017). Further work can shed some

light into the ability of scorpions to respond toward sick prey.

Venom as an immune defense may provide new insights into

the evolution of scorpions’ immune systems. In a phylogenetic

context, do species that depend on their pincers for subjugating the

prey and rely less on venom (Garcıá et al., 2022) have “stronger”

immune systems? Given that those species also tend to have less

potent venoms (Forde et al., 2022), this prediction only holds if the

same toxins acting on prey or predators have antimicrobial

properties as well. Additionally, these results offer the possibility

to explore multiple aspects of venom ecology related to infection

risk from foraging and how it may vary with changing ecological
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factors that influence venom quality like diet (Tobassum et al.,

2018), sex (Gao et al., 2021), predation pressure (Gangur et al.,

2017), and ontogeny, which in fact influence the expression of

antimicrobial peptides in the venom gland (McElroy et al., 2017).

This work demonstrates the adaptive benefit of the antimicrobial

properties of scorpion venoms, and it highlights the importance of

understanding its influence on basic elements of host–pathogen

ecology. Finally, our work seeks to encourage the study of venom

ecology and evolution in arthropods in general.
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