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Analyzing safety data for
two-stage randomization designs
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Ensuring patient safety is paramount in the development of new pharmaceutical

products, which, while beneficial, can also pose potential risks. Traditional

methods for analyzing safety data have been limited to single-stage

randomization clinical trials. However, no existing methodology addresses

the complexities of two-stage randomization designs with survival endpoints.

This paper introduces a novel methodology utilizing inverse probability weights

to analyze safety data in two-stage randomization designs. Our approach

is applied to data from a leukemia clinical trial, the use of the weighted

Aalen-Johansen estimator is recommended while the use of the weighted

Kaplan-Meier is discouraged. This advancement provides a crucial tool for

enhancing patient safety in complex clinical trial designs.
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1 Introduction

The safety of patients is an important aspect in the development of new pharmaceutical

products. Any biologically active pharmaceutical product is meant to produce benefit to

its users but can potentially cause harm as well. Of importance in the development of

pharmaceutical products is the understanding of how the potential harms can manifest

themselves and at what stage these potential harmful effects can be identified. Some

pharmaceutical products fail at the development stage because of unanticipated safety

issues. Some products pass through the development stage only to be called from the

market place because of some undesired side effects that place the patients at serious health

risks [1].

An adverse event is any untoward medical occurrence in a patient during the course

of a clinical trial. An adverse event can be any unfavorable and unintended sign, symptom

or disease temporally associated with the use of a medical product, whether it is related to

the medical product or not. Adverse events can be classified into different categories, and

in this study we shall focus on serious adverse events. A serious adverse event is defined as

any untoward medical occurrence that; (1) may result in death, (2) is life threatening, (3)

requires inpatient hospitalization or prolongation of existing hospitalization, (4) results in

persistent or significant disability, and (5) is a congenital anomaly [2].

Although safety data are the most common and one of the most important types of

data collected in clinical trials, in general more emphasis is given to the efficacy data. More

methods are developed to analyze efficacy data but less attention is given to safety data,

for example, more methodological developments have happened in the analysis of efficacy

data for two-stage randomization designs [3–7] and to our knowledge no study has focused

on the analysis of safety data from these designs. [8] advocate the use of survival analysis

methods for analyzing safety data when the primary endpoint in a clinical trial is a time-

to-event. In the sequel, we also advocate the use of survival analysis techniques suitable for

two-stage randomization designs in the analysis of safety data from these designs.
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Existing methods for analyzing safety data in clinical trials

primarily focus on single-stage randomization designs [8]. These

methods often fail to address the complexities and unique

challenges posed by two-stage randomization designs, such as

the need to account for multiple randomization points and the

potential for varying patient responses at different stages. We

propose amethodology to be used in the analysis of safety data from

two-stage randomization designs. Our proposed methodology

addresses these limitations by incorporating inverse probability

weights, which allow for a more accurate and robust analysis of

safety data in two-stage designs.

2 Methods

Consider a trial with two treatment arms, and let g =

1, 2 denote the treatment groups. We give a brief overview of

the methods used in analyzing safety data when there is one

randomization.

2.1 Crude rates

2.1.1 Incidence proportions
Analysis of safety data is often done using incidence

proportions (IPs). These incidence proportions are only valid

summaries under the assumption of similar exposure times in both

treatment groups. In most cases this assumption is violated because

in some trials the exposure times differ. The crude incidence

proportion is defined as the number of patients experiencing the

adverse event of interest divided by the total number of subjects in

each study group. The IP is calculated as

IPg =
ag

ng
,

where ag is the number of patients in treatment group g

experiencing at least one serious AE and ng is the total number

of patients in treatment group g. The IPs of two groups can be

compared using the risk ratio, that is,

Risk Ratio =
IP1

IP2
.

Another way of summarizing adverse events data is by using the

incidence rate. The incidence rate (IR) is defined as

IRg =
ag

(population-time at risk)g
,

where ag is the number of patients in treatment group g

experiencing at least one serious AE and (population-time at risk)g
is the population time at risk of the first serious AE in treatment

group g. The denominator in the above equation is the sum of all

patients and the times at risk for the first serious AE. A patient who

does not experience an AE contributes his/her follow-up time. The

incidence rate ratio (IRR) is calculated as

IRR =
IR1

IR2
,

with IRg being the incidence rate in group g to experience a

serious AE.

