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and the effect of Artemia and
rotifer live feeds on larval
digestive enzyme activity
and performance
Prince Ofori-Darkwah1,2*, Daniel Adjei-Boateng1,
Regina Esi Edziyie1, Nelson Winston Agbo1 and Ivar Lund2

1Department of Fisheries and Watershed Management, Kwame Nkrumah University of Science and
Technology, Kumasi, Ghana, 2Technical University of Denmark (DTU) Aqua, Section for Aquaculture
The North Sea Research Centre, Technical University of Denmark, Hirtshals, Denmark
High larval and frymortality has been amajor challenge to the commercial culture of

the African bony-tongue (Heterotis niloticus). Research indicates inadequate feeding

to be a possible cause of the high mortality rates of larvae/fry grown in captivity. An

experiment was conducted to first describe the developmental stages ofH. niloticus

eggs and larvae until schooling, 6 days after hatching (DAH), at 26°C. The

morphological development, survival, growth (weight gain and length), and

swimming behavior of the larvae were monitored. A follow-up feeding trial was

conducted with H. niloticus fry from 6 to 27 DAH involving four treatments: feeding

with Artemia nauplii; a combined feed of 50% Artemia nauplii and 50% rotifers (w/w);

feeding with rotifers; and no feeding. The activities of three digestive enzymes

(trypsin, lipase, and amylase) were assessed in fry exposed to the live feed treatments.

At hatching, the larvae had a large, vascularized yolk sac filled with yolk platelets,

which occupied approximately one-third of the total body length of the abdominal

cavity. Yolk platelet reabsorption started at 1 DAH and was complete at 6 DAH.

Metamorphosis was completed at 6 DAH, and schooling behavior was observed. For

the feeding trial, the fry that received Artemia nauplii underwent the fastest

development until 27 DAH. Similarly, the survival rate was considerably higher in

fry fed with Artemia nauplii than in those that received a combination of Artemia

nauplii and rotifers or only rotifers. Overall, the survival rates for fry fed with Artemia

nauplii and larvae co-fed were 72.7% ± 0.9% and 41.2% ± 3.3%, respectively. Fry did

not survive until 27 DAH in the rotifer-fed and unfed treatment groups. Digestive

enzyme activity differed significantly (p< 0.05) between treatments and sampling

dates. All digestive enzymes were detectable at the onset of mouth opening (5 DAH)

and fluctuated through the 7 and 9 DAH. Lower enzyme activity was observed when

the fry were subjected to starvation or the rotifer treatment. Results indicate that

Artemia nauplii is the best live feed organism for H. niloticus larviculture.
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Introduction

The African bony-tongue, Heterotis niloticus, is a freshwater

species widely distributed in river basins and freshwater lakes in Sub-

Saharan Africa (Moreau, 1982; Levêque et al., 1990) and belongs to the

order Osteoglossiformes under the subfamily Arapaiminae (Ferraris,

2003). The potential of the species as suitable for aquaculture was noted

in the early 1950s. It constitutes an important component of inland

fisheries and is considered an important and highly prized fish by

consumers, thus forming a very important component of the catch of

fishermen (Frimpong et al., 2011; Akpaglo, 2012). This species is in

high demand on the African market and offers vast potential for fish

farming because of several advantages, such as its high growth rate,

omnivorous diet, large size of up to 5 kg, and high acceptability to

consumers (Monentcham et al., 2010). The culture potential of a

species depends on several aspects, including ease of fingerling

production and thus availability to supply fish culture facilities

(Rønnestad et al., 2001; Adite et al., 2005; Adite et al., 2006;

Monentcham et al., 2009). However, efforts by fish farmers at captive

breeding of H. niloticus have shown marginal success, and farmers

mostly resort to obtaining wild fingerlings from fishermen to stock

their ponds in polyculture with tilapia and Clarias (Akpaglo, 2012).

The rearing of larvae has thus typically resulted in very high mortality

rates of 80% to 100% (Moreau, 1982). It has been observed that within

a short period of between 5 and 7 days after hatching (DAH), the whole

population may die (Reizer, 1964, 1968; Vincke, 1971).

