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Historical biogeography is an integrative scientific field critical for testing

evolutionary hypotheses pertinent to organismal distributions, but despite

recent theoretical and analytical advances, biogeographic reconstructions

continue to struggle with accuracy and rigor. Most modern studies include

the three elements needed for historical biogeographic inference, namely a

time-calibrated phylogeny, contemporary taxonomic distributions, and

estimations of organismal dispersal probabilities. The latter, we argue, are

particularly vague, and historical biogeography would greatly benefit from

dispersal probability estimations that are better informed and biologically

meaningful. To achieve that goal, next-generation biogeography should

ideally consider: a) dispersal-related traits; b) ecology; c) geological histories;

and d) geographical factors. We briefly recap the three case studies on spiders

that have pioneered this approach. Due to their old age and mega-diversity—

considering both phylogenetic and life style diversity—arachnids are an ideal

animal lineage for modern biogeographic research. There is no reason,

however, that the concept should not be applied to all life. Further

modifications of the proposed concept and, particularly, methodological

implementation are needed to render this biogeographic framework

widely useful.

KEYWORDS

next-generation biogeography, ancestral areas, dispersal biology, geological history,
vicariance, extinction
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/frchs.2022.1058676/full
https://www.frontiersin.org/articles/10.3389/frchs.2022.1058676/full
https://www.frontiersin.org/articles/10.3389/frchs.2022.1058676/full
https://www.frontiersin.org/articles/10.3389/frchs.2022.1058676/full
https://www.frontiersin.org/journals/arachnid-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/frchs.2022.1058676&domain=pdf&date_stamp=2022-12-12
mailto:matjaz.kuntner@nib.si
https://doi.org/10.3389/frchs.2022.1058676
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/arachnid-science#editorial-board
https://www.frontiersin.org/journals/arachnid-science#editorial-board
https://doi.org/10.3389/frchs.2022.1058676
https://www.frontiersin.org/journals/arachnid-science


Kuntner and Turk 10.3389/frchs.2022.1058676
Introduction

Lying at the interface of numerous disciplines, such as

evolutionary biology, paleontology, geology, geography,

climatology, ecology, and phylogenetics, biogeography is

critical for understanding both past and future organismal

distributions. Before the end of the previous century, historical

biogeography was descriptive. The cladistic era brought to it a

hypothetico-deductive agenda, with area cladograms assuming

three potential mechanisms responsible for observed

biogeographic distributions, i.e. vicariance, dispersal, and

extinction (Morrone and Crisci, 1995; Ronquist and

Sanmartıń, 2011; Sanmartıń, 2012). Of these, vicariance was

usually the preferred explanation of patterns (de Queiroz, 2005).

Since then, a new paradigm has been embraced that established

long-distance dispersal as another testable explanation of

biogeographical patterns (Cowie and Holland, 2006; Gillespie

et al., 2012). Along with the development of statistical

approaches to ancestral area estimation, the field of historical

biogeography has gained a new momentum (Ronquist and

Sanmartıń, 2011; Matzke, 2014; Yu et al., 2015). These tools

have allowed for modern, comprehensive reconstructions of

organismal biogeographic histories that are critical for testing

evolutionary hypotheses.

Limitations in ancestral area reconstruction do persist,

however, preventing modern biogeography from improving its

rigor. As pointed out by Wiens and Donoghue (2004), historical

biogeography has largely developed its own agenda devoid of

details of organismal ecology. Eighteen years since their paper, this

gap has not narrowed substantially. In our view, the most serious

limitation is the arbitrary estimation of dispersal probabilities that

should consider dispersal-related traits of organisms, their
Frontiers in Arachnid Science 02
ecology, as well as the relevant geological histories and

geographical factors. Here, we emphasize the need for an

integrative biological concept intended to overcome this

perceived gap and aid our understanding of past and present

patterns of biodiversity. The proposed approach, termed next-

generation biogeography, is to integrate pertinent data from

phylogenetics, geography, taxonomy, evolution, natural history,

and ecology—all these are often used or considered separately—

into a historic biogeographic framework that can be used for

studying any organisms, anywhere.
Next-generation biogeography

Elements and factors for a next-
generation biogeographic reconstruction

Most historical biogeographic studies already contain the

following three elements (Figure 1): 1. A time calibrated

phylogeny; 2. Contemporary taxonomic distributions binned into

logical biogeographical units relevant to the question; and 3.