2.1.2 Exposure adjusted incidence rate
To accommodate patient exposure times, the exposure adjusted

incidence rates (EAIR) is defined as the number of subjects

experiencing a serious AE divided by the total exposure time among

the patients in the treatment group g;

EAIRg =
ag∑
tig

,

where ag is the number of patients in treatment group g

experiencing at least one serious AE and tig is the subject exposure

time for individual i until the occurrence of first serious AE in

treatment group g. For a subject with no AE, tig corresponds to the

last follow-up time. This type of incidence rate is a valid statistic for

treatment comparison when the incidence rate of a specific event is

relatively constant over the study period. We interpret the EAIR as

the number of serious AEs occurring in a population per unit time.

The difference between the IR and the EAIR is that the denominator

in the IR is the sum of all patients and the times at risk for the first

serious AE. In the EAIR we sum the exposure times only.

2.2 Adverse events and competing risks

Adverse events data are subject to competing risks. A patient

that enters the study can either experience the AE of interest, die

before experiencing the AE or be censored. Since patients may

actually die before experiencing the AE, then death is a competing

risk for the AE. After the patient has died, the AE cannot occur any

more. With infinite follow-up and without censoring,

ag

ng
+

dg

ng
= 1,

where dg is the number of deaths without an AE and ng is the

total number of patients in treatment group g.

Consider the time interval [0, t]. Without censoring, the

probability to experience the composite event (AE or death) is

Pg(AE ∈ [0, t])+ Pg(Death ∈ [0, t]) = 1− Pg(T > t).

For estimation, without censoring;

P̂g(AE ∈ [0, t])+ P̂g(Death ∈ [0, t]) =
atg

ng
+

dtg

ng

=
atg + dtg

ng

= 1− P̂g(T > t),

(1)

where T is the time to the first serious AE or death without an

AE, atg is the number of patients in treatment group g experiencing

at least one serious AE before or at time t and dtg is the number of

deaths in group g before or at time t.

2.2.1 Kaplan-Meier estimator
The Kaplan-Meier (KM) estimator is sometimes used to

estimate the cumulative incidence function (CIF), P(AE ∈ [0, t]),
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where death without experiencing an AE is treated as censored

observation. In this case,

P̂g(AE ∈ [0, t]) = 1−
∏

u≤t

(
1−

ag(u)

rg(u)

)
, (2)

where ag(u) is the number of AEs in treatment group g at u

and rg(u) denotes the number of patients with no AE before u, the

so-called risk set, the product is over all AE times.

There has been a number of criticisms in using this approach

in estimating Pg(AE ∈ [0, t]). Clearly, it ignores the competing

risk set-up that exists in safety data. Another argument against

this approach is that 1 − KMg estimator aims at approximating a

distribution function which approaches 1 as t becomes larger. On

the other hand, Pg(AE ∈ [0, t]) + Pg(Death ∈ [0, t]) tends to 1 as

t becomes larger, hence the KM based estimator of Pg(AE ∈ [0, t])

is biased upwards [8]. Contrary to these arguments, the Kaplan-

Meier estimator is still being used in some studies. In defense of

this approach, in a response to Schmoor et al. [9], the authors of

the paper Thanarajasingam et al. [10] argued that even though the

Kaplan-Meier estimator tends to overestimate the Pg(AE ∈ [0, t]),

the bias is minimal.

2.2.2 Aalen-Johansen estimator
To estimate the Pg(AE ∈ [0, t]), the Aalen-Johansen estimator

should be used in the competing risks situation [8]. The cumulative

incidence function (CIF) of an AE is the expected proportion of

patients experiencing an AE over the course of time. We note that

1− P̂g(T > t) =
∑

u

P̂g(T > u−).
ag(u)+ dg(u)

rg(u)
, (3)

where P̂g(T > u−) is the KM estimator of the probability of not

experiencing the composite event AE or death in treatment group

g just before time u and dg(u) is the number of deaths in treatment

group g at time u. The sum in (3) is the empirical probability to

have an AE or death event in [0, t], that is, we are summing over

all events times. Now, to get the probability of an adverse event in

[0, t], we sum over the empirical probability of experiencing an AE,

that is,

P̂g(T ≤ t,AE) =
∑

u

P̂g(T > u−)
ag(u)

rg(u)
, (4)

we sum over only event times for AEs. Without censoring,

Equation 4 equals

ag ∈ [0, t]

ng
,

this confirms that the incidence proportion is the correct

estimate in the absence of censoring.