Rakotomanampisson (1966) and De Kimpe (1967) also found high

mortality rates of between 96% and 82% in various studies on the

rearing of H. niloticus larvae. For higher survival rates in most larval

species, feeding must be initiated before or soon after depletion of the

endogenous energy sources and yolk sac (Kim et al., 2001). Studies

have shown that African bony-tongue of all sizes are microphagous or

omnivorous. As a result, they eat a variety of foods, from aquatic

invertebrates to small seeds, including macrophytes, plant remains,

aquatic insects, and fish (Micha, 1973; Moreau, 1982; Mbega, 2004;

Adite et al., 2005). In addition, rotifer species have also been observed

in their natural habitat based on examinations of samplings of prey

items in and around wild nests in the Barekese area in Ghana (author’s

personal observations).

Live feed is generally considered the most suitable feed for the

first feeding of most fish larvae (Conceição et al., 2010), as this

provides energy for growth and physiological functioning (Hamre

et al., 2013; Palińska-Żarska et al., 2014; Radhakrishnan et al., 2020).

Common live feeds used in the cultivation offinfish and crustaceans

include rotifers (Brachionus spp.) and brine shrimp (Artemia spp.)

because of their rich nutrient profile, as well as the fact that they are

constantly reachable by the larvae and easily digested and

assimilated by the larvae (Aragão et al., 2004; Damle and Chari,

2011). The saltwater rotifer Brachionus plicatilis, the freshwater

rotifer Brachionus calyciflorus, and unicellular organisms such as

Paramecium sp. are used as starter feeds and are subsequently

replaced by brine shrimp, Artemia nauplii, at more advanced larval
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stages (Dhont et al., 2013; Pan et al., 2022). The availability of these

live feeds in hatcheries has contributed to the successful fry

production of at least 60 marine finfish species and 18 species of

crustaceans due to the presence of necessary nutrients, including

essential proteins, lipids, carbohydrates, vitamins, minerals, amino

acids, and fatty acids. However, the provision of appropriate live

food at a proper time plays a major role in achieving maximum

growth and survival of juvenile finfish and shellfish (Dhert, 1996;

Das et al., 2012).

Feeding larvae at the early stages with an artificial diet has been

associated with increased mortality and reduced development rates,

despite its apparent economic benefits. Furthermore, no dependable

recipes for larval diet formulation are available as yet (Lahnsteiner

et al., 2023). The lower growth in fish larvae fed with compound

diets is associated with low acceptance and attractiveness,

inadequate digestion, and poor assimilation compared with live

diets (Pan et al., 2022). Although total replacement of live food with

a formulated diet is not possible for the larvae of many species,

partial replacement of live food with a formulated diet, which is

known as co-feeding, may be possible (Hamre et al., 2013).

At the start of external feeding, the digestive system of teleost

larvae is undifferentiated (Govoni et al., 1986; Cahu and

Zambonino-Infante, 2001). Furthermore, enzyme activity is

generally low at the beginning of external feeding and is

influenced by the food type provided (Infante and Cahu, 2001).

Studies have shown that the basic morphology of the digestive tract

of most larval/fry stages coincides with low production of enzymes,

hence the requirement for live feed organisms as a source of

nutrition (Dabrowski, 1979; Srivastava et al., 2002). The study of

the digestive specificities of early larval/fry stages of most fish

species is critical in enabling adaption of the nutritional profile

and the form in which these nutrients are supplied in a formulated

micro diet (Ma et al., 2005). The assessment of the presence and

level of activity of certain enzymes is used as a comparative

indicator of the rate of development of the larvae and survival

rate (Ueberschär, 1993). However, very little is known about the

digestive enzyme activity of H. niloticus larvae during their early

stages of development. The objectives of this study were first to

obtain information on the early morphological development of H.

niloticus larvae until 6 DAH in order to determine the optimal time

of first feeding, and second to assess the effect of starvation or the

provision of different live feed species on larval/fry survival, growth,

and digestive enzyme activity. For this study, larvae and fry were fed

with Artemia nauplii, a combination of the two live feeds, or rotifers

only from 6 to 27 DAH.
Materials and methods

Two batches of fertilized eggs and larvae were obtained for the

experiments: the first batch was obtained from a pond at a private

fish farm and the second batch from the Barekese reservoir in the
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Ashanti Region, Ghana. The experiments were conducted at the wet

