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Computation and interpretation
of mean absolute deviations by
cumulative distribution functions

Eugene Pinsky *

Department of Computer Science, Metropolitan College, Boston University, Boston, MA, United States

In recent years, there has been an increased interest in using the mean absolute
deviation (MAD) around the mean and median (the L1 norm) as an alternative
to standard deviation σ (the L2 norm). Till now, the MAD has been computed
for some distributions. For other distributions, expressions for mean absolute
deviations (MADs) are not available nor reported. Typically, MADs are derived
using the probability density functions (PDFs). By contrast, we derive simple
expressions in terms of the integrals of the cumulative distribution functions
(CDFs). We show that MADs have simple geometric interpretations as areas
under the appropriately folded CDF. As a result, MADs can be computed directly
from CDFs by computing appropriate integrals or sums for both continuous
and discrete distributions, respectively. For many distributions, these CDFs have
a simpler form than PDFs. Moreover, the CDFs are often expressed in terms
of special functions, and indefinite integrals and sums for these functions are
well known. We compute MADs for many well-known continuous and discrete
distributions. For some of these distributions, the expressions for MADs have not
been reported. We hope this study will be useful for researchers and practitioners
interested in MADs.

KEYWORDS

mean absolute deviations, probability distributions, cumulative distribution functions,

central absolute moments, folded CDFs

1 Introduction

Consider a real-valued random variable X on a sample space � ⊆ R with density f (x)

and cumulative distribution function F(x) [1]. If X is a discrete random variable, then �

is some countable sample space and f (x) is the probability mass function (discrete density

function). Let µ denote the mean E(X) andM denote the median of X. For any real-value

a, define the MAD of X from a as Bloomfield and Steiger [2]

H(X, a) =
∫

�

∣
∣x− a

∣
∣ dF(x) (1)

This is defined in Lebesque–Stieltjes integration [3] and applies to continuous and

discrete distributions. It is well known [2, 4–6] that for any distribution with finite variance,

we have H(X,M) ≤ H(X,µ) ≤ σ . On the other hand, MADs require only the existence of

the first-order moment.

MADs have been used for a long time, as early as the eighteenth century by

Boscovitch and Laplace [7, 8]. For a historical survey, see Gorard [9] and Pham-

Gia and Hung [10]. There is currently a renewed interest in using the L1 norm

for robust statistical modeling and inference (e.g. [11–17], to name just a few).
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A MAD-based alternative to kurtosis based on H(X,M) was

recently introduced in Pinsky and Klawansky [18].

Since the pioneering work of Fisher [19], standard deviation

has been used as the primary metric for deviation. As noted

in Gorard [9] and Pham-Gia and Hung [10], the convenience of

differentiation and optimization, and the summation of variances

for independent variables have contributed to the widespread use

of the standard deviation in estimation and hypothesis testing.

On the other hand, using MAD offers a direct measure

of deviation and is more resilient to outliers. In computing

standard deviation, we square the differences between values

and the central point such as mean or median. As a result,

standard deviation emphasizes larger deviations. The computation

of MAD offers a direct and easily interpretable measure

of deviation.

As discussed in Gorard [9], difficulties associated with the

absolute value operation are one of the main reasons for the lower

use of the MAD. We address this by deriving the closed-form

expressions for MADs directly from the cumulative distribution

function of the underlying distribution.Moreover, the computation

of MAD requires only the existence of the first-order moment,

whereas the use of standard deviation requires the existence of

the second moment as well. As an example, consider Pareto

distribution with scale α [20] analyzed in Section 5. This

distribution has a finite mean for α > 1 but the infinite variance

for α < 2. As a result, we cannot use standard deviation to analyze

cases 1 < α < 2 but can use MADs.

This study will primarily focus on computing the MAD

about the mean. Such deviations have been derived for some

distributions, primarily using density [21]. The most complete

list (without derivations) is presented in Weisstein [22]. We

significantly extend this list using a unified approach to computing

these deviations as integrals and sums from cumulative distribution

functions (CDFs) instead of probability density functions (PDFs).