2.2.3 Hazard functions
In the competing risks situation, a model for the cause-specific

hazard function for an AE can be considered. First, we write the

total hazard function;

α̂g(t)dt =
ag(t)+ dg(t)

rg(t)
,

where g denotes the treatment group. This can be decomposed

into the sum of two cause-specific hazards, αAE
g (t)dt + αD

g (t)dt (D

denotes death), which can be estimated by

ag(t)

rg(t)
+

dg(t)

rg(t)
.

Having decomposed the hazards in this manner, the Nelson-

Aalen estimator of the cumulative hazard to experience an AE is

given by

∫ t

0
α̂g(u)

AEdu =
∑

u

ag(u)

rg(u)
, (5)

where the sum is over all AE times before t. Only AEs are

counted in the numerator of Equation 5. In practice, death times

are considered as right-censored times. Similarly, for estimating

the cumulative hazard function for death, only death events are

counted and AE events are censored.

2.3 Analysis of AE data for dynamic
treatment regimes

2.3.1 Model framework
Consider a two-stage randomization design in which patients

are initially randomized to treatment A with levels A1 and

A2. Those who respond and consent to further study are

then randomized to a second treatment with levels B1 and

B2. For simplicity, the term "response" will henceforth indicate

both a response to the previous treatment and consent to the

second randomization. The strategy AjBk, j, k = 1, 2 involves

administering Aj followed by Bk if the patient responds to the

initial treatment. We consider two-stage randomization designs

where only responders proceed to the second stage, as seen in the

CALGB 19,808 study [11]. Our goal is to estimate and compare

survival distributions for the various treatment policies. For this

purpose, we employ potential outcomes [12], not to focus on causal

inference, but to use them as a framework for conceptualizing the

problem.

In practice, each individual adheres to a single treatment

strategy, resulting in only one observable outcome for that specific

strategy. However, theoretically, individuals in the population can

follow any treatment policy AjBk, meaning that one can envision

a potential outcome for each possible strategy for every individual.

Each person has their own set of potential outcomes, collectively

known as their counterfactuals.

Here, we shall focus on data from patients who received

induction therapy A1, since data from patients who received

different induction therapies are independent. Data from patients

who received A2 are analyzed in a similar manner. Interest is on

estimating survival distributions for treatment policies A1B1 and

A1B2. We assume that, associated with subject i is a set of random

variables

{
R∗i , (1− R∗i )T0i,R

∗
i T

R
i ,R

∗
i T

∗
1i,R

∗
i T

∗
2i

}

where R∗i is the response status if patient i was assigned to A1.

R∗i = 1 if patient i responds to treatment A1, R
∗
i = 0 otherwise.

Frontiers in AppliedMathematics and Statistics 03 frontiersin.org

https://doi.org/10.3389/fams.2025.1519056
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Vilakati and Cortese 10.3389/fams.2025.1519056

TR
i is the time from initial randomization to response for patient i

defined only when R∗i = 1; T0i is the survival time for a patient who

do not respond to first stage treatment. T∗
1i is the time from second

randomization to death if patient i receives B1, and similarly T∗
2i is

the time from second randomization to death if patient i receives B2
instead. If patient i is assigned to A1Bk, his/her survival time would

be

Tki = (1− R∗i )T0i + R∗i (T
R
i + T∗

ki), k = 1, 2. (6)

We note that we can only observe T1i or T2i hence, Tki are

potential outcomes. If R∗i = 0 then T1i = T2i = T0i.

Define Tk as the survival time for the population when all

participants follow the treatment strategy A1Bk. Inferences about

these distributions directly address the intent-to-treat question of

interest. Using data from the two-stage design, we estimate the

distribution of Tk.