laboratory of the Department of Fisheries and Watershed

Management, Kwame Nkrumah University of Science and

Technology (KNUST), Ghana.
Morphological development of H.
niloticus larvae

Fertilized eggs ofH. niloticus obtained from the breeding nest in

a pond at a private farm were transported to the laboratory, where

hatching was completed after 24 hours. The newly hatched larvae

(9.05 ± 0.09 mm; 12.33 ± 0.6 mg) were counted volumetrically and

stocked in triplicate at a density of 17 larvae/L in three transparent

25-L rectangular plastic tanks with 20 L of water. Approximately

50% of the water was replaced daily by siphoning off the waste at the

bottom of the tank. The larvae were reared under a constant

photoperiod of 12:12 h of light/dark and at 26°C during the 6-day

experimental period.

Sampling and processing
For morphometric analysis, 10 larvae were randomly sampled

from each tank every morning to monitor growth and larval

development from 0 to 6 DAH. Digital images of individual

larvae were taken and analyzed for morphometric development

using a camera microscope (LEICA MC190 HD, Leica

Microsystems, Wetzlar, Germany) with a scale of 1 mm. The

lengths (mm) of the larvae were measured to the nearest 0.01

mm using a digital caliper (Mitutoyo 500-196-20, Mitutoyo,

Foshan, China), and body weights were measured to the nearest

0.001 g using a digital scale (UW1020H, Shimadzu, Kyoto, Japan).

Samples were collected using methods similar to those described by

Siju et al. (2021).
Effect of live feeds on fry performance and
digestive enzyme activity

Fry rearing and experimental setup
The experiment was conducted in twelve 45-L rectangular

plastic tanks filled with 20 L of ground water and provided with

gentle aeration to maintain dissolved oxygen at 5 mg/L throughout

the experiment and to promote homogeneous distribution of the
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live feeds. All tanks were kept in a ventilated room under a

photoperiod of 12:12 h of light/dark. Fry of H. niloticus from a

natural nest at the Barekese reservoir, Ghana, with an initial weight

of 12.6 ± 1.58 mg and mean total length of 12.9 ± 0.3 mm, were

stocked in 12 tanks at a density of 20 larvae/L. The age of the fry was

estimated to be 5 days post hatch based on comparison with

H. niloticus larval ontogenic development described in the first

part of the article. At this age, their anal and pectoral fins were

barely initiated, and their yolk sac was almost diminished. At an age

of 6 DAH, H. niloticus are considered to be fry, as they start

schooling and resemble fingerlings.

Four treatments were tested in triplicate, each randomly

assigned to three of the 12 plastic tanks. In treatment 1, larvae

were fed Artemia franciscana nauplii only. In treatment 2, they

received a combination of the two live feeds Artemia nauplii and

rotifers (co-fed). In treatment 3, they were fed with live rotifers (B.

calyciflorus) only. In treatment 4, they were not fed; this treatment

was designated as a control. Fry in the fed treatment groups were

fed four times daily at 3-hour intervals. In treatments 1 and 3, the

live Artemia was added to a final density of 1–2 Artemia nauplii

ind./ml (individual dry weight 0.0128 ± 0.0040 mg) and 7–10 rotifer

ind./ml (individual dry weight 0.0067 ± 0.0024 mg), respectively.

The co-fed treatment consisted of 50% of the density by mass of

each live feed (0.5–1 Artemia ind./ml and 4–5 rotifers ind./ml).

Two strains of newly hatched Artemia nauplii were used for the

study: a smaller-sized Artemia (AF, 195 × 499 μm) (Inve,

Dendermonde, Belgium) and a larger-sized Artemia (EG, 270 ×

540 μm) (Inve, Belgium). From 5 to 11 DAH, the fry on the Artemia

treatments were fed with AF Artemia nauplii and co-fed with a

mixture of AF and EG for 2 days before switching completely to EG

Artemia meta-nauplii, as shown in Table 1. Both Artemia and

rotifers were enriched with amplified replete algae (Chlorella sp.) at

a rate of 100 ppm (1 g/L) and 200 ppm (0.2 g/L), respectively, at 8 to

12 hours before feeding.

Sampling and processing
Ten larvae/fry from each tank were randomly sampled daily for

growth measurements until 11 DAH. Samplings were thereafter

discontinued in the rotifer-fed and unfed groups due to total mortality

but continued every fourth day for the Artemia nauplii and co-fed

groups. The total length (TL) of each larva was measured to the nearest

0.01 mm using a Vernier caliper (Mitutoyo 500-196-20, Foshan, China),

and wet body weight (BW) was measured to the nearest 0.001 g using an
TABLE 1 Feeding and treatments until 27 DAH.