For many distributions, these CDFs have a simpler form than

PDFs. Moreover, the CDFs are often expressed in terms of

special functions, and indefinite integrals and sums for these

functions are well known. When closed-form expressions for the

median are available, we will compute MAD (about) median

as well.

To our knowledge, the obtained results for some distributions,

such as Pareto Type II, and logarithmic distributions, are presented

for the first time. Our main contribution is a unified and

simple computational approach to compute these deviations in

closed form without absolute value operation from the cumulative

distribution functions. This removes one of the main obstacles in

using MADs [9]. We hope this article will be a useful reference for

researchers and practitioners using MAD.

This article is organized as follows. In Section 2, we establish

the expressions for H(X,µ) in terms of the integral of the CDF for

the case of continuous distributions and in terms of sums of the

CDFs for discrete distributions. In Section 3, we provide a simple

geometric interpretation of our results in terms of appropriately

folded CDF. In Section 4, we review definitions and some integrals

for the special functions often appearing in CDFs for many

distributions considered. In Section 5, we derive expressions for

MAD for many continuous distributions. In Section 6, we derive

expressions for many widely used discrete distributions.

2 Computing MADs by CDF

2.1 MAD formula for continuous
distributions

We first start with continuous distributions. Let us define the

left sample sub-space of � by �L(a) = {x ∈ � | x ≤ a}
and the right sample sub-space of � by �R(a) = {x ∈ � | x >

a}. Additionally, we will require the existence of the first-order

moment,

µ =
∫

x∈�

x dF(x) =
∫

x∈�L

x dF(x)+
∫

x∈�R

x dF(x) < ∞ (2)

To put it formally, let us consider the functional [23]

L(X, t) =
∫ a

−t
|x|dF(x)+

∫ t

a
|x|dF(x) (3)

where a ∈ (−t, t) is finite and both integrals exist for any t.

Then the first moment is defined as

µ = lim
t 7→∞

L(X, t) (4)

It is well known that the integral in Equation 3 could be infinite

when the support of X is unbounded. We will insist that the above

integrals in the right-hand side of the above Equation 2 are finite

and therefore µ < ∞. This can be shown to be equivalent:

lim
t 7→∞

tP(|X| ≥ t) = lim
t 7→∞

t(1− P(|X| ≤ t)

= lim
t 7→∞

t
(

1− F(t)+ F(−t)
)

= 0 (5)

and therefore, for distributions with possible negative values,

we have

lim
x 7→−∞

xF(x) = 0 (6)

This condition will ensure that all terms in subsequent

equations are finite.

We will find it convenient to introduce the following auxiliary

integral:

I(z) =
∫

x≤z
x dF(x) (7)

This is a partial first moment of X computed over all x ≤ z.

We can express H(X, a) in terms of the cumulative distribution

function F(·) and auxiliary integral I(·) as follows:

H(X, a) =
∫

�L(a)
(a− x) dF(x) +

∫

�R(a)
(x− a) dF(x)

=
(

a

∫

�L(a)
dF(x)−

∫

�L(a)
x dF(x)

)

+
(∫

�R(a)
dF(x)− a

∫

�R(a)
dF(x)

)

=
(

aF(a)− I(a)
)

+
(

µ − I(a)− a(1− F(a)
)

= a
(

2F(a)− 1
)

+ µ − 2I(a)

(8)
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Consider the function h(x) = xF(x). Then dh(x) = F(x) dx +
x dF(x) and from the integration by parts formula, we can express

I(a) as

I(a) =
∫

x≤a
x dF(x) = aF(a)−

∫

x≤a
F(x) dx (9)

Substituting this into Equation 8 we obtain

H(X, a) = (µ − a)+ 2

∫

x≤a
F(x) dx (10)

A geometric interpretation of H(X, a) for the case a ≤ µ is

illustrated in Figure 1.

