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Introduction: In neonates, the early detection of asphyxia improves survival

rates and prevents long-term complications. In neonatal care, physiological

signals, including heart rate and oxygen saturation, are routinely monitored.

However, neonates with neurological conditions such as hypoxic-ischemic

encephalopathy (HIE) require direct neural monitoring. Electroencephalography

(EEG) is a non-invasive method for assessing neural activity and therefore can

e�ectively detect early signs of asphyxia. Although studies on HIE have utilized

clinical-grade EEG systems, the real-world application of wearable EEG devices

in broader neonatal care remains underexplored. In this study, we aimed to

investigate the e�ectiveness of wearable EEG devices in detecting asphyxia

without restricting its progression to hypoxic-ischemic encephalopathy (HIE).

Methods: We used Fuzzy Entropy (FuzzyEn) to perform power spectral and

complexity analyses on EEG signal data healthy neonates and those with

asphyxia.

Results: We found that both delta band power and EEG signal complexity

decrease in neonates with asphyxia, which is consistent with those of studies on

HIE. Furthermore, FuzzyEn in combination with absolute power measurements

captured complementary information that led to improved detection accuracy

and enhanced identification performance.

Discussion: Wearable EEG devices are scalable and accessible for use in

resource-constrained environments (such as rural and developing regions) and

can be integrated into Internet of Things (IoT) systems. Our findings highlight

the potential of wearable EEG devices in early detection of asphyxia, which may

contribute to a more e�ective neonatal care and improved survival outcomes.
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1 Introduction

In neonates, physiological monitoring helps detect diseases
immediately after birth and promptly intervene, if necessary. This
allows for improved survival rate and reduced risk of long-term
sequelae [1] [as reviewed in [2, 3]]. The importance of monitoring
physiological parameters such as heart rate (HR), respiration
rate (RR), and blood oxygen saturation (SpO2), in a specialized
hospital environment [4] is widely recognized [reviewed in [5, 6]].
Furthermore, the use of simple and accessible devices, commonly
referred to as Internet of Things (IoT) devices, may help reduce
demands on neonatal intensive care units (NICUs) [7] and assist
regions with rapid population growth, in rural areas, or in island
nations with limited medical resources [8, 9].

Among all neonatal physiological signals,
electroencephalography (EEG) demonstrates a particularly
high clinical utility because it directly reflects neural activity;
therefore, EEG can be used to efficiently detect neurological
diseases [10]. Several studies have explored its application in
neonates [10–13]. Studies have investigated the associations
between EEG patterns and conditions such as intraventricular
hemorrhage, necrotizing enterocolitis, preterm prolonged rupture
of membranes, persistent pulmonary hypertension of the newborn,
and hypoxic-ischemic encephalopathy (HIE). HIE–which can
develop from asphyxia–is particularly prevalent among neonates,
and neural activity in the delta frequency band is associated
with increased disease severity [10, 13]. However, most studies
on asphyxia have utilized long-term EEG readings obtained
immediately after birth using advanced EEG equipment designed
for medical institutions [13, 14]. Therefore, novel techniques that
can capture HIE-associated EEG patterns in shorter measurement
times using simpler and more accessible EEG devices are crucial.

One limitation of simple EEG devices, typified as wearable
EEG devices, is the limited number of electrodes. Therefore, the
use of metrics that can overcome this limitation, even in low-
density EEG systems, is essential. One promising candidate is
the complexity measure for time-series patterns in EEG signals
[reviewed in [15]]. Over the past few decades, several complexity
metrics, including fractal dimensions [16], entropy, and others
that are used to calculate complexities across multiple time scales
[17–19], have been adopted in both healthy and pathological
conditions. These complexity measures can be calculated from
the time-series of a single electrode and reflect neural activity
across different brain regions, as demonstrated in studies that
combined complexity analysis and functional network analysis [19–
21]. Therefore, even with low-density EEG systems, complexity
measures may capture activity in broader areas of the brain.
Additionally, identifying disease-specific patterns over shorter
timescales—rather than relying on fluctuations over hours—could
significantly improve the practical utilities of these measurements.
Studies that investigated the application of complexity metrics for
newborns in the context of HIE indicate that neonates who later
developHIE exhibit lower EEG signal complexity than their healthy
counterparts [22, 23]. Moreover, this reduced complexity correlates
with the degree of cognitive decline observed when the patients
are two years old [23]. However, to prevent the progression of
asphyxia to HIE, we should focus on cases of severe asphyxia that
transition to HIE and also detect earlier stages of asphyxia that

FIGURE 1

Conceptual overview of the study design.

indicate the pre-stage of HIE. Moreover, these studies have used
clinical-grade EEG systems [22, 23]. In situations where clinical
resources are limited, the use of wearable EEG devices—which can
be implemented in IoT systems—should be considered a viable
alternative [8, 9].

Therefore, in this study, we aimed to derive a complexity metric
that can be employed to monitor the degree of asphyxia using
data from a simple, low-density, wearable EEG device, especially
in settings with limited medical resources. Specifically, EEG data
of healthy neonates and those with asphyxia of varying severity
were collected and analyzed by medical institutions in Indonesia.
The conceptual overview of the study design was demonstrated in
Figure 1. First, epochs of 20 seconds each with minimal artifacts
were extracted, and multiscale complexity analysis was applied to
these epochs to explore the association between the complexity of
EEG data and asphyxia at different time scales.

2 Related works

2.1 Neural activity in healthy and
pathological neonates

One of the most fundamental and historically established
methods for evaluating neural activity in the brain is power
spectrum analysis. This method can capture changes in neural
networks associated with aging [24], development [25–27], and
pathological conditions [17] through variations in the spectral
components [reviewed in [28]]. Interactions across regions in
the brain lead to the maturity of neural networks, which results
in the emergence of faster components such as theta, alpha,
beta, and gamma bands [25–27]. However, neonates and infants

Frontiers in AppliedMathematics and Statistics 02 frontiersin.org

https://doi.org/10.3389/fams.2025.1530570
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Nobukawa et al. 10.3389/fams.2025.1530570

TABLE 1 Demographic data of asphyxia and control groups.

Variable Asphyxia neonatal group Healthy neonatal group p-value

Postnatal age (days) 8.222 (10.600) 9.09 (7.1267) p = 0.793

Sex (male/female) 4/5 10/10 p = 0.285

Birth weight (kg) 2.833 (0.650) 3.13 (0.407) p = 0.09

APGAR scores
(1 min - 5 min - 10 min)

4.888 - 6.000 - 7.333
(2.571 - 2.549 - 2.692)

9.2380 - 9.7142 - 10.0
(0.5389 - 0.4629 - 0.0)

–

Values of postnatal age, birth weight, and appearance-pulse-grimace-activity- respiration (APGAR) score are represented as means (standard deviation [SD]). Note: APGAR scores were

measured 1 min, 5 min, and 10 min after birth.

predominantly exhibit delta band activity, which reflects the
immaturity of the brain and is commonly observed during
both wakefulness and sleep stages [26]. In cases of neonatal
encephalopathy, the decreased delta band power and the shape
of the power spectrum profile in the delta frequency band
correlate with increased disease severity [10, 12, 13]. Therefore,
power spectrum analysis can be considered one of the relatively
well-established methods for detecting abnormalities in neonatal
neural activity.

2.2 E�ectiveness of complexity analysis of
neural activity

The complexity analysis of neural activity signals—captured
using EEG or magnetoencephalography—can be used to identify
the developmental stage of neural networks in neonates and infants
[25, 29]. The complexity of EEG signals at a single electrode
reflects the neural interactions. In contrast, functional connectivity
measures that assess synchronization between neural activities
across regions require data from numerous electrodes to capture
these interactions [17, 19, 30]. Therefore, complexity analysis can
be particularly advantageous, especially when simple EEG devices
with a restricted number of electrodes are used. Over the past
several decades, researchers aiming to calculate the complexity
of neural activity have proposed several metric types, which
include Lyapunov exponnet to evaluate chaotic dynamics [31],
fractal dimensions [16], and various types of entropy [17–19].
Sample entropy (SampEn), a widely used metric for assessing the
complexity and unpredictability of time-series data [32], works
by determining the frequency of recurring similar patterns within
the dataset given a specific tolerance level. Lower SampEn values
indicate greater regularity, whereas greater SampEn values reflect
increased randomness or greater complexity. SampEn is considered
to be more reliable than approximate entropy (ApEn) for shorter
and noisier data because it excludes self-matching patterns. Fuzzy
entropy (FuzzyEn) has been proposed as an alternative to SampEn
[33]. While SampEn calculates complexity by binarizing the
entropy values, FuzzyEn applies fuzzy logic to represent these
values more precisely, thereby avoiding binary simplification. This
approach helps minimize information loss [33]. Consequently,
FuzzyEn can calculate complexity from an even shorter time-series
dataset than that required by SampEn [34].

The complexity analysis of EEG signals in the context of
HIE has been extensively explored [8, 9]. Nemomssa et al.
demonstrated that in cases of HIE that progress to cerebral palsy,

the accuracy of complexity metrics (such as SampEn, permutation
entropy, and spectral entropy) that were applied to alpha-band
slow components derived through empirical mode decomposition
were high [8]. Mbanuzue et al. demonstrated that the decrease in
both permutation entropy and spectral entropy within the slow
components (corresponding to the delta band) of the EEG signals
correlated with the cognitive decline observed when the patients
were two years old [9]. Both studies found that the topological
characteristics of functional connectivity (e.g., radius, transitivity,
global efficiency, and characteristic path length) strongly correlated
with their corresponding EEG signal components [8, 9]. Therefore,
complexity analysis has been extensively utilized to capture the
alternation of neural activity patterns associated with HIE, and
thereby has significantly advanced current research.

Although complexity analysis of EEG signals has been
extensively explored in the context of HIE [8, 9], it has not yet
been applied to the detection of asphyxia, which represents an
earlier stage before the onset of HIE. Given that early intervention
is critical in improving neonatal outcomes, addressing complexity
analysis at the asphyxia stage is essential for developing early
detection methods. Furthermore, no prior studies have combined
complexity analysis with the well-established EEG power spectrum
analysis. Leveraging multiple metrics from the same physiological
signal to enhance detection performance has been proposed in
other fields [17, 28, 35], and applying such an approach to
the complexity and power analysis of EEG signals in asphyxia
represents a promising avenue for improving detection accuracy.

3 Materials and methods

3.1 Participants

We collected data from 30 neonates—21 healthy newborns
and nine with asphyxia—from the Department of Neonatology at
the pediatric intensive care unit (PICU) and NICU of K.R.M.T.
Wongsonegoro Regional Public Hospital. The nine neonates
with asphyxia constituted the clinical group. We diagnosed the
neonates with asphyxia on the basis of the criteria outlined by
the American College of Obstetrics and Gynaecology (ACOG),
American Academy of Pediatrics (AAP), and World Health
Organization. The asphyxia group comprised two mild, five
moderate, and two severe cases. No neonate with asphyxia
exhibited HIE. In contrast, the sex-, weight-, and age-matched
control group comprised 21 neonates with no reported history
of neuropsychiatric disorders. Table 1 presents the demographic
characteristics of both groups. This study was conducted in
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accordance with ethical standards to ensure the safety, privacy,
and wellbeing of all participants involved. Ethical approval was
obtained from the KRMTWongsonegoro Regional Public Hospital
(approval number 093/Kom.EtikRSWN/VII/2024), granted on July
26, 2024. This study adhered to all relevant ethical guidelines,
including informed consent from the participants, confidentiality
of data, and ensuring that the participants were not exposed
to unnecessary risks. All procedures were reviewed to ensure
alignment with both national and international ethical standards
for research involving human participants.

3.2 EEG recordings

EEGs were recorded using a Neuro-DCcap EEG system (East
Medic Corporation, Kanazawa City, Japan) that was developed for
basic medical research. The EEG system consists of eight electrodes
(F3, F4, C3, C4, P1, P2, O1, and O2) and a reference electrode
positioned at Fz. Standard bipolar derivations (F3-C3, C3-P3, P3-
O1, F4-C4, C4-P4, and P4-O2) were employed. The impedance of
each electrode was maintained at below 40 K�. The EEG data were
sampled at 250 Hz and bandpass-filtered between 1.5 and 50 Hz.

The EEG data were recorded for 30–60 min. Following data
acquisition, segments of the EEG recordings were processed
using the artifact subspace reconstruction (ASR) algorithm in
the EEGLAB toolbox; the algorithm identified and removed
artifacts; moreover, we selected a continuous 20-second epoch with
artifact levels below the threshold for further analysis. In total,
we obtained one, two, and three epochs from one, 15, and 14
neonates, respectively.

3.3 Evaluation indexes

3.3.1 Complexity analysis of EEG signals
FuzzyEn improves upon SampEn by utilizing a Gaussian

function instead of the Heaviside function to measure vector
similarity. Therefore, FuzzyEn assesses the complexity of
physiological time-series signals with increased accuracy,
surpassing the precision of SampEn [36].

The Z-scored time series of the coarse-grained heart rate data,
denoted by the m-dimensional vector Xm

i , is represented as {xτ
i −

xτ
i , x

τ
i+1 − xτ

i , · · · , x
τ
i+m+1 − xτ

i }, where i refers to the time step, xτ
i

is average of xτ
k
in i ≤ k ≤ i + m + 1, and τ is the scale factor.

The similarity between two vectors, Dm
ij , is determined using the

following exponential function:

Dm
ij = e− ln 2( d

mij
r )n , i, j = 1, 2, · · · ,N + 1. (1)

Here, dmij represents the maximum distance between Xm
i and Xm

j ,
r is the tolerance, and n is the gradient. The function 8m is
expressed as:

8m(n, r) =
1

N −m

N−m
∑

i=1





1

N −m− 1

N−m
∑

j=1

Dm
ij



 , j 6= i. (2)

The fuzzy entropy was then calculated based on 8m(n, r) using the
following equation:

FuzzyEn = ln
8m(n, r)

8m+1(n, r)
. (3)

Coarse-graining of the time series data by a scale factor τ is
represented as:

xτ
j =

1

τ

jτ
∑

i=(j−1)τ+1

ui, 1 ≤ j ≤
N

τ
, (4)

where ui (i = 1, 2, ...,N) denotes the observed EEG signal. In
multiscale fuzzy entropy analysis, the entropy for the coarse-
grained time series xτ

j is computed at each scale τ . In this study,
we usedm = 2 and r = 0.2 [36].

3.3.2 Power spectrum analysis
In addition to the complexity analysis, we performed power

spectral analysis using the EEG signal data. We first calculated the
power spectral density (PSD) (dB/Hz), and subsequently used it
to calculate the total absolute power in the delta (2–4 Hz) band,
using Welch’s method for power spectrum estimation. A Hanning
windowwas applied to the 20-second time series for the calculation.

3.4 Statistical analysis

For the FuzzyEn analysis, we conducted a repeated-measures
analysis of variance (ANOVA). The group (healthy neonates vs.
neonates with asphyxia) served as a between-participant factor;
six electrode pairs and 30 temporal scales as within-participant
factors. The Greenhouse–Geisser correction was applied to account
for sphericity violations, and statistical significance was set at an
α level of 0.05. The F-values obtained from the ANOVA reflect
the comparison of variance within and between the groups. Post-
hoc t-tests were used to further explore the effects of each group
and interactions across the electrode pairs and temporal scales.
The Benjamini–Hochberg false discovery rate (FDR) correction
was applied to control for multiple comparisons across the 180
p-values generated from the six electrode pairs and 30 temporal
scales (q < 0.05).

To analyze absolute power, we performed repeated-measures
ANOVA again, with group (healthy neonates vs. neonates with
asphyxia) as the between-participant factor and six electrode pairs
as within-participant factors. Greenhouse-Geisser correction and
an α level of 0.05 were applied again. The F-values obtained
from the ANOVA reflect the comparison of variances between
and within groups. Post hoc t-tests were used to assess the
differences between groups and interactions across the electrodes.
Log-transformed absolute powers were used to assume normal
distribution. To account for multiple comparisons, FDR correction
was also applied to the six p-values generated from the six electrode
pairs (q < 0.05).

Receiver operating characteristic (ROC) curve analysis was
performed to assess the ability of the model to distinguish asphyxia.
A logistic regression model incorporating FuzzyEn and absolute
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FIGURE 2

(A) Dependence of Fuzzy Entropy (FuzzyEn) on the temporal scale τ at electrode pairs (F3-C3, C3-P3, P3-O1, F4-C4, C4-P4, and P4-O2) in control

and asphyxia groups. Solid and dashed lines represent the mean and standard deviation (SD) for each group, respectively. (B) Dependence of t-value

on temporal scale τ between control and asphyxia groups. Negative t-value corresponds to lower FuzzyEn value of asphyxia group than in the

control group. The results showed the significantly smaller FuzzyEn in the asphyxia group, in particular, in 1 ≤ τ ≤ 30 at P3-O1.

power was developed to predict the probability of asphyxia for
each participant. True- and false-positive rates were calculated for
a threshold range (0–1.0) across both groups. The identification
accuracy was quantified using the area under the ROC curve
(AUC), with AUC values serving as indicators of classification
performance. A logistic regression model based on FuzzyEn,
absolute power, and their combination was used to evaluate the
classification accuracy, where an AUC of 1.0 indicates perfect
identification, and an AUC of 0.5 corresponds to chance-level
identification. Here, a leave-one-out cross-validation (LOOCV)
was used [37]. Pearson’s correlation r between FuzzyEn and
absolute power was used for multicollinearity in the logistic
regression. As the multicollinearity criterion, |r| > 0.9 was set.

4 Results

4.1 Fuzzy entropy analysis

We compared the FuzzyEn between the asphyxia and control

groups at each temporal scale τ and for each electrode pair.
Figure 2A shows the dependence of FuzzyEn on the temporal

scale τ across electrode pairs in both control and asphyxia groups.

Table 2 presents the results of the repeated-measures ANOVA for
FuzzyEn. The analysis revealed a significant main-group effect, and

no interaction effects were observed for group × electrode-pair,

group× scale, and group× electrode-pair× scale. Figure 2B shows
the dependence of t-value on temporal scale τ as the post-hoc t-test.
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TABLE 2 Repeated-measures analysis of variance (ANOVA) for Fuzzy Entropy (FuzzyEn) comparing the control and asphyxia groups.

Group e�ect Group × electrode-pair Group × scale Group × electrode-pair × scale

F = 4.993, p = 0.034,

η
2=0.151

F = 1.052, p = 0.385, η2 = 0.036 F = 2.925, p = 0.098, η2 = 0.095 F = 0.659, p = 0.638, η2 = 0.023

For clarity, comparisons with p < 0.05 are highlighted in bold. Values of postnatal age, birth weight, and appearance-pulse-grimace-activity- respiration (APGAR) score are represented as

means (standard deviation [SD]).

FIGURE 3

(A) Absolute power of delta band at electrode pairs (F3-C3, C3-P3,

P3-O1, F4-C4, C4-P4, and P4-O2) in the control and asphyxia

groups. Each solid dot represents the value of each participant. Plus

symbol and error bar exhibit the mean and standard deviation (SD)

in each group. (B) t-values of absolute power across electrode-pairs

between the both groups. Negative t-value indicates that the

absolute power of the asphyxia group is lower than that of the

control group. The results indicate that significantly smaller absolute

power at F4-C4, C3-P3, and P3-O1 in the asphyxia group was

(q < 0.05).

These results confirmed the significantly smaller FuzzyEn in the
asphyxia group, in particular, in 1 ≤ τ ≤ 30 at P3-O1 (q < 0.05).

4.2 Absolute power analysis

To compare our method with the relatively well-established
power spectrum analysis used for detecting abnormalities in
neonatal neural activity [10, 12, 13], we compared the absolute
power of the delta band between the asphyxia and control groups
for each electrode pair. Figure 3A shows the dependence of the
absolute power of the delta band across electrode pairs in the
control and asphyxiated groups. Table 3 presents the results of
the repeated-measures ANOVA for these powers. We observed a
significant main-group effect but no interaction effect for group

× electrode-pair. In Figure 3B, as their post-hoc t-test, t-values
of absolute power between the both groups among electrode-
pairs were shown. These results indicated the significantly smaller
absolute power at F4-C4, C3-P3, and P3-O1 in the asphyxia
group (q < 0.05).

4.3 Receiver operating characteristic curve
analysis

The logistic regression model identified asphyxia using a
significant reduction in FuzzyEn at P3-O1 shown in Figure 2B and
absolute power at F4-C4, C3-P3, and P3-O1 shown in Figure 3B.
Figure 4 showed the ROC for classifiers of controls and asphyxia
groups by logistic regression based on the averaged FuzzyEn in
temporal-scale range 1 ≤ τ ≤ 10 at P3-O1 and absolute power at
F4-C4, C3-P3, and P3-O1. AUC was enhanced by the combination
of FuzzyEn and absolute power when compared with cases that
used them separately. Considering that the current asphyxia group
includes relatively few participants in comparison with healthy
group, evaluation for precision-recall curve, which places more
emphasis on detecting asphyxia cases, is important. The result
shown in Supplementary material demonstrated that the same
tendency with the case using ROC was obtained.

5 Discussion and conclusions

In this study, we aimed to identify the characteristics of EEG
signals asphyxia neonates not restricting severe cases of asphyxia
that transition into HIE, we applied the complexity analysis with
FuzzyEn to EEG signals in healthy and asphyxia groups in addition
to the power spectral analysis. As the results, the power components
of delta band in EEG signals decreases and the complexity of EEG
signals decreases among electrodes-pairs.

Studies on HIE have indicated a decrease in power and
complexity owing to reduced neural activity and interactions,
and the application of these findings as biomarkers for HIE has
advanced [8, 9, 22, 23]. In contrast, this study utilized a wearable
EEG device—which can be used under more restricted conditions
of medical institutions than traditional medical EEG devices—to
analyze power and complexity in a group of neonates with asphyxia
and not limit to cases progressing to HIE. Similar reductions in
complexity and power were observed, which is consistent with the
results of previous studies [8, 9, 22, 23]. This suggests that similar
changes in complexity and power occur even in asphyxia and do
not restrict the progression to HIE. Therefore, the analysis of power
and complexity using wearable EEG may contribute to the early
detection of conditions such as HIE and cerebral palsy, and its
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TABLE 3 Repeated-measures ANOVA results for absolute power of delta

band comparing control and asphyxia groups.

Group e�ect Group × electrode-pair

F = 14.367, p < 0.001, η2
= 0.339 F = 1.480, p = 0.215, η2 = 0.050

For clarity, comparisons with p < 0.05 are shown in bold.

FIGURE 4

Receiver operating characteristic curves (ROC) for classifiers of

control and asphyxia groups by logistic regression based on average

of values for FuzzyEn at P3-O1 in the temporal scale range

1 ≤ τ ≤ 10 and absolute powers at F3-C4, C3-P3, and P3-O1. The

area under the ROC (AUC) was enhanced by the combination of

FuzzyEn and absolute powers (notated by “All”) in comparison with

cases that used them separately. Here, the correlations among

averaged FuzzyEn and absolute power are lower than the criteria of

multicollinearity.

application to IoT devices that can be used in constrained medical
environments is expected in the future.

We also found that the combination of FuzzyEn and absolute
power measurements enhanced the ability to detect asphyxia
compared with using either metric alone. This improvement may
stem from the fact that complexity metrics such as SampEn
and FuzzyEn, capture richer time-series information, including
phase components, which complement power-basedmeasures [24].
Integration of these complementary metrics can strengthen the
diagnostic capability and contribute to the establishment of robust
biomarkers for early asphyxia detection. Moreover, an advantage
of FuzzyEn over SampEn, another commonly used complexity
metric [28], is that FuzzyEn employs a Gaussian function instead of
the Heaviside function to measure vector similarity of time-series
given by Equation 1, allowing for reliable calculation even with a
small number of samples or short time-series data [36]. This is
a significant advantage in resource-limited medical settings where
obtaining artifact-free epochs is difficult.

This study has some limitations. First, we evaluated EEG
power and complexity using a small sample size, which may
limit the generalizability of the results. A larger sample, such
as a large cohort, could provide more robust evidence and
enable a more precise assessment of asphyxia severity. Second,
in addition to the cohort study, the long-term follow-up study
is needed to evaluate the impact of early detection on long-
term neurodevelopmental outcomes. Third, although we applied
bandpass filtering in this study, alternative methods for analyzing
nonstationary and highly nonlinear time-series signals, such as
empirical mode decomposition, may be more appropriate. Fourth,
in addition to data analysis approaches, modeling neural activity
using stochastic processes, deterministic processes, and delay
factors [38–40] is also necessary to estimate the factors that induce
abnormal neural activity [41–43]. Future research should address
these limitations.

To summarize, this study demonstrated that the power and
complexity of EEG signals detected using wearable EEG equipment
can help identify asphyxia in neonates. Although several limitations
remain, this finding supports the potential for developing IoT
devices to distinguish between healthy conditions and pathologies
in newborns.
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