Treatments

DAH Artemia Artemia + rotifer Rotifer Not fed

5–8 AF AF + B. sp. B. sp. Not fed

9–11 AF AF + B. sp. B. sp. Not fed

12–14 AF + EG AF + EG + B. sp. – –

14–21 EG EG + B. sp. – –

22–27 EG EG – –
fro
DAH, days after hatching; -, all larvae died; B. sp., Brachionus calyciflorus; AF, smaller-sized Artemia; EG, larger-sized Artemia.
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analytical balance (UW1020H, Shimadzu, Kyoto, Japan). For analysis of

digestive enzyme activity, triplicate samples of nine larvae per treatment

were randomly collected 2–3 hours after feeding at 5, 7, and 9 DAH.

Individuals were rinsed with distilled water and frozen at −80°C until

further analysis was conducted. Samples were collected using methods

similar to those of Siju et al. (2021).

The growth and survival rates of the larvae were determined as

follows:

• Survival   rate( % ) =
Number   of   fish   at   the   end   of   the   experiment

Number   of   fish   at   the   beginning   of   the   experiment
� 100

•Weight   gain( % ) =
(Final   body  weight(g) − Initial   body  weight(g))

Initial   body  weight(g)
� 100

• Specific   growth   rate( % ) =
logW2 − logW1 

T2 − T1 
� 100
Determination of growth and digestive enzyme
activity of H. niloticus larvae/fry

Digestive enzyme activity was determined by mechanically

homogenizing individual larvae/fry in ice-cold Milli-Q water (Merck

Millipore, Darmstadt, Germany); this was centrifuged (10 min at

15,800 g), and the supernatant was used to assay enzymatic activity.

Amylase activity was determined using a commercial kit (Ultra

Amylase Assay kit E33651, Thermo Fisher Scientific, Waltham, MA,

USA). Trypsin and lipase were assayed using the methods of Rotllant

et al. (2008), modified as described in Goncalves et al. (2021). All

enzyme activities are expressed as relative fluorescence units (RFU) per

individual. In the case of larvae, the gut was too small to be dissected;

hence, the procedure using whole individuals was continued in the case

of the fry for purposes of comparison. The results are expressed in the

form of specific enzyme activity per individual.
Water quality

The tanks were cleaned by siphoning dead fry, waste, and

uneaten feed twice daily, and 80% of tank water was replaced

daily with fresh water. During the rearing period, the temperature

(T; °C), dissolved oxygen (DO; mg/L), total dissolved solids (TDS;

mg/L), and pH were recorded daily at 8 a.m. using a multiparameter

probe (YSI Professional Plus 18H105806, Yellow Springs, OH,

USA) . Ammon ia n i t r ogen (mg/L ) was d e t e rm ined

spectrophotometrically (DS, 1975) weekly in all rearing tanks.
Statistical analysis

All statistical analyses and graphs were performed and created

using GraphPad Prism 5 statistical software. Data on survival and

growth parameters were compared between Artemia-fed and co-fed

treatments using unpaired t-tests. Data on growth measurement

(length) were compared among all four treatments using the

Kruskal–Wallis test followed by Dunn’s multiple comparisons test

to compare the means. Data on digestive enzyme activity were also
Frontiers in Aquaculture 04
analyzed using one-way ANOVA followed by Tukey’s post-test.

Results were considered significant at p< 0.05. All data are presented

as means ± standard deviation.
Results

Morphological development of newly
hatched larvae

A large, yellow, vascularized yolk sac filled with yolk platelets

was observed in the abdominal cavity of the larvae at hatching,

occupying a major portion of the larvae. The newly hatched larvae

were translucent with pigmentation on the back of the yolk sac. On

average, approximately 83% of the yolk reserves had been resorbed

by the third day, and no yolk platelets were observed after the fourth

day (SM Data Sheet 1). The mean body weight increased (~50%)