Organismal dispersal probabilities. Algorithms combine these

elements for ancestral area estimation using various

biogeographic models (Matzke, 2014; Yu et al., 2015). We argue

that existing biogeographical research is particularly weak in

establishing biologically meaningful, and repeatable, dispersal

probabilities. The left panel in Figure 1 lists the factors that in our

view should be considered when estimating dispersal probabilities:
a. Dispersal-related traits; These include behaviors and

physiologies that affect dispersal (Canestrelli et al.,

2016; Arnold et al., 2017), solitary versus group-living
FIGURE 1

A conceptual biogeographical framework for reconstructing ancestral distributions with better-informed dispersal probabilities. While most
conventional biogeographic studies already include the three elements, i.e. a time calibrated phylogeny, contemporary taxonomic distributions,
and organismal dispersal probabilities, the latter are particularly arbitrary. The left panel lists the factors that could improve estimations of
organismal dispersal probabilities.
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(Avilés et al., 2007; Johannesen et al., 2007), sex-specific

biologies (Fairbairn et al., 2007; Kuntner and

Coddington, 2020), the presence of extended

phenotypes such as webs, nests or retreats (Blamires,

2010; Mainwaring et al., 2014; Fisher et al., 2019), or any

other life histories of target organisms that may affect

modes or effectiveness of dispersal (Stevens et al., 2012).

b. Ecology; Species and lineages face different

environmental and biotic conditions and interactions

that affect their realized niches at various times in

history (Wiens and Donoghue, 2004; Guisan et al.,

2006).

c. Geological histories; Within the relevant areas, these

refer to plate tectonic movements including geologic

histories of islands (Roderick and Gillespie, 1998;

Lomolino et al., 2017; Whittaker et al., 2017).

d. Geographical factors; Within the relevant areas, decisive

geographical factors may include changes in wind and

sea currents (Renner, 2004; Gillespie et al., 2012),

climatic oscillations (Bowman et al., 2010), and other

events potentially affecting organismal dispersal, such as

volcanic eruptions (McDowall, 1996), mountain uplifts

(Esquerré et al., 2019), or river formation events (Xu

et al., 2018). This category also includes anthropogenic

translocations (Wilmshurst et al., 2008).
The four categories of factors (Figure 1: left panel) can be

reciprocally informed by the time-calibrated phylogeny, as well

as extant and extinct taxonomic distributions of the taxa in

question (Figure 1: red arrows). This means that a hypothesis of

species relatedness (phylogeny) and the absolute ages of the

evolutionary splits, as well as the lengths of branches

(chronogram), should influence the way we deem that

dispersal probabilities must be affected in a given geographic,

geological, and ecological space and time. Furthermore, the

known taxonomic distributions combined with phylogenetic

information are informative of the geologies and ecologies of

relevant areas, the geographical activities of that time, and

dispersal-related traits of extant taxa as well as their

hypothetical ancestors, even if extinct. Once all this

information is accounted for in dispersal probability estimates,

ancestral area estimation will increase in reliability, and, with it,

its interpretations: the reconstruction of biogeographic history

(Figure 1: panels on right). Consequently, biogeographic

hypotheses will undergo more rigorous testing.
A hypothetical example of next-
generation biogeographic reconstruction

To illustrate our point, consider a hypothetical example of a

lineage whose extant species show sufficient biological variation

and inhabit a range of landmasses and habitats. The various
tiers in Arachnid Science 03
types of information needed to estimate dispersal probabilities in

this hypothetical clade are: a) Within the dispersal-related traits

category, one would quantify this clade’s dispersal ability based

on, for example, how effective active aerial dispersal of these

organisms is and how it differs among the sexes or life stages; b)

Within the ecology category, one would evaluate past

distribution patterns of suitable habitat and climate, the

presence of competing clades, and the presence of predators

and prey; c) Within the geological histories category, distances

among landmasses in the relevant time periods should be

considered (as reciprocally informed by the chronogram); and

finally, d) Within the geographical factors category, one would

take into account the emergence of substantial mountain

barriers and changes in wind patterns in the relevant time

frames (again, as reciprocally informed by the chronogram).