Without right censoring, the observed data can be represented

as a set of independent and identically distributed (iid) random

vectors (R∗i ,R
∗
i T

R
i ,R

∗
i Zi,Ti) for i = 1, . . . , n, where Zi is an

indicator for the B treatment defined only if R∗i = 1. We have

Zi = 1 if patient i is assigned to B1 and Zi = 0 if assigned to B2.

The observed survival time, Ti, is related to the potential outcomes

as follows:

Ti = (1− R∗i )T0i + R∗i
{
TR
i + ZiT

∗
1i + (1− Zi)T

∗
2i

}
. (7)

To incorporate right censoring, let Ci be the time to

censoring for the ith patient. The observed data can then be

represented as independent and identically distributed vectors

(Ri,RiZi,RiT
R
i ,Ui,1i), where 1i = I(Ti < Ci) is the failure

indicator, Ui = min(Ti,Ci) is the observed time to either death

or censoring. Ri = 0 if patient i is censored without having had a

response to treatment A1 otherwise Ri = R∗i .

We assume that the second stage randomization is made

independently of the other potential outcomes, that is

πz = P(Zi = 1|Ri = 1,TR
i ,T1i,T2i,Ci)

= P(Zi = 1|Ri = 1).

We note that πz , defined only if Ri = 1, is the probability of

being randomized to the B treatment and it is typically fixed by

design. In the analysis of safety data for two-stage randomization

designs, we suggest the use of inverse probability weights since

subjects who end up in B2 are considered missing under A1B1.

We show how weighting can also be applied in the analysis of

safety data for treatment policies. In the literature, two types of

weights have been proposed [3, 4], in this paper we shall use time

independent weights.

Let g = 1, 2, ... now denote the treatment policies. We make

the following simplifying assumptions. We note that the events

of interest can occur in both stages of the trial and we assume

that the AEs occur after response for those who achieve complete

remission. This makes the application of the inverse weights to be

straight forward. Also, we assume that the states in the competing

risk situation are absorbing. Let Wi1 = 1 − Ri + RiZi/πz be the

weight function for A1B1, that is, g = 1. For A1B2, let Wi2 =

1−Ri+RiZi/(1−πz). Similar weights are defined for the treatment

policies A2B1 and A2B2.

2.3.2 Weighted incidence proportions
For treatment policies, we define the incidence proportion as

the weighted number of patients experiencing the adverse event

divided by the weighted number of subjects in each study group.

The weighting is done in such a way that the contribution of a non-

responder is given a weight of 1 and a responder is given a weight of

1/πz or 1/(1−πz) where πz is the probability of being randomized

to second stage treatment. With this definition,

WIPg =
awg

nwg

=

∑n
i=1 WigIig(event = AE)∑n

i=1 Wig

(8)

where awg is the weighted number of patients in treatment policy

g experiencing at least one serious AE, nwg is the weighted number

of patients in treatment policy g and Iig(event = AE) = 1 if

patient i in treatment group g experiences at least one serious AE,

it is zero otherwise. As an hypothetical example, we consider a trial

where 100 patients are assigned to A1 and of these 100 patients, 80

respond to the A1 treatment and are equally randomized between

B1 and B2. So about 40 patients are randomized to B1. Suppose that

among the responders 15 develop serious AEs and among the non-

responders 5 develop AEs. In calculating the WIP, the 5 patients

receive a weight of 1 and the 15 patients receive a weight of 2,

therefore we have 5 + 30 = 35. So, WIPA1B1 = 35/100 = 0.35.

Without weighting: IPA1B1 = 20/60 = 0.33. In the theory of

analyzing dynamic treatment regimes, patients who would have

been randomized to B1 but end up in B2 are considered missing

under the treatment policy A1B1. To deal with this “missingness,”

inverse weights are used such that we still have 100 patients in the

denominator in the above example.