from 12.33 ± 0.57 mg at hatching (0 DAH) to 18.33 ± 4.04 mg by 6

DAH (Figure 1). There were distinct changes in the morphological

characteristics of the larvae during larval development from 0 to 6

DAH (SM Data Sheet 1). During the growth period, head length

and tail length increased proportionally to TL, whereas pre-anal

length and trunk length decreased proportionally to TL. Head

length and the post-anal length increased from 14.8% and 31.7%

of TL at the yolk sac stage to 20.3% and 42.1% of TL at the pre-

flexion stage, respectively. In contrast, pre-anal length and trunk

length decreased from 68.3% and 53.5% of TL to 57.9% and 37.6%

of TL, respectively.
Swimming behavior

At 0–1 DAH, larvae were immobile and only wiggling at the

bottom of the tank. However, at 2–3 DAH, some larvae exhibited

active vertical movements toward the surface of the water before

descending passively to the bottom. Fry engaged in active horizontal

movements and started schooling at 6 DAH. Fry were periodically

observed gasping for air at the surface of the water when moving in

schools. At night and with no lights, all larvae/fry remained

dispersed at the bottom of the tanks.
Growth and survival of fry fed with
different live feeds

The highest survival and growth rates were observed in fry fed

with Artemia. The overall survival rates of fry fed with Artemia and

fry co-fed with Artemia and rotifers were 72.7% ± 0.9% and 41.2% ±

3.3%, respectively. Fry fed with rotifers and unfed fry experienced

100% mortality by 11 DAH. The growth data are presented

in Table 2.

Figure 2 depicts the length increase over time for each

treatment. Fry fed with Artemia and fry co-fed survived and grew

until the end of the trial at 27 DAH (Figure 2). The highest recorded

total length of 25.4 ± 0.5 mm was observed in the group fed with
frontiersin.org
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Artemia. Fry reared without food and those provided with rotifers

died between 8 and 11 DAH.
Digestive enzyme activity

Digestive enzyme activity (trypsin, amylase, and lipase) was detected in

larvae at 5 DAH. Digestive enzyme activity differed significantly (p< 0.05)

between treatments and sampling dates. Larval trypsin activity at the start

of the trial (5 DAH) was 78.0 ± 25.8 RFU/mg BW for larvae fed with

Artemia, 173 ± 137.43 RFU/mg BW for co-fed larvae, and 71.0 ± 49.9

RFU/mg BW for rotifer-fed larvae. From 5 to 7 DAH, enzyme activity

decreased slightly for both co-fed and rotifer-fed larvae, but increased

significantly forArtemia-fed larvae (146 ± 90.13 RFU/mg BW), reaching a

peak 2 days after the start of feeding. There was a marked decrease in

enzyme activity with increasing fry age for all treatments. The lowest levels

were recorded at 9 DAH (83 ± 13.2 RFU/mg BW) for theArtemia-fed fry,

55 ± 25.9 RFU/mg BW for the co-fed fry, and 19 ± 4.1 RFU/mg BW for

the rotifer-fed fry, and very low values (12 ± 3.5 RFU/mg BW) were

observed for the unfed control fry, as shown in Figure 3A.

Amylase activity at 5 DAH was lowest for the Artemia-fed larvae

(138.3 ± 19.32 RFU/mg BW) and higher for the co-fed larvae (345.5 ±

171.0 RFU/mg BW) and rotifer-fed larvae (237.9 ± 47.79 RFU/mg BW).

Amylase activity increased to 266.2 ± 133.88 RFU/mg BW at 7 DAH in

Artemia-fed fry, but decreased in the co-fed fry (209.1 ± 59.30 RFU/mg

BW) and rotifer-fed fry (100.8 ± 52.36 RFU/mg BW). According to

Figure 3B, amylase values at 7–9 DAH were affected by treatment: there

were differences between Artemia-fed (173.7 ± 55.4 RFU/mg BW), co-

fed (78.1 ± 36.8 RFU/mg BW), rotifer-fed (26.8 ± 38.3 RFU/mg BW),

and unfed fry (60.3 ± 52.8 RFU/mg BW).

Lipase activity at DAH 5 was 105.4 ± 74.32 RFU/mg BW for

Artemia-fed larvae, 185.2 ± 93.6 RFU/mg BW for co-fed larva, and

132.1 ± 108.01 RFU/mg BW for rotifer-fed larvae. Lipase activity

peaked at 7 DAH for all treatments: Artemia-fed fry (320.7 ± 120.0

RFU/mg BW), co-fed fry (377.0 ± 146.5 RFU/mg BW), and rotifer-fed

fry (171.0 ± 99.9 RFU/mg BW). It decreased at 9 DAH for Artemia-fed

fry (211.9 ± 90.10 RFU/mg BW), co-fed fry (224.0 ± 168.9 RFU/mg

BW), rotifer-fed fry (107.5 ± 48.48 RFU/mg BW), and unfed fry (68.4 ±

22.65 RFU/mg BW) at p< 0.02, as shown in Figure 3C.
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Water quality

The average physicochemical parameters were as follows: water

temperature, 24.5°C–26.7°C; dissolved oxygen, 4.7–5.0 mg/L; TDS,

26–54 mg/L; pH, 6.0–7.45. Ammonia levels were below 0.01 mg/L

(p< 0.05) throughout the trial.
Discussion

In the early stages of development in most fish species, the

growing embryo and newly hatched larvae receive their energy and

nutrients from the yolk (Kamler and Kamler, 1992; Rønnestad et al.,

1994). Similarly, H. niloticus larvae entirely use up the yolk reserve

before their mouths open. According to studies performed by Peña

et al. (2003), the yolk sac is endocytosed by a syncytium encircling

the yolk sac, providing endogenous nutrition to the larvae. The

opening of the mouth is a significant ontogenetic event in the life of

a larva because it allows access to exogenous food (Gomes

et al., 2010).

Significant changes occurred in the morphology of H. niloticus

larvae during the early stage of development from 0 to 6 DAH.

Within 6 DAH, the larvae metamorphosed to the fry stage and

started schooling. H. niloticus fry exhibited improved swimming

abilities at the time of exogenous feeding. These findings are

consistent with those of previous studies indicating that the onset

of schooling behavior has been observed coincident with or

immediately after metamorphosis in other fish species such as

anchovy (Engraulis mordax), Atlantic herring (Clupea harengus),

and yellowtail (Seriola quinqueradiata) (Nakayama et al., 2003). At

night or when kept in dark conditions, however, H. niloticus fry

were observed not to organize into well-coordinated schools even

after 6 DAH. According to Fukuda et al. (2014), Pacific bluefin tuna

(Thunnus orientalis) larvae and young juveniles do not actively

swim at night, as they depend on vision to perceive the motion of

neighboring fish when schooling. Moreover, according to Emery

(1973), fry schools always disintegrate at night, and the fish disperse

to lower near-bottom water layers, become inactive, and only

change their behavior when an artificial source of light is turned
FIGURE 1

Growth (length and weight) of Heterotis niloticus from 0 to 6 days after hatching (DAH). Values are means ± SD (n = 10).
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on or when they are frightened. Furthermore, the black coloration

observed at the back in H. niloticus larvae after 4 DAH may be

attributed to a camouflage strategy to avoid detection by predators

from above, which is consistent with the observation of dark

pigmentation in the dorsal region of the larvae of sunbleak

(Leucaspius delineatus) (Pinder & Gozlan, 2004).

Artemia provides a considerably larger live feed that ranges in

size from 200 to 500 mm (Granvil, 2000) compared with rotifers,

which range between 50 and 200 mm in size (Pronob et al., 2012).

The better growth observed with Artemia compared with rotifers is

most likely partly explained by the size of the prey. Use of Artemia

likely favored the initial stages of fry, as fry of Heterotis are larger

than many other larvae at hatching, with a TL of 9.1 ± 0.1 mm, and

hence have a wider mouth gape that can easily handle relatively

large prey. Larvae of many fish species are reared at first feeding on

rotifers Brachionus spp. (Arimoro, 2006). Rotifers are the most

crucial live food organisms as an initial source of nutrition for small

fish larvae (Lubzens et al., 2003; Awaiss and Kestemont, 1998).

According to Lim and Wong (1997), the freshwater strain B.

calyciflorus is among the most suitable species for the larviculture

of the freshwater ornamental fish dwarf gourami (Colisa lalia) in

Singapore. Shiri et al. (2003) also successfully cultured burbot (Lota

lota) larvae, an endangered freshwater fish in Western Europe, with

freshwater rotifer, B. calyciflorus, and obtained a survival rate of
Frontiers in Aquaculture 06
69.2% in fry fed with rotifer. Adite et al. (2009) demonstrated in his

weaning diet studies the use of zooplankton (freshwater rotifers:

Brachionus spp.) collected in a pond and Artemia nauplii as a first

feeding diet to maintain Heterotis fry for 2 days before transition to

particulate feed. However, the co-occurrence of the total mortality

recorded in the rotifer-fed group and unfed treatment group in the

present experiment, alongside the higher survival and growth rate

for the Artemia-fed treatment relative to the lower survival and

growth rate in the co-fed group, indicates some level of starvation

and inadequacy for the co-fed treatment and the rotifer-fed

treatment. Thus, the most likely cause of the difference in survival

and growth observed between the co-feeding group and the

Artemia-fed group is the amount of feed provided (0.5–1 Artemia

ind./ml vs. 1–2 Artemia ind./ml) and consequently the effect of feed

availability and total energy in the Artemia-fed group as compared

with the co-fed group. The total mortality observed for the group

fed with only rotifers may be a result of the smaller size of rotifers,

intake of which therefore did not provide enough energy to support

the metabolism and energy requirements ofH. niloticus fry, whereas

Artemia nauplii have higher energy content compared with rotifers

(Darias et al., 2015).

Digestive enzymes are present in some larvae before the start of

exogenous feeding (Cahu and Infante, 1994; Ribeiro et al., 1999;

Cara et al., 2003), and their presence may influence the rate at which
FIGURE 2

Total length (mm ± SD, n = 10) of Heterotis niloticus fry fed with different live diets under experimental conditions.
TABLE 2 Mean growth and survival rates of Heterotis niloticus larvae cultured from 5 to 27 DAH with different live feeds.

Parameters Artemia Artemia + rotifer Rotifer Not fed

Final number 291 ± 22.7a 165 ± 6.4b – –

Final body length (mm) 25.4 ± 0.5a 23.8 ± 1.1a – –

Final body weight (mg) 122.8 ± 10.8a 78.5 ± 14.4b – –

SGR (%/day) 4.1 ± 3.4a 3.3 ± 3.9a – –

Weight gain (%) 869.7a 520.2b – –

Survival rate (%) 72.7 ± 0.9a 41.2 ± 3.3b – –
fro
Initial total number = 400, initial length = 12.9 ± 0.3 cm, and initial weight = 12.7 ± 1.7 g. Values are mean ± SD for each parameter (n = 10). Different letters indicate significant differences among
different treatments.
SGR, specific growth rate.
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exogenous food will be digested and metabolized (Gawlicka et al.,

2000). The ability of fish larvae/fry to digest nutrients from their

diet is mostly dependent on the availability of appropriate digestive

enzymes, which is influenced by the physical and chemical

characteristics of the feed (Cahu and Zambonino-Infante, 2001).

The results of this study confirm that the key digestive enzymes are

present during first feeding (mouth opening) in H. niloticus fry,

demonstrating the importance of these enzymes in the early stages

of the development of the species.

The observation of enzymatic activity is considered an indicator

of a functional stomach (Moyano et al., 1996). A functional stomach

has been observed in early developmental stages (before or during

yolk absorption) of some freshwater fish species, such as rainbow

trout (Oncorhynchus mykiss; Ershova et al., 2004), Cuban gar

(Atractosteus tristoechus; Comabella et al., 2006), Nile tilapia

(Oreochromis niloticus; Drossou et al., 2006), and Mexican

mojarra (Cichlasoma urophthalmus; López-Ramıŕez et al., 2011).

Thus, the significant increases in specific activities of trypsin,

amylase, and lipase observed under the Artemia-fed treatment

with age reflect an increase in digestive capacity and larval

stomach development (Johnston and Ritar, 2001). In this study,

we observed a higher level of activity of enzymes involved in the

digestion of proteins, lipids, and carbohydrates compared with

studies of other freshwater species, including larvae of the green

catfish Mystus nemurus, and in reports on marine species, such as
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striped bass (Morone saxatilis; Baragi and Lovell, 1986), turbot

(Scophthalmus maximus L.; Cousin et al., 1987), and gilthead

seabream (Sparus aurata; Moyano et al., 1996). A possible

explanation for the higher enzyme activity may be that it results

from the analyses of whole larvae/fry, which may have affected

results compared with those that would have been obtained if only

the gut had been dissected and analyzed. Similar results regarding

higher enzyme activity using whole larvae have also been reported

in yellowfin seabream (Acanthopagrus latus) by Morshedi

et al. (2021).

Trypsin is an important measure of nutritional status that is

directly related to protein metabolism. Levels are mostly influenced

by the protein content and amino acid profile of the diet (Imentai

et al., 2022). The only pancreatic enzyme that can activate both itself

and other digestive enzymes is trypsin, which is thus essential for

digestion in larvae (Nazemroaya et al., 2015). In the present study,

specific trypsin activity in H. niloticus larvae/fry was detected at 5

DAH; this increased significantly and maintained a higher level in

the Artemia treatment groups (Artemia-fed and co-fed), whereas it

was significantly lower in the rotifer treatment group, and this was

similar to what was observed in the unfed treatment group. This

clearly points toward starvation in both groups and low acceptance

of rotifers as feed by the H. niloticus fry.

Energy derived from lipid and carbohydrate sources is crucial

for metabolic maintenance and larval growth in order to spare
B

C

A

FIGURE 3

Enzyme activity of (A) trypsin, (B) amylase, and (C) lipase versus age (days after hatching (DAH)) for fry of Heterotis niloticus fed with different live
feeds. Data points represent each replicate obtained from whole-body homogenates (N = 9). Activity is expressed as relative fluorescence units
(RFU) per individual.
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amino acids required for protein synthesis during larval

development (Darias et al., 2006). Even though zooplanktonic

prey have relatively low carbohydrate content (Dhont and Van

Stappen, 2003), some levels of amylase have been discovered in the

ontogenetic development of digestive enzymes in some carnivorous

fish larvae/fry (Ribeiro et al., 1999; Cahu and Zambonino-Infante,

2001; Martıńez-Lagos et al., 2014). The specific activity of amylase

in this experiment displayed a bell-shaped pattern (Figure 3), with

its peak value occurring at 7 DAH for the best-performing

treatment (Artemia-fed) and a decreasing trend for the co-fed

and rotifer-fed treatments. The low levels of amylase activity in

the Artemia-fed treatment group indicate low levels of carbohydrate

ingestion, and suggest that H. niloticus larvae/fry are virtually

exclusively carnivorous. According to Nazemroaya et al. (2015), a

similar pattern for amylase-specific activity was found in fry of the

red porgy, Pagrus pagrus (Suzer et al., 2007b). The decreasing level

at 9 DAH for the co-fed and rotifer-fed treatments most likely

indicates starvation.

Lipase activity during early larvae ontogeny may affect the

utilization of dietary lipids (López-López et al., 2008). In this study,

lipase activity measured at mouth opening was considerably higher

compared with levels measured in other freshwater fry following

mouth opening, including wolf cichlid (Parachromis dovii; Frıás-

Quintana et al., 2019) and Chinese perch (Siniperca chuatsi; Tang

et al., 2021). Adaptation to exogenous nutrition is evidenced by the

gradual rise in specific lipase activity after 5 DAH. This is in accordance

with studies in other freshwater species such as green catfish fry (M.

nemurus; Srichanun et al., 2012), in which the development of a

functioning stomach during weaning was found to affect lipase activity.

Water quality variables (temperature, DO, TDS, and pH) minor

variation between treatment groups and were within the acceptable

ranges for rearing fish larvae (Arimoro, 2007; Ajepe et al., 2014).
Conclusion

In conclusion, the duration of transition between consuming

endogenous and exogenous food is a crucial factor in the survival of

H. niloticus larvae because, during this time, rapid morphological

changes take place in the structural makeup of the organism. Given

that feeding with Artemia nauplii was superior to co-feeding with

rotifers or feeding with rotifers only in terms of survival and growth,

Artemia nauplii can be considered a suitable starter feed forH. niloticus

fry, although density and feeding levels should be considered. The

findings of this study provide important information for use in curbing

the high mortality rates observed inH. niloticus hatcheries. The present

study provides knowledge of the presence and levels of the three main

enzymes at the onset of mouth opening and offers valuable information

on the ability of fry to digest particulate feed and the formulation of

such. Studies on the nutritional composition of larval diets and the

suitability of particulate diet for the larviculture ofH. niloticus as well as

the weaning age of H. niloticus fry are required to enhance the

commercial culture of the species.
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