All factors a-d could be quantified on a uniform scale,

directly or via appropriate, concretely quantified proxies, and

combined into super-informed dispersal probability estimates.

One of the most widely used software packages for

biogeographic history inference, RASP (Yu et al., 2015),

integrates a set of matrices, allowing the user to set time- and

area-specific values for various parameters influencing historical

biogeography, such as dispersal probabilities. We should note

here that current software does not allow for dispersal

probabilities to vary across the phylogeny, thus failing to

account for known biological differences among taxa within a

studied lineage. Matrices that include the proposed super-

informed dispersal estimates can currently only vary by time

slices. Future software development should ideally allow for

dispersal probability variation among the taxa within a

given phylogeny.
Case studies on spiders

In practice, inclusion of all listed elements in Figure 1 may

not always be feasible, primarily due to lack of data. We

demonstrate this below on three case studies on spiders that

have pioneered this concept of arriving at better-informed

dispersal probabilities in historical biogeography (Turk et al.,

2020; Turk et al., 2021a; Magalhaes and Ramıŕez, 2022).

In the first case study, Turk et al. (2020) reconstructed the

geographical origin and sequence of intercontinental

colonization of golden orbweavers, the spider family

Nephilidae. That study combined a robust phylogeny with

geological (plate tectonic) data, specifics of organismal biology

(dispersal behaviour) and probabilities of historic dispersal

events, with the aim to test two alternative hypotheses about

the origin of this spider clade. To arrive at estimates of dispersal

probabilities, they used a novel method of evaluating varying

dispersal probabilities among geographical areas through time.

They measured physical distances between pairs of areas on a

geological reconstruction model and used them as a proxy for
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dispersal probabilities, thus accounting for plate tectonics. The

estimated dispersal probabilities were treated as continuous

variables. This analysis was strong in allowing for the factor c

(geological histories) to influence the estimated dispersal

probabilities though time slices. In addition, this study heeded

factor a (dispersal-related traits) by accounting for specific

dispersal behaviours of the studied organisms. Namely,

because these spiders are known to disperse by ballooning,

dispersal probabilities were allowed to vary depending on the

measured distances between landmasses in specific time slices.

At the global scale of this study, Turk et al. failed to identify any

factors relating to factor b (ecology) that would influence

dispersal probabilities.

In the second case study, Turk et al. (2021a) zoomed into a

subset of the family phylogeny, into the biogeography of coin

spiders (the genus Herennia) from Asia and Australasia. The

studied geographical area is characterized by a complex geological

past, complicating biogeographic reconstruction. Turk et al. (2021a)

modified the above approach to account for how geological

histories affected dispersal probabilities. This study’s strength, as

in the one above, was in allowing for the factor c (geological

histories) to influence the estimated dispersal probabilities though

time slices. A limitation of this study, however, was the

undocumented dispersal biology of Herennia. Rather than

invoking factors b (ecology) and d (geography) to inform

dispersal probabilities, this study used the outcomes of the

biogeographic inference to reciprocally evaluate ecological and

geographical hypotheses. For example, it was speculated that

interspecific competition, an ecological factor (b), has prevented

mainland species from increasing the size of their ranges.

The third case study was on crevice weavers (Filistatidae), a

species-poor family of cribellate spiders with global representatives

(Magalhaes and Ramıŕez, 2022). These spiders’ diversification

started in the Mesozoic and continued to date, with various

clades displaying transcontinental distributions that must have

been facilitated by either continental drift, or via transoceanic,

long-distance dispersal. To arrive at dispersal probabilities, these

authors used the plate tectonic model described above in

combination with several models of the distances that these

spiders can overcome by long distance dispersal. In effect,

Magalhaes and Ramıŕez (2022) combined all the elements in

Figure 1, thereby demonstrating both the relevance and the

feasibility of the here proposed approach to historical biogeography.
Arachnids as biogeographical
model organisms

Not only spiders, but all arachnids prominently feature in

biogeographic studies. Given the old age of many arachnid

lineages, empirical studies have helped to reconstruct past events

as old as the breakups of Pangea and Gondwana (Boyer et al., 2007;
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Rix and Harvey, 2012; Xu et al., 2015; Clouse et al., 2017; Chousou-

Polydouri et al., 2018) and diversification on major land masses

(Chamberland et al., 2018; Esposito and Prendini, 2019; Turk et al.,

2020; Ledford et al., 2021; Turk et al., 2021b). Arachnids have

featured in research of evolutionary consequences of global climatic

oscillations (Luo et al., 2020) and, at finer geographical scales, of

glaciation events (Xu et al., 2016; Santibáñez-López et al., 2021),

tectonic movements (Opatova et al., 2016), formation of rivers and

mountain chains (Hedin et al., 2013; Emata and Hedin, 2016; Xu

et al., 2018; Schramm et al., 2021), aridification (Abrams et al.,

2019), and other biotic/abiotic events (Bond et al., 2020) as well as

processes involved with subterranean colonization and

diversification (Harms et al., 2018). Island biogeography has

extensively utilized arachnids in empirical and synthetic research

bearing on the formation of, and diversification on, island

archipelagos such as Hawaii (Gillespie, 2002), the Caribbean

(Čandek et al., 2019; Pfingstl et al., 2019; Crews and Esposito,

2020; Shapiro et al., 2022), the Indian Ocean islands (Agnarsson

and Kuntner, 2012), or the Malay archipelago (Turk et al., 2021a;

Silva De Miranda et al., 2022). Arachnological research has

pioneered the use of fossil taxa in formal biogeographic analyses

(Wood et al., 2013). This list is not exhaustive, merely illustrative of

the diversity of biogeographic research in arachnid science.

All the above biogeographic outcomes can be revisited using

better-informed dispersal probabilities within the next-

generation biogeographic framework such as the one outlined

here. Given an extensive fossil record and the diverse biologies of

various arachnid lineages—ranging from extremely sedentary

burrowers and cryptic leaf litter dwellers to species capable of

aerial dispersal over thousands of kilometers (Kuntner, 2022)—,

arachnids should continue to be utilized as excellent model

organisms in the study of historical biogeography.
Final remarks

In this perspective, we call for more integrative approaches

to biogeographic analysis. For a meaningful estimation of

dispersal probabilities—an integral element of ancestral area

estimation—, studies should consider organism-specific

biologies, ecologies, as well as specifics of the geological and

geographical histories of the relevant areas. What precisely the

relevant areas and time slices are is reciprocally informed by the

time-calibrated phylogeny and the taxonomic distributions of

the taxa in question. Only when incorporating these elements

will dispersal probabilities yield more precise ancestral areas, and

thus reconstructed biogeographic histories will allow for more

rigorous hypothesis tests.

Three case studies have already applied this concept to

reconstructing global and regional biogeographical scenarios in

spiders (Turk et al., 2020; Turk et al., 2021a; Magalhaes and

Ramıŕez, 2022), although we freely acknowledge that not all
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factors in Figure 1 could be accounted for in some of these studies.

As pointed above, certain limitations relate to the patchy

understanding of relevant bits of organismal ecologies, and

geographical factors that may have affected their dispersal.

Nonetheless, similarly designed studies should apply our concept

as thoroughly as feasible, depending on data availability. With a

great diversity of biologies and clade ages, arachnids lend

themselves as a very suitable animal group for studying historical

biogeography (Kuntner, 2022). We see no reason, however, that the

concept should not be applied to any other organismal group.

In conclusion, a new direction is needed in historical

biogeography to effectively address some of the greatest

contemporary challenges pertaining to natural and anthropogenic

spread of organisms including invasive species, pathogens and their

vectors, as well as habitat loss, global changes, and loss of

biodiversity, or simply to reconstruct past events. Biogeography

continues to thrive in the era of phylogenomics (Wen et al., 2013),

but should become even more inclusive of thus far neglected, but

influential aspects of organismal biology and the history of

their environments.
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