The MAD is twice the sum of two areas: the first area is the

area under the cumulative distribution function for x ≤ a and the

second area is (µ − a) · 0.5.
For MAD around the mean µ and the medianM, we obtain

H(X,µ) = 2

∫

x≤µ

F(x) dx and

H(X,M) = (µ −M)+ 2

∫

x≤M
F(x) dx (11)

2.2 MAD formula for discrete distributions

We now derive an analogous formula for the discrete

distribution. Let � = {x1, x2, . . .}. Without loss of generality,

assume x1 < x2 < · · · . By analogy with the continuous case, define
the auxiliary sum I(x) as

I(z) =
∑

xi≤z

xif (xi) (12)

Then MAD of X from µ is

H(X, a) =
∑

xi≤a

(a− xi)f (xi) +
∑

xi>a

(xi − a)f (xi)

=

(

a
∑

xi≤a

f (xi)−
∑

xi≤a

xif (xi)

)

+

(

∑

xi>a

xif (xi)− a
∑

xi>a

f (xi)

)

= (aF(a)− I(a)) +
(

(µ − I(a))− a(1− F(a)
)

= a
(

2F(a)− 1
)

+ µ − 2I(a)

(13)

To compute I(a), we use the following summation by parts

formula (analogous to integration by parts) [24]. If U =
{u1, u2, . . . , un} and V = {v1, . . . , vn} are two sequences and 1 is

the forward difference operator, then

n
∑

k=m

uk1vk = (unvn+1 − umvm)−
n
∑

k=m+1

vk1uk (14)

To apply the formula, we let m = 1, vk = xk and uk = F(xk).

Then we have

n
∑

k=1

F(xk)1xk =
(

xn+1F(xn)− x1F(x1)
)

−
n
∑

k=2

xkf (xk) = xn+1F(xn)− I(xn) (15)

If we choose n(a) = argmaxxi≤a{xi} for a given a, then F(a) =
F(xn(a)) and we have

I(a) = F(a) · xn(a)+1 −
n
∑

k=1

1xkF(xk) (16)

in complete analogy for I(a) for the continuous case in

Equation 9.

Substituting this expression for I(a) from Equation 16 into

Equation 13, we obtain

H(X, a) = (µ − a)+ 2
∑

i≤n

1xiF(xi) (17)

The sum on the right of Equation 17 is the area under the

cumulative distribution function for xi ≤ a and can be interpreted

as the integral of the CDF computed for x ≤ a in direct analogy

with the continuous case.

For MAD about mean µ and median M, the above equation

gives us

H(X,µ) = 2
∑

xi≤µ

1xiF(xi) and

H(X, M)) = (µ −M)+ 2
∑

xi≤M

1xiF(xi) (18)

The advantage of these formulas is that for many distributions,

xi are consecutive integers, giving us 1xi = 1. In such cases, the

above formulas for H(X, µ) and H(X, M) simplify to

H(X,µ) = 2
∑

xi≤µ

F(xi) and

H(X,M) = (µ −M)+ 2
∑

i≤M

F(xi) (19)

with a direct analogy to the continuous case.

We will apply the above results to compute MADs of several

well-known discrete distributions in Section 6.

3 Interpretation of MADs via “folded"
cumulative distribution functions

We can interpretH(x, a) as follows. Consider the function G(x)

defined as follows:

G(x, a) =











F(x) x ∈ �L(a)

1− F(x) x ∈ �R(a)

0 otherwise

(20)

We can interpret G(x) as the "folded" cumulative distribution

function curve. Note that unless F(a) = 1/2 (i.e., a is the median

M), the curve G(x) is discontinuous at x = a. The case a = µ is

illustrated in Figure 2.
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FIGURE 1

Geometric interpretation of H(X, a).

FIGURE 2

Illustration of folded cumulative distribution function (a = µ) and X ≥ 0.

For non-negative valued random variables X, we can interpret

MAD H(X, a) in terms of G(x) as follows: let A(G) denote the area

under this curve. For continuous case, we have

A(G) =
∫

�

G(x, a) dx =
∫

�L(a)
F(x) dx

︸ ︷︷ ︸

AL

+
∫

�R(a)
(1− F(x)) dx

︸ ︷︷ ︸

AR

=
∫

�L(a)

[
∫

y≤x
dF(y)

]

dx +
∫

�R(a)

[
∫

y>x
dF(y)

]

dx

=
∫

�L(a)

[
∫ a

y
dx

]

dF(y) +
∫

�R(a)

[∫ y

a
dx

]

dF(y)

=
∫

�L(a)
(a− y) dF(y) +

∫

�R(a)
(y− a) dF(y)

=
∫

�

|a− y| dF(y) = H(X, a)

Comparing Equation 21 with Equation 8, we can interpret

AL = aF(a) − I(a) as the area under left part of G(x, a) for x ≤ a

and AR = (µ − I(a)− a(1− F(a)) as the area under the right part

of G(x, a) for x > a.