To compare two treatment policies one can use the weighted

risk ratio,

WRR =
WIP1

WIP2
. (9)

2.3.3 Weighted exposure adjusted incidence rate
We define the weighted exposure adjusted incidence rate

(WEAIR) as the weighted number of subjects experiencing at least

one serious AE divided by the weighted exposure time among the

subjects in a treatment policy, that is,

EAIRg =
awg∑
twig

=

∑ng
i=1 WigIig(event = AE)∑n

i=1 Wig tig
,

(10)

where awg is the weighted number of patients in treatment policy

g experiencing at least one serious AE and tig is the subject exposure

time until the occurrence of first serious AE in treatment policy

g. For a subject with no AE, tig corresponds to the last follow-up

time, and Wig is the inverse weight given to individual i in the

treatment policy g. To compare two treatment policies one can use

the weighted exposure adjusted incidence risk ratio,

WEAIRR =
EAIR1

EAIR2
. (11)
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2.3.4 Weighed Kaplan-Meier estimator
Instead of using the usual Kaplan-Meier estimator, we suggest

the use of the weighted Kaplan-Meier estimator in analyzing safety

data from dynamic treatment regimes. To estimate the probability

of an AE in some time interval [0, t], we can use 1 − WKM,

that is,

P̂g(AE ∈ [0, t]) = 1−
∏

u≤t

(
1−

awg (u)

rwg (u)

)
, (12)

where w denotes that the event and the at risk processes

are weighted. The numerator counts the AE events and the

denominator gives the number at risk at time u. We weight

these processes using the inverse probability weights depending on

whether the individual is a responder or non-responder. Deaths

before an AE are treated as censored observations. This estimator

ignores the competing risks situation that exist in safety data.

The most appropriate estimator is based on the Aalen-Johansen

estimator.

2.3.5 Weighted Aalen-Johansen estimator
The weighted Kaplan-Meier estimator ignores the competing

risks situation that exists in AEs data. Death before an AE is

a competing event. For the analysis of AEs data for dynamic

treatment regimes, we propose the use of the weighted Aalen-

Johansen estimator. The weighted Aalen-Johansen estimator of

weighted cumulative incidence function is an appropriate method

for estimating the probability of an AE in a competing risks

situation:

1− P̂g(T > t) =
∑

u

Ŝ(u−)wg
awg (u)+ aw

d
(u)

rwg (u)
,

where Ŝ(u−)wi is the weighted Kaplan-Meier estimator of the

probability of not experiencing the composite event AE or death

just before time u. We sum over all events times (death or AE).

Again, we weight the event processes with inverse weights. The

probability of an AE in the time interval [0, t] is given

P̂g(T ≤ t,AE) =
∑

u

Ŝ(u−)wg
awg (u)

awg (u)
, (13)

where here the sum is over all times of AE before t.

2.3.6 Analysis based on weighted hazards
The all events (AE and death) weighted hazards is given by

α̂w
g (t)dt =

awg (t)+ dwg (t)

rwg (t)
.

This decomposes into the so-called cause specific weighted

hazards, αw
gAE(t)dt + αw

gD(t)dt, which can be estimated by

awg (t)

rwg (t)
+

dwg (t)

rwg (t)
,

where awg (t) and awg (t) are the weighted event processes. The

quantity rwg (t) is the weighted at risk process for treatment policy g.

From the decomposition above, the Nelson-Aalen estimator for

the weighted cumulative hazard to experience an AE is

∫ t

0
α̂gAE(t)

wdu =
∑

u

awg (u)

rwg (u)
. (14)

In the numerator of Equation 14 we only count AEs, that is,

we are summing over AEs times. We weight using the inverse

probability of being in treatment policy g. In practice, we censor

death events before an AE to estimate the weighted cumulative

hazard for an AE. The procedure is similar for the weighted

cumulative hazard for death without an AE.

3 Results

We illustrate how this analysis can be done using the CALGB

19,808 toxicity dataset. In the CALGB 19,808 study, 302 patients

were randomized between induction chemotherapy regimens

consisting of cytosine arabinoside (Ara-C;A), daunorubicin (D),

and etoposide (E) without (ADE) or with (ADEP) PSC-833 (P).

The study was done to patients under the age of 60 with newly

diagnosed acute myeloid leukemia. To be eligible, the patients

should not have been previously treated for leukemia and be under

the age of 60. For the first stage, the main objective of the trial was

to determine whether the use of the Pgp-modulating agent PSC-

833 in the ADEP regimen improved overall survival and disease

free survival compared to ADE only. The randomization between

ADE and ADEP was done at 1:1 ratio. The analysis of the first

stage data is reported in [11]. In both treatment arms, 75% of the

patients achieved complete remission (CR). Complete remission

was defined using the National Cancer Institute Workshop criteria

[13]. The 75% who achieved complete remission were further

randomized to the second stage treatments namely recombinant

interleukin-2 (rIL-2) and no rIL-2 (observation). We illustrate the

proposed methodology on the toxicity dataset from the CALGB

19,808 study. Several variables were recorded in the toxicity

dataset. The adverse events were graded in terms of their severity.

The adverse event were graded as mild, moderate, severe, life-

threatening, and fatal. The adverse event names and their categories

are also given. In this illustration, we focus on the analysis of

serious adverse events which are called life-threatening (serious

AEs) in this dataset. Most of the analysis (other than the incidence

proportions and ratios) will be based on the time to the first serious

adverse event.

In the development of this methodology, we made some

simplifying assumptions. One of them is that we assumed that for

responders, the AE occurs after response to the first treatment. This

makes it straightforward to apply the inverse probability weights.

In this dataset, this assumption is not violated. The efficacy dataset

has a variable named ind_crdays which gives the number of days

from registration to when complete remission was reported. It can

be seen that, for almost all the patients who responded, complete

remission was achieved very early, for some as early as 24 days.

We can then apply the methodology of this paper assuming the

AE occurred after response to the responders to the induction

treatments.
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In the toxicity dataset, there is not an explicit time to the first

serious adverse event. The time is given as an interval made up of

two variables which are: AE starting day and AE ending day. The

AE ending day refers to the number of days from registration to

the end of AE reporting period. The AE occurred in the interval

given by the two times. For purposes of this application, we used

the AE ending day as our time variable. We could have used the

middle value of the interval as our time variable. Interest is in

comparing occurrences of AEs in different treatment policies. To

achieve this, we merge the efficacy dataset and the toxicity dataset.

The merging was done using the patient number which is present

in both datasets.

There are four treatment policies embedded in the CALGB

19,808 study, namely; ADE - OBS, ADE - rIL-2, ADEP - OBS,

and ADEP - rIL-2. For a detailed description of this study see In

the second stage, some patients were randomized to observation.

No active treatment was given to this group as patients were

simply observed. There are no adverse events associated with the

observation treatment option. In doing the analysis for the AEs, we

only considered two treatment policies, which are ADE - rIL-2 and

ADEP - rIL-2 for reasons given above. Other than the creation of

the time to first serious AE variable, the data was analyzed without

any further modifications.

Ignoring the censoring, we calculated the weighted incidence

proportions for the treatment policies. The weighted incidence

proportion for ADE - rIL-2 is 0.9797 and the weighted incidence

proportion for the ADEP - rIL-2 is 0.9615. The probability of having

a serious adverse event was slightly higher in the ADE - rIL-2

treatment policy. The weighted risk ratio,WRR = 0.9797/0.9615 =

1.015. The estimated risk of experiencing at least one serious AE is

approximately the same in the two treatment policies.

To calculate the weighted exposure-adjusted incidence rate, we

consider three scenarios a patient might be in during the trial. A

patient who experiences a serious AE while still in the exposure

time contributes to the time at risk his/her weighted time to the

AE. A patient who dies without experiencing an AE contributes to

the time at risk his/her weighted time to death. Lastly, a patient

who does not experience a serious AE contributes to the time at

risk for an AE his/her weighted time to the end of exposure. The

weighted time at risk of exposure in the ADE - rIL-2 treatment

policy is 9,498.593 days and for the ADEP - rIL-2 is 10,079.83 days.

The WEAIR in the ADE - rIL-2 treatment policy is 0.0128 and

WEAIR in the ADEP - rIL-2 is 0.0124. There is no major difference

in the WEAIRs for the two treatment policies. This can be shown

by calculating the weighted exposure-adjusted incidence risk ratio,

WEAIRR = WEAIR1/WEAIR2 = 0.0128/0.0124 = 1.036. There is

no difference in number of serious AEs occurring daily in the two

treatment policies.

Figure 1 is obtained by treating death as censored and then

taking 1−WKM. The probability of an AE is estimated by 1−WKM

and this approach has been criticized as it ignores the competing

risks situation. The graph shows no differences in the probabilities

of experiencing an AE in the two treatment regimes.

The most appropriate approach of estimating the probability of

an AE is the use of the weighted Aalen-Johansen estimator of the

CIF. The graphs obtained from the weighted Kaplan-Meier looks

similar to the ones from the weighted Aalen-Johansen estimator in

Figure 2. This is not surprising since there were few deaths in the

FIGURE 1

Estimating the probability of an AE using weighted Kaplan-Meier

estimator.

FIGURE 2

Estimating the probability of an AE using weighted Aalen-Johansen

estimator.

dataset. One should expect the two estimators to be similar if there

are few deaths (competing risks). For this reason we do not show

the graph for CIF for death events.

The estimation of the probability of an AE by the weighted

Kaplan-Meier tends to overestimate the probability. This could not

be shown clearly in this analysis as there were few competing events

(deaths). It can be seen though, that the graph of the weighted

Kaplan-Meier is slightly above the graph from theWeighted Aalen-

Johansen estimator in the tail of the distribution. This is depicted

in Figure 3. In the reply to Schmoor et al. [9] by Thanarajasingam

et al. [10] they argued that, even though the Kaplan-Meier estimator
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FIGURE 3

A comparison of weighted Aalen-Johansen and weighted

Kaplan-Meier estimators.

is biased upwards, its bias is minimal. This may not be true in all

cases, but only in the case where the competing events are few.

Since interest is in the probability of a competing event, that is,

AE or death, if the count for deaths is close to zero, then the two

estimators will be similar.

In doing the analysis based on event-specific hazards, we only

report the weighted cumulative hazards for an AE. Due to lower

numbers of death before a serious AE, we did not include the graphs

for death before an AE. When ignoring the competing event of

death, we observe some differences between the cumulative hazards

of ADEP - rIL-2 and ADEP - rIL-2. The cumulative hazard of

experiencing anAEwas higher in the ADEP - rIL-2 than in the ADE

- rIL-2 treatment policy in the time period 100 days to about 180

days, thereafter the hazard of an AE is higher in the ADEP - rIL-2

treatment policy. For the earlier times, there is no much difference

in the hazards of an AE between the two treatment policies. The

cumulative hazard of experiencing an AE was equal in the first 100

days. This is shown in Figure 4 below.

4 Conclusion

There has been an acknowledgment that safety data does not

receive the attention as efficacy data [1]. In most cases, the analysis

of safety data has been done using crude incidence rates and this

type of analysis may not be adequate. The use of time-to-event

statistical methods is common practice for efficacy endpoints in

clinical studies but such methods are rarely applied in the analysis

of safety data. In this paper, we have given a general overview

of the methods that are applicable to single stage study with

a time-to-event endpoint. We then propose a methodology for

analyzing safety data from two-stage randomization designs which

uses inverse probability weights. The weighting is done in a similar

way as in the analysis of efficacy data. We used time-independent

FIGURE 4

Weighted cumulative hazards for AEs using the Nelson-Aalen

estimator.

inverse weights. A responder represents 1/πz patients who could

have potentially been assigned to the treatment policy of interest. A

non-responder only represents himself. In doing so, we have made

the analysis of the safety data be in sync with the analysis of efficacy

data from these study designs. We have focused on the time to the

first serious AE.

We have made the assumption that adverse events (AEs)

occur only after response for those achieving complete remission.

This assumption makes the application of inverse weights straight

forward. This assumption is only valid if response happens early in

the first stage and this is the case in the CALGB 19,808 study. Future

research is needed for cases where response is not observed early

in the first stage. One suggestion would be to use time-dependent

weights where an individual gets a weight depending on the time of

occurrence of the AE. The problem will be that such methodology

will not be in sync with the the methodology for analyzing efficacy

data from these study designs.

The methodology proposed in this paper is descriptive in

nature similar to the paper which motivated this study [8]. This

is a limitation of this study. A further study would be to look at

developing inferential procedures for our methodology.

The important aspect to note in safety data is the presence

of competing risks situation. A patient who enters the study can

experience the AE of interest, die before experiencing the AE or be

censored. The use of the Kaplan-Meier estimator is not encouraged

but if the competing events are few, then the bias is minimal.
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