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This article discusses the Lambert-Topp-Leone distribution as a flexible

alternative for modeling proportion and lifetime data. By extending the Topp-

Leone distribution, the proposed model o�ers greater flexibility in terms of

skewness and kurtosis, making it suitable for a broader range of real-world

applications. We examine key properties of the distribution, including its

moments and behavior in terms of skewness and kurtosis. Parameter estimation

using the maximum likelihood method is also discussed. A Monte Carlo

simulation study is conducted to evaluate the performance of the estimators.

Finally, to illustrate its practical utility, we apply the Lambert-Topp-Leone

distribution to real-world datasets, demonstrating its superior fit for proportion

and lifetime data compared to traditional models. The results suggest that this

distribution provides a valuable tool for researchers and professionals in fields

that require versatile modeling of bounded or positively skewed data.

KEYWORDS

goodness-of-fit, kurtosis, Lambert generator, lifetime data, maximum likelihood
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1 Introduction

The Topp-Leone (TL) distribution is a continuous probability distribution often used

to model bounded data, especially when a decreasing or unimodal pattern in the frequency

of events is observed. It was originally proposed by Topp and Leone [1] as an alternative for

modeling failure data. The cumulative distribution function (CDF), the probability density

function (PDF), and the quantile function (QF) of the TL distribution are expressed as

follows:

F(x) =
(
1− y2

)β
, (1)

f (x) =
2β

b
y
(
1− y2

)β−1
and (2)

F−1(u) = b

(
1−

√
1− u

1
β

)
, (3)

respectively, where y = 1− x/b, 0 < x < b, b > 0, 0 < u < 1, and 0 < β < 1.

Topp and Leone [1] impose the restriction 0 < β < 1 because their goal was to study a

distribution with a J-shaped probability density function. Specifically, they were interested

in the case where f (x) > 0, f ′(x) < 0 and f ′′(x) > 0 for all 0 < x < b, where f ′ and f ′′ are
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the first and second derivatives of Equation 2, respectively.

Currently, studies involving the TL distribution consider b > 0,

so Equation 2 has a unimodal shape when b > 1.

The TL distribution has been studied by various authors.

Nadarajah and Kotz [2] derive closed-form analytical expressions

for the hazard rate function and moments of this distribution.

For example, Ghitany et al. [3] study reliability measures of the

TL distribution. Zhou et al. [4] study the distribution of the

sum, product, and quotients of TL random variables. Kotz and

Seier [5] explore the kurtosis behavior of the TL distribution by

using the spread-spread function. Nadarajah [6] studies different

distributions with a bathtub hazard rate function, including the TL

distribution. Genç [7] studies the moments of the order statistics of

the TL distribution.

The TL distribution’s analytical simplicity and shape flexibility

(J-shaped and unimodal) make it a valuable alternative for fitting

bounded data. However, there are occasions when the data

exhibit high levels of skewness and kurtosis, which can impair

the performance of this distribution in fitting the data. In the

literature, various approaches can be found to introduce one or

more parameters to an arbitrary baseline distribution, which results

in greater flexibility in terms of skewness and kurtosis. See, for

example [8–15].

In this context, Iriarte et al. [16] propose the Lambert-F

distribution generator, whose CDF is defined by

G(x;α, η) = 1−
[
1− F(x; η)

]
αF(x;η), (4)

where F(·; η) is the CDF of an arbitrary baseline distribution with

parameter vector η, α ∈ (0, e) is an extra shape parameter, and

e ≈ 2.718 is the Euler’s number.

The corresponding PDF and QF are given by

g(x;α, η) = f (x; η)αF(x;η)
{
1− log(α)

[
1− F(x; η)

]}
and

(5)

G−1(p;α, η) =





F−1



W0

(
log(α)(p−1)

α

)

log(α)
; η


 , if α 6= 1,

F−1(p), if α = 1,

(6)

respectively, where p ∈ (0, 1), F(·; η), F−1(·; η), and f (·; η) are the

CDF, the QF, and the PDF of the baseline distribution, andW0(·) is

the principal branch of the LambertW function.

Lambert-F distributions exhibit wider ranges of skewness

than the corresponding baseline distributions, making them an

important alternative for modeling skewed data. See, for example

[17–19].

This study presents a new distribution for bounded data, the

Lambert-Topp-Leone (LTL) distribution. It arises by considering a

baseline TL distribution in the Lambert-F distribution generator.

In consequence, an extension of the TL distribution that includes

an additional shape parameter, offering more flexibility in terms

of skewness and kurtosis, is defined. The new distribution can

serve as an alternative to the beta [20] and Kumaraswamy [21]

distributions, or to recently introduced distributions such as the

NXLD [22], which are widely used for analyzing proportion data.

In the context of lifetime data analysis, this distribution can

serve as an alternative to the Weibull [23], Birnbaum-Saunders

[24], generalized exponential [25], and generalized Rayleigh [26]

distributions.

The rest of the article is organized as follows: In Section 2, the

new distribution is introduced, its behavior in terms of skewness

and kurtosis is described, and the hazard rate function is analyzed.

Section 3 discusses parameter estimation using the maximum

likelihood method and presents a simulation study to evaluate the

performance of the estimators. Section 4 presents several real-world

applications, including proportion data on household spending

allocated to food and lifetime data on fatigue. These applications

demonstrate that the new distribution may provide a better fit to

the data compared to traditional distributions. Finally, concluding

remarks are presented in Section 6.

2 The new distribution

In this section, we introduce the Lambert-Topp-Leone (LTL)

random variable and study some of its main properties.

2.1 The Lambert-Topp-Leone random
variable

In this section, we introduce the LTL random variable and

present its PDF, CDF, and QF.

Proposition 1. A random variable X follows the Lambert-Topp-

Leone (LTL) distribution, with parameters α ∈ (0, e) and β , b > 0,

denoted as X ∼ LTL(α,β , b), if its CDF, QF, and PDF are given,

respectively, by

G(x;α,β , b) = 1−
[
1−

(
1− y2

)β]
α(1−y2)

β

, (7)

G−1(p;α,β , b)

=





b


1−

√√√√
1−

[
1

log(α)
W0

(
log(α)(p− 1)

α

)] 1
β


 ,

if α ∈ (0, 1) ∪ (1, e),

b

[
1−

√
1− p

1
β

]
, if α = 1,

(8)

g(x;α,β , b) = 2β
b
y
(
1− y2

)β−1
α(1−y2)

β

{
1− log(α)

[
1−

(
1− y2

)β]}
, (9)

where y = 1− x/b, 0 < x < b, 0 < p < 1, b > 0 and 0 < α < e.

Proof. The result is a direct consequence of substituting

Equations 1–3 into Equations 4–6.

Figure 1 presents some LTL pdf curves for b = 1 and different

choices of the parameters α and β . In the figure, it can be seen that

the LTL PDF can present J-shape, inverted N-shape, and unimodal

shape.

Using Equation 8, LTL pseudo-random numbers can be

generated straightforwardly by applying the inversion method. To

facilitate this, we propose Algorithm 1.

Figure 2 presents the histogram and cumulative distribution

function for six sets of LTL pseudo-random numbers (three of
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FIGURE 1

Some LTL PDF curves with b = 1 and di�erent values for α and β.

Require: 0 < α < e, β > 0 and b > 0.

Ensure: A random number X with an LTL distribution

of parameters α, β and b.

Generate a random number U from a uniform

distribution on the interval [0,1].

Compute X = F
−1
X
(U;α,β), where F

−1
X
(·; ·, ·) is as in

Equation 8.

return X

Algorithm 1. Lambert-Topp-Leone random number generation.

size 50 and three of size 100,000), considering different values for

the parameters α, β , and b. R codes [27] for the computation

of Equations 7–9 are provided in Appendix 1.1. We use the

function lamW::lambertW0() in the R programming language

to compute the principal branch of the Lambert functionW [28].

2.2 Moments and description of skewness
and kurtosis

In this section, we derive the raw moments of the LTL

distribution and use this result to describe the skewness and

kurtosis behavior of the distribution.

Proposition 2. Let X ∼ LTL(α,β , b). Then, for r = 1, 2, . . ., the rth

moment of X is given by

E(Xr) = brar(α,β), (10)

where

ar(α,β) =

∫ 1

0

(
1−

√
1− u1/β

)r
αu[1− log(α)(1− u)] du.

Proof. From Equation 9, and by definition of expectation, we have

that

E(Xr) =

∫ b

0
xr
2β

b
y
(
1− y2

)β−1
α(1−y2)

β

{
1− log(α)

[
1−

(
1− y2

)β]}
dx.

Thus, the result follows by considering the change of variable u =

(1− y2)β .

We employ the integrate() function of the R

programming language to compute the function ar(α,β) defined

in Equation 10. Accordingly, the int() function is introduced to

streamline the computation of ar(α,β). For further details, refer to

Appendix 1.1.

Corollary 1. Let X ∼ LTL(α,β). Then, the mean (E(X)), variance

(Var(X)), and skewness (S) and kurtosis (K) coefficients of X are

given by

E(X) = ba1, Var(X) = b2(a2 − a21),

S =
a3 − 3a1a2 + a31(

a2 − a21
)3/2 and K =

a4 − 4a1a3 + 6a21a2 − 3a41
(a2 − a21)

2
,

where aj = aj(α,β), with j = 1, 2, 3, 4, is as in Proposition 2.

Figure 3 presents plots of the skewness and kurtosis coefficients

of the LTL distribution. As shown in the figure, the highest values

of skewness and kurtosis are obtained for small values of α and β .
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FIGURE 2

Histograms and cumulative distributions for six sets of LTL pseudo-random numbers generated with di�erent values of α, β, and b, using sample

sizes of n = 50 and n = 100, 000. In each panel, the red line represents the LTL PDF or the LTL CDF, as appropriate.

2.3 Hazard rate function

As a direct consequence of Proposition 1, the following

corollary proposes the hazard rate function (HRF) of the LTL

distribution.

Corollary 2. Let X ∼ LTL(α,β , b). The HRF of X is given by

hX(x) = lim
△x→0

P(x ≤ X < x+△x|X ≥ x)

△x

=
2βy

(
1− y2

)β−1
{
1− log(α)

[
1−

(
1− y2

)β]}

b
[
1−

(
1− y2

)β] ,

where y = 1− x/b, 0 < x < b, b > 0, 0 < α < e and β > 0.

Remark 1. From Corollary 2, it can be seen that:

1. If α = 1, then

hX(x) =
2β

b

y
(
1− y2

)β−1

1−
(
1− y2

)β , y = 1−
x

b
, 0 < x < b, b,β > 0,

that is the LT hrf.

2. If hTL(x) represents the TL hrf, then

lim
x→0+

hX(x)

hTL(x)
= 1− log(α) and lim

x→1−

hX(x)

hTL(x)
= 1.

Thus, the LTL hrf can be understood as a modification in the early

times of the TL hrf.

Figure 4 presents several LTL hazard rate function (hrf) curves

with b = 5 and different choices of α and β . As shown in the figure,

the LTL hrf can exhibit both the bathtub shape (typical of the TL

distribution) and an increasing shape.

The bathtub shape of a HRF characterizes a specific pattern of

failure or event rates over time, commonly observed in reliability

and survival analysis. This pattern consists of three distinct phases:

(i) an initial phase with a decreasing hazard rate, dominated by early

failures due to initial defects or weak components; (ii) a middle

phase with an approximately constant hazard rate, representing the

normal operational life of the system or product; and (iii) a final

phase with an increasing hazard rate, attributed to wear-out, aging,

or system deterioration.

Among the distributions in the literature that exhibit this

shape, notable examples include the exponentiated Weibull [29],

generalized gamma [30], beta [20], and Kumaraswamy [21]

distributions. In Section 4, these distributions are utilized to assess

the comparative performance of the LTL distribution in modeling

real-world data.

3 Parameter estimation

In this section, we discuss the maximum likelihood (ML)

estimation of the LTL distribution and evaluate its behavior using

Monte Carlo simulation.
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FIGURE 3

Plots of the skewness and kurtosis coe�cients of the LTL distribution.

FIGURE 4

Plots of the hrf for the LTL distribution with- (b = 5,β = 0.5) in the left panel and (b = 5,β = 2.5) in the right panel.

3.1 Maximum likelihood estimation

In this section, we discuss the maximum likelihood estimation

for the LTL distribution, considering both cases where b are known

and unknown. The case where b is known is particularly useful

in scenarios where proportion data are being fitted, in which case

b = 1 can be assumed. On the other hand, the case where b

is unknown is useful in contexts that require fitting non-negative

data, such as life data.

3.1.1 The case where b is known
Let X1,X2, . . . ,Xn be a random sample of X ∼ LTL(α,β , b),

where b is known. Then, the log-likelihood function associated with
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θ = (α,β) is written as

ℓ(θ; x) = n log(2)+ n log(β)− n log(b)

+

n∑

i=1

log(yi)+ (β − 1)

n∑

i=1

log(1− y2i )

+ log(α)

n∑

i=1

(1− y2i )
β

+

n∑

i=1

log{1− log(α)[1− (1− y2)β ]}, (11)

where x = (x1, . . . , xn)
T is the vector of observed values and

yi = 1− xi/b, for i = 1, . . . , n.

The ML estimator θ̂ = (α̂, β̂) of θ = (α,β) can be obtained

by solving the system of equations given by the following score

equations:

0 =
∂ℓ(θ; x)

∂α
=

n∑

i=1

(1− y2i )
β −

n∑

i=1

1− (1− y2i )
β

1− log(α)[1− (1− y2i )
β ]

,

0 =
∂ℓ(θ; x)

∂β
=

n

β
+

n∑

i=1

log(1− y2i )

+ log(α)

n∑

i=1

log(1− y2i )(1− y2i )
β

+ log(α)

n∑

i=1

log(1− y2i )(1− y2i )
β

1− log(α)[1− (1− y2i )
β ]

.

Since the root of this system do not have a closed form, the

ML estimates for θ = (α,β) have to be obtained using numerical

methods.

The standard errors of θ̂ = (α̂, β̂) can be obtained as the square

roots of the elements of the diagonal of the matrix

K−1 (̂θ) =




−




∂2ℓ(θ; x)

∂α2

∂2ℓ(θ; x)

∂α∂β
∂2ℓ(θ; x)

∂β2




∣∣∣∣∣
θ=θ̂





−1

,

where

∂2ℓ(θ; x)

∂α2
= −

1

α2

n∑

i=1

(
1− y2i

)β

+
1

α2

n∑

i=1

1−
(
1− y2i

)β

1− log(α)
[
1− (1− y2i )

β
]

−
1

α2

n∑

i=1

[
1− (1− y2i )

β
]2

{
1− log(α)

[
1−

(
1− y2i

)β]}2 ,

∂2ℓ(θ; x)

∂α∂β
=

1

α

n∑

i=1

(
1− y2i

)β
log(1− y2i )

+
1

α

n∑

i=1

(1− y2i )
β log(1− y2i )

1− log(α)
[
1− (1− y2i )

β
]

+
log(α)

α

n∑

i=1

(1− y2i )
β [1− (1− y2i )

β ] log(1− y2i ){
1− log(α)

[
1− (1− y2i )

β
]}2 ,

∂2ℓ(θ; x)

∂β2
= −

n

β
+ log(α)

n∑

i=1

(1− y2i )
β log2(1− y2i )

+ log(α)

n∑

i=1

(1− y2i )
β log2(1− y2i )

1− log(α)[1− (1− y2i )
β ]

− log2(α)

n∑

i=1

(1− y2i )
2β log2(1− y2i ){

1− log(α)[1− (1− y2i )
β ]
}2 .

Alternatively, to obtain ML estimates of θ = (α,β), it is

possible to solve the problem of maximizing Equation 11 with the

help of some numerical optimization routine such as the function

stats:optim() of the R programming language [27]. In this

case, minimizing the negative log-likelihood, this function returns

theML estimates and the numerical Hessianmatrix. R codes for the

computation of Equation 11 and for its maximization are provided

in Appendix 1.1.

3.1.2 The case where b is unknown
Let X1,X2, . . . ,Xn be a random sample of X ∼ LTL(α,β , b),

where α, β , and b are unknown. In this case, the ML estimator for

b is b̂ = T(x) = max(x), where x = (x1, x2, . . . , xn)
T is the vector

of observed values.

It should be noted that the PDF of T(X) = max(X) is

gT(X)(x) = ng(x)[G(x)]n−1, where G(x) = G(x;α,β , b) and g(x) =

g(x;α,β , b) are as in Equations 7, 9, respectively. So, the PDF of

T(X) can be written as

gT(X)(x) =
2nβ

b
y
(
1− y2

)β−1
α(1−y2)

β

{
1− log(α)

[
1−

(
1− y2

)β]}

×
{
1−

[
1−

(
1− y2

)β]
α(1−y2)

β}n−1

,

where 0 < x < b, 0 < α < e, β > 0, b > 0, and n ∈ N. Thus, the

rth raw moment of T(X) is given by

µr = E[T(X)r] =

∫ b

0
xrgT(X)(x) dx, r = 1, 2, 3, . . .

Then, the variance of T(X) is V[T(X)] = µ2 − µ2
1, so the

standard error of b̂ = T(x) = max(x) is

se(b̂) =
√
V[T(x)] =

√
µ2 − µ2

1. (12)

We compute Equation 12 in the R programming language, see

Appendix 1.1 for code details.

Once the ML estimate of b has been calculated, the ML

estimates of α and β can be calculated considering b as known, as

illustrated in Section 3.1.1.

3.2 Simulation studies

This section presents the results of two simulation studies

designed to evaluate the performance of the ML estimators for
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TABLE 1 Simulation scenarios.

α,β , b Features of LTL distribution

2.0, 0.5, 1.0 Bounded to the interval (0, 1) and with J-shaped PDF

2.0, 0.5, 5.0 Bounded to the interval (0, 5) and with J-shaped PDF

0.1, 2.0, 1.0 Bounded to the interval (0, 1) and with unimodal PDF

0.1, 2.0, 5.0 Bounded to the interval (0, 5) and with unimodal PDF

the LTL distribution parameters and assess the overall fitting

performance in the presence of outliers.

3.2.1 Performance evaluation of parameter
estimators

In this section, a simulation study is carried out to evaluate

the performance of ML estimators for the parameters of the LTL

distribution. We generated 1,000 random samples from the LTL

distribution for each of the sample sizes n = 100, 200, 300, 500,

1,000, and 2,000. The pseudo-random numbers were generated

using the inversion method discussed in Section 2.1, and we

considered the simulation scenarios presented in Table 1.

For each generated sample, we compute the ML estimator for

the parameters of the LTL distribution, considering the results of

Section 3.1.2. Table 2 reports the average estimates and standard

deviations obtained in each simulation scenario. From the table,

it can be seen that the average estimates approach the true values

of the parameters and the standard deviations decrease to 0 as the

sample size increases, which demonstrates the consistency of the

estimators.

3.2.2 Performance evaluation of the LTL
distribution under outlier observations

The objective of this section is to evaluate the performance

of the LTL distribution in the presence of outlier observations.

Specifically, we analyze the distribution’s robustness and fitting

accuracy through simulations under different scenarios and sample

sizes.

We consider two distinct simulation scenarios for generating

pseudo-random numbers from the LTL distribution. In Scenario

1, the parameters are (α = 2,β = 3, b = 5), where the PDF

is unimodal and exhibits a Fisher kurtosis value of 2.706 (PDF

with light tails). In Scenario 2, the parameters are (α = 0.1,β =

0.5, b = 5), where the PDF is decreasing and exhibits a kurtosis

value of 14.524 (PDF with heavy tails). In both scenarios, 1,000

pseudo-random samples were generated from the LTL distribution

for sample sizes n = 100, 200, 300, 400, and 500.

For each generated sample, outliers were identified using the

interquartile range (IQR) criterion. Specifically, an observation was

considered an outlier if it fell outside the range (i, s), where i =

q1 − 1.5(q3 − q1), s = q3 + 1.5(q3 − q1), and q1 and q2 represent

the first and third sample quartiles, respectively.

To evaluate the performance of the LTL distribution, the

Kolmogorov–Smirnov (KS) goodness-of-fit test was applied to each

sample. The test assesses the agreement between the empirical

distribution and the theoretical LTL distribution. A sample was

deemed appropriately fitted if the KS test yielded a p-value greater

than 0.05. The ML estimates of the LTL distribution parameters

were obtained based on the results from Section 3.1.2.

For each set of 1,000 simulated samples, the following metrics

were calculated:

1. Outlier presence: the percentage of samples that exhibited at

least one outlier based on the IQR criterion.

2. Success percentage: the percentage of samples appropriately

fitted with the LTL distribution (p-value>0.05 in the

Kolmogorov–Smirnov (KS) test [31]).

These metrics provide insights into the LTL distribution’s

capability to handle outlier observations and its overall fitting

performance across different simulation scenarios and sample sizes.

Table 3 presents the results for each set of 1,000 simulated

samples. It can be observed that in Scenario 1, the predominance

of outliers is lower compared to Scenario 2, primarily due to

differences in the weight of the PDF tails in each scenario. Notably,

the success rates exceed 92%, indicating that the presence of outliers

does not adversely affect the performance of the LTL distribution.

Interestingly, the success rate increases as the proportion of samples

containing outliers grows.

4 Data analysis

In this section, we illustrate the utility of the LTL distribution

through two application examples in different real-world settings.

In the first example, we employ the LTL distribution to fit a

proportion data set, comparing its performance to the beta (B)

[32] and Kumaraswamy (K) [21] distributions, which are two of

the earliest alternatives used to fit this type of data. In the second

example, we employ the LTL distribution to fit a fatigue life data set,

where we compare its performance to six lifetime distributions: the

Weibull (W) [23], generalized exponential (GE) [25], Birnbaum-

Saunders (BS) [24], generalized Rayleigh (GR) [26], exponentiated

Weibull (EW) [29], generalized gamma (GG) [30], Rayleigh (R)

[20], and exponential (E) [20] distributions. The PDFs of these

distributions are presented in Appendix 1.2.

We employ the Kolmogorov–Smirnov (KS) and Cramer-

von Mises (CvM) goodness-of-fit tests to assess the quality

of the fits. For this, we use the stats::ks.test() and

goftest::cvm.test() functions of the R programming

language. In addition, we employ the excess mass test proposed

by Ameijeiras-Alonso et al. [33] to show the unimodality of the

data considered in each application example. More specifically, we

test the hypothesis H0 (the data has exactly one mode) versus the

alternative hypothesis H1 (the data has at least two modes). For

this, we use the function multimode::modetest [34] in the

R programming language.

4.1 Family spending on food

Family spending on food is an important component of the

family budget, and its amount can vary significantly by factors

such as geographic location, family size, and dietary preferences, to

name a few. In industry, knowledge about household food spending
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TABLE 2 Averages and standard deviations of the ML estimates obtained in each simulation scenario under the di�erent sample sizes.

Sample size Scenario Results

n α β b α̂ SD (α̂) β̂ SD (β̂) b̂ SD (b̂)

100 0.5 4.0 1.0 0.793 0.345 3.832 1.669 0.941 0.031

200 0.5 4.0 1.0 0.714 0.218 3.895 0.433 0.958 0.022

300 0.5 4.0 1.0 0.673 0.161 3.909 0.344 0.965 0.019

500 0.5 4.0 1.0 0.626 0.115 3.938 0.251 0.972 0.014

1,000 0.5 4.0 1.0 0.592 0.082 3.952 0.181 0.980 0.010

2,000 0.5 4.0 1.0 0.561 0.053 3.961 0.124 0.986 0.007

100 0.5 4.0 5.0 0.792 0.323 3.847 0.617 4.716 0.146

200 0.5 4.0 5.0 0.712 0.208 3.894 0.436 4.787 0.111

300 0.5 4.0 5.0 0.676 0.158 3.919 0.333 4.814 0.097

500 0.5 4.0 5.0 0.628 0.115 3.940 0.262 4.859 0.075

1,000 0.5 4.0 5.0 0.586 0.078 3.958 0.178 4.901 0.050

2,000 0.5 4.0 5.0 0.560 0.055 3.969 0.124 4.930 0.037

100 0.1 2.0 1.0 0.267 0.227 1.984 0.246 0.857 0.064

200 0.1 2.0 1.0 0.228 0.137 1.991 0.163 0.882 0.056

300 0.1 2.0 1.0 0.204 0.111 1.996 0.136 0.894 0.052

500 0.1 2.0 1.0 0.172 0.058 1.997 0.095 0.920 0.042

1,000 0.1 2.0 1.0 0.147 0.033 1.997 0.063 0.943 0.029

2,000 0.1 2.0 1.0 0.136 0.018 1.998 0.047 0.955 0.019

100 0.1 2.0 5.0 0.274 0.237 1.982 0.256 4.263 0.304

200 0.1 2.0 5.0 0.233 0.161 1.990 0.179 4.394 0.285

300 0.1 2.0 5.0 0.211 0.137 1.990 0.141 4.473 0.269

500 0.1 2.0 5.0 0.175 0.060 1.992 0.089 4.592 0.221

1,000 0.1 2.0 5.0 0.148 0.033 1.992 0.062 4.708 0.147

2,000 0.1 2.0 5.0 0.136 0.018 1.993 0.048 4.775 0.097

helps companies make informed decisions about products, pricing,

marketing, and distribution strategies. This allows them to better

meet the needs of consumers and remain competitive in themarket.

In this section, we analyze a dataset of 1,519 observations on the

proportion of the British household budget allocated to food. These

data are available as BudgetUK (wfood) in the Ecdat package of the

R programming language [35]. A descriptive analysis reveals that

the minimum and maximum values are 0.0571 and 0.7890, with

Fisher skewness and kurtosis values of 0.147 and 2.899, respectively.

In addition, the excess mass test yields a p-value of 0.376, indicating

that, at conventional significance levels, the hypothesis that the

frequency distribution of these data is unimodal is not rejected.

Consequently, the LTL distribution with b = 1 appears to be a

viable alternative for modeling these data.

Table 4 reports the ML estimates for the parameters of the LTL,

B, K, and TL distributions fitted to the data on the proportion of the

shared household budget spent on food. The results obtained in the

KS and CvM goodness-of-fit tests are also presented in Table 4 for

each distribution. Note that the LTL distribution exhibits a larger

p-value, indicating that this distribution performs better in fitting

the data.

TABLE 3 Percentages of outlier presence and success rates obtained from

1,000 simulated samples for each scenario and sample size considered.

Scenario n Presence of
outliers (%)

Success
rate (%)

1 100 37.2 93.8

200 53.7 94.7

300 66.9 95.0

400 75.7 95.4

500 80.5 95.5

2 100 98.4 99.6

200 99.6 99.7

300 100 99.9

400 100 100

500 100 100

By computing probabilities using the LTL distribution, we

observe that, in the analyzed population, a family is likely

to allocate at most 25%, 50%, and 75% of their shared
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TABLE 4 Maximum likelihood (ML) estimates, observed statistics, and p-values obtained from goodness-of-fit tests for distributions fitted to the

proportion of household expenditure allocated to food.

Distribution Estimate KS test CvM test

α̂ β̂ Statistic p-value Statistic p-value

LTL 1.619× 10−4 4.889 0.015 0.875 0.035 0.953(
7.550× 10−5

)
(0.102)

B 6.910 12.490 0.026 0.226 0.141 0.415
(0.245) (0.451)

K 3.632 28.468 0.023 0.374 0.221 0.228
(0.075) (1.935)

TL 1.707 – 0.300 0.000 45.306 0.000
(0.043)

FIGURE 5

Histogram of the proportion of household shared expenditure on

food along with the fitted PDFs.

family budget to food with probabilities of 0.1572, 0.9110, and

0.9995, respectively.

Figure 5 presents the histogram of the proportion of household

expenditure allocated to food, along with the PDFs of the fitted

distributions. The figure illustrates that the LTL PDF aligns more

closely with the empirical frequency values, particularly around

the mode.

4.2 Fatigue life data

Analyzing fatigue life data is crucial in engineering, materials,

and data science applied to predicting the failure time of

components and structures subjected to load cycles. These data help

to understand how amaterial’s performance degrades over time due

to repetitive loading, which is essential for the safety and efficiency

of structures such as bridges, aircraft, automobiles, and industrial

machinery.

We consider 101 observations on the fatigue life of 6061-

T6 aluminum coupons cut parallel to the direction of rolling

and oscillated at 18 cycles per second. These data were originally

FIGURE 6

Q–Q plot of the fatigue life data.

analyzed in Birnbaum and Saunders [24] and are currently available

under the name “fatigue” in the bibs package of the R programming

language.

A descriptive analysis of the data indicates that the minimum

and maximum observed values are 70 and 212, respectively, with

Fisher skewness and kurtosis values of 0.3 and 4.1. In addition,

the excess mass test yields a p-value of 0.686, suggesting that the

hypothesis of unimodality for the frequency distribution of the

fatigue life data is not rejected at conventional significance levels.

Consequently, the LTL distribution with an unspecified parameter

b appears to be a viable alternative for modeling these data.

Figure 6 presents the quantile-quantile plot (Q–Q plot) of the

fatigue life data, revealing the presence of outliers, two of which

are located at the upper end of the data range. It is important to

highlight that outliers can adversely affect the modeling process

using the LTL distribution as the parameter b is estimated as the

maximum value of the sample. This estimation may unnecessarily

expand the support of the distribution and potentially impact its fit

to the remaining data. This raises a critical question: can the LTL

distribution still provide an appropriate fit for the fatigue life data

despite the presence of these outlier observations?
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TABLE 5 Maximum likelihood (ML) estimates, observed statistics, and p-values obtained from goodness-of-fit tests for distributions fitted to the fatigue

life data.

Distribution Estimate KS test CvM test

α̂ β̂ b̂ Statistic p-value Statistic p-value

LTL 0.027 12.964 212 0.060 0.850 0.043 0.917
(0.007) (1.538) (8.769)

EW 3.078 104.335 5.338 0.065 0.783 0.051 0.868
(0.742) (15.991) (3.325)

GG 16.901 52.945 2.175 0.061 0.840 0.052 0.864
(8.735) (52.612) (1.158)

W 6.073 143.164 – 0.098 0.275 0.180 0.311
(0.422) (2.485)

GE 281.263 21.771 – 0.108 0.186 0.224 0.226
(106.094) (1.534)

BS 0.170 131.818 – 0.084 0.459 0.086 0.660
(0.011) (2.226)

GR 17.522 73.088 – 0.087 0.426 0.099 0.592
(4.074) (73.088)

R – 95.908 – 0.378 0.000 4.488 0.000
(4.775)

E – 133.726 – 0.492 0.000 7.010 0.000
(13.305)

Table 5 reports the ML estimates for the parameters of the LTL,

W, GE, BS, GR, EW, GG, R, and E distributions fitted to the fatigue

life data. The results obtained in the KS and CvM goodness-of-fit

tests are also presented in Table 5 for each distribution. Note that

the LTL distribution exhibits a larger p-value, indicating that this

distribution performs better in fitting the data.

Figure 7 (left panel) presents the histogram of the fatigue life

data, along with the PDFs of the fitted distributions. The figure

illustrates that the LTL PDF aligns more closely with the empirical

frequency values, particularly around the mode. In the right panel

of Figure 7, the HRFs of the distributions fitted to the fatigue life

data are presented, where a similar behavior can be observed for

the LTL, W, EW, and GG distributions, but differing significantly

for a fatigue life value >50.

Regarding the earlier question about the presence of outlier

observations, the results demonstrate that the LTL distribution

performs robustly in modeling the fatigue life data, even under

the influence of the outliers. Notably, its performance surpasses

that of several established lifetime distributions from the literature,

highlighting its flexibility in this challenging scenario.

5 Discussion and further research

As demonstrated throughout this article, the new LTL

distribution exhibits several strengths, which are summarized

as follows.

The LTL distribution inherits the shapes of the PDF

and the HRF from the baseline TL distribution. However,

the additional parameter α, introduced by the Lambert-F

generator, enhances its flexibility, allowing the LTL distribution

to exhibit wider ranges of skewness and kurtosis. This makes

it a valuable alternative in scenarios where empirical skewness

and/or kurtosis levels cannot be adequately captured by the

TL distribution.

The new LTL distribution is defined by three parameters:

two shape parameters (α and β) and one support-bounding

parameter (b). When b = 1, the LTL distribution becomes a

suitable alternative for modeling proportion data. In this context,

it serves as a natural competitor to the widely used beta (B)

and Kumaraswamy (K) distributions. This study demonstrates this

by fitting the LTL distribution to a real-world dataset, showing

that it can outperform the B and K distributions in modeling

the data.

When b is unknown, the LTL distribution is suitable for

modeling positive data, such as lifetime data. In this context,

it serves as a competitor to well-known lifetime distributions,

including the exponentiatedWeibull (EW) and generalized gamma

(GG) distributions. This study demonstrates this by fitting the

LTL distribution to a fatigue failure dataset, showing that it

can outperform the EW and GG distributions in modeling

the data.

A disadvantage of the new LTL distribution is that,

unlike the baseline TL distribution, properties such as the

PDF, HRF, and moments have a more complex analytical

structure. While properties such as the PDF and HRF are

manageable, its moments require numerical integration for

their computation. To address this difficulty, we have provided

R code for computing these properties, which is accessible

to readers.

Regarding the estimation of the support-bounding parameter

of the LTL distribution, estimating it as the maximum value

of the sample can pose challenges. The presence of outliers

may artificially inflate the support, introducing biases in the
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FIGURE 7

(Left) Histogram of fatigue life data along with fitted PDFs. (Right) HRFs for the distributions fitted to the fatigue life data.

model fit, hindering an accurate representation of the data

structure, and compromising the stability and precision of

the estimates, particularly in samples with high dispersion.

In this study, Monte Carlo simulations have shown that

the LTL distribution performs well in the presence of

outliers when the samples are generated from an LTL

distribution. This suggests that real-world scenarios may

exist where the LTL distribution effectively models data with

outliers, adequately capturing empirical properties such as

unimodality and skewness. This is precisely what is illustrated in

Section 4.2.

As ideas for future research, we propose the following:

First, it would be worthwhile to explore alternative

estimation methods for the parameters of the LTL

distribution. In particular, the results from Section 2.2

could be utilized to derive moment estimators

and compare their performance with maximum

likelihood estimators.

Second, starting from the LTL quantile function, a quantile

regression framework can be formulated. By considering θ =

G−1(p;α,β , b), where G−1(·; ·, ·, ·) is defined as in Equation 8, we

can express

α =




p− 1
[
1−

(
1− θ

b

)2]β




1[
1−
(
1− θ

b

)2]β
+1

.

The PDF in Equation 9 can then be re-parameterized in terms

of the p-th quantile (with p fixed). This re-parameterized PDF

provides the foundation for a regression model to quantify the

relationship between a set of explanatory variables and the p-th

quantile of a positive response variable.

6 Final comment

This study introduces the Lambert-Topp-Leone (LTL)

distribution as a flexible model for bounded and positive skewed

data, particularly suitable for proportion and lifetime data.

The LTL distribution extends the Topp-Leone distribution

by incorporating an additional shape parameter, thereby

enhancing its flexibility to accommodate a wider range of

skewness and kurtosis. Our findings suggest that the LTL

distribution provides an improved fit over traditional models,

as demonstrated through real-world applications involving

household spending proportions and fatigue life data. The

simulation studies further confirm the consistency and robustness

of maximum likelihood estimators for the LTL parameters, adding

to its practical utility. A second simulation study has shown

that the LTL distribution performs robustly in the presence

of outliers.

Given its adaptability, the LTL distribution holds promise

for diverse applications beyond the examples explored

here, potentially benefiting fields that require accurate

modeling of constrained or positively skewed datasets.

Future research could focus on exploring Bayesian estimation

methods, assessing the performance of the distribution

with diverse data types, and developing quantile regression

frameworks based on the new distribution to expand

its applicability.
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