For the case a = µ, the areas under the curve for x ≤ a and

x > a are equal. In this case, H(X,µ) = 2AL(G) is just twice the

area under the "left" part of the folded CDF curve for x ≤ a. This is
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illustrated in Figure 2. From Equation 9, the auxiliary integral I(µ)

is the area above cumulative distribution function F(x) for x ≤ µ

and F(x) ≤ F(µ) (shown in yellow color).

For the case a = M, the folded cumulative distribution function

G(x) is continuous as shown in Figure 3. The area under this curve

is the MAD from the median [25]. It is interesting to compare the

MADH(X,M) around themedian with the quartile deviation (QD)

defined as half of the interquartile range semi-interquartile range

QD = IQR/2 = (Q3−Q1)/2 whereQ1 andQ3 are the first and third

quartile of X. The MAD around the median is the area under the

folded CDF G(x) where the quartile deviation is the area spanned

between the quartiles on the x-axis and between 0 and 1/2 on the

y-axis.

For the discrete case with non-negative valued X, we get a

similar result. As before we assume that 0 ≤ x1 < x2 < · · · and
let n(a) = argmaxxi≤a{xi}. Recall that F(xk) = f (x1)+ · · · + f (xk).

Therefore, we obtain

A(G) =
∑

i

1xi−1G(xi, a) =
∑

i≤ n(a)

1xi−1F(xi)

+
∑

i> n(a)

1xi−1(1− F(xi))

=
∑

i≤ n(a)

(

(xi − a)+ (a− xi−1)
)

F(xi)

+
∑

i> n(a)

(

(a− xi−1)+ (xi − a)
)

(1− F(xi))

=
∑

i≤ a(n)

(a− xi)1F(xi−1)+
∑

i> a(n)

(xi − a)1F(xi−1)

=
∑

i≤ a(n)

(a− xi)f (xi)+
∑

i> a(n)

(xi − a)f (xi)

=
∑

i

|a− xi|f (xi) = H(X, a)

in exact analogy with the continuous case. Therefore, the MAD

H(X, a) can also be interpreted as the area under the folded CDF

curve G(x, a).

4 Some special functions and integrals

For many distributions, their cumulative distribution functions

involve some special functions (for real arguments) such as

Gamma and Beta functions [26, 27]. Indefinite integrals for

many of these functions are readily available [28–30]. Some

of these functions and their integrals are presented here for

easy reference.

4.1 Some special functions and integrals

1. Error function ([30], Section 7.2 in Olver et al. [31]):

erf (z) =
2

√
π

∫ z

0
e−t2 dt (21)

2. Density of the standard normal [31, 32]:

φ(x) =
1

√
2π

e−x2/2 (22)

3. Cumulative distribution of the standard normal [31, 32]:

8(x) =
1

√
2π

∫ x

−∞
e−t2/2 dt =

1

2
+

1

2
erf

(
x
√
2

)

(23)

4. Lower and upper incomplete Gamma functions ([30], Section

8.6 in Olver et al. [31]):

ν(s, x) =
∫ x

0
ts−1e−t dt and Ŵ(s, x) =

∫ ∞

x
ts−1e−t dt

(24)

5. Gamma function and regularized Gamma function ([30],

Section 5.2 in Olver et al. [31]):

Ŵ(s) =
∫ ∞

0
ts−1e−t dt = ν(s, x)+ Ŵ(s, x) and

Q(s, x) =
Ŵ(s, x)

Ŵ(s)
(25)

6. Beta function (Section 5.12 in Olver et al. [31] and Gupta and

Nadarajah [33]):

B(z1, z2) =
∫ 1

0
tz1−1(1− t)z2−1 dt =

Ŵ(z1)Ŵ(z2)

Ŵ(z1 + z2)
(26)

7. Incomplete Beta function and regularized incomplete Beta

functions ([33], Section 8.17 in Olver et al. [31]):

B(x; a, b) =
∫ x

0
ta−1(1− t)b−1 dt and

Ix(a, b) =
B(x; a, b)
B(a, b)

(27)

4.2 Some indefinite integrals

The following expressions will be used in many of the

computations (C is a constant).

1. Integration of standard normal CDF (p. 396 in Owen [32]):

∫

8(a+ bx) dx =
(a+ bx)8(a+ bx)+ φ(a+ bx)

b
+ C (28)

2. Integration of the product of standard normal density and x

(integral #11, p. 393 in Owen [32]):

∫

x φ(ax) dx = −
φ(ax)

a
+ C (29)

3. Integration of the product of error function and exponential

(integral #1, Section 4.2 in Ng and Geller [30]):

∫

ebx erf(az) dz =
ebz

b
erf(az)−

1

b
exp

(
b2

4a2

)

erf

(

az −
b

2a

)

+ C (30)
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FIGURE 3

Mean absolute vs. quantile deviation (a = M and ≥> 0.

4. Integration of incomplete gamma function (using integration by

parts and Equation 24):

∫

xb−1ν(α, z) dz =
1

b

(

zbν(α, z)− ν(α + b, z)
)

+ C (31)

In particular, for b = 1 using the recurrence

relation (chapter 8.6 in Olver et al. [31]),

ν(α + 1, z) = zν(s, z)− zαe−z

we obtain
∫

ν(α, z) dz = zαe−z + C (32)

5. Integration of the incomplete beta function [33]

∫

B(x; a, b) dx = xB(x; a, b)− B(x; a+ 1, b)+ C (33)

6. Integration of reciprocal functions with exponentials (integral

2.313 p. 92 in Gradshteyn and Ryzhik [29])

∫
dx

a+ b emx
=

mx− log
(

1+ b emx
)

am
+ C (34)

5 MAD computations for continuous
distributions

We now illustrate the above formula for some well-known

continuous distributions. We will focus on MAD around the

mean µ. We will consider the following continuous distributions

(in alphabetical order): Beta, chi-squared, exponential, Gamma,

Gumbel type I, half-normal, Laplace, logistic, Maxwell, normal,

Pareto type I and II, Rayleigh, Student-t, triangular, uniform, and

Weibull. For some of these distributions, the expressions for MAD

have been known. In contrast, to our knowledge, the expressions for

MAD have not been published for some distributions like Pareto II

and Weibull.

1. Beta distribution with parameters α,β > 0: The corresponding

density f (x) and the cumulative distribution function F(x) are

given by Johnson and Kotz [20] and Feller [34]:

f (x) =
xα−1(1− x)β−1

B(α,β)
and F(x) = Ix(α,β), x ∈ (0, 1)

where Ix(·) denotes the regularized incomplete beta function

in Equation 27. The mean and standard deviation of this

distribution are

µ =
α

α + β
and σ =

1

α + β

√

αβ

α + β + 1

Therefore, using Equation 33 we compute H(X,µ) as

follows:

H(X,µ) = 2

∫ µ

0
Ix(α,β) dx

=
2xB(x; α,β)− 2B(x; α + 1,β)

B(α,β)

∣
∣
∣
∣
∣

µ

0

=
2µB(µ; α,β)− 2B(µ; α + 1,β)

B(α,β)

(35)

There is no closed-form formula for the median M. The

MAD around the medianM is

H(X, M) = (µ −M)+ 2

∫ M

0
Ix(α,β) dx =

(
α

α + β
−M

)

+
2M · B(M; α,β)− 2B(M; α + 1,β)

B(α,β)
(36)
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2. Exponential distribution with rate λ > 0 : The corresponding

density f (x) and cumulative distribution function F(x) are given

by Johnson and Kotz [20] and Feller [34]:

f (x) = λe−λx and F(x) = 1− e−λx, x ≥ 0

Its mean µ = 1/λ and standard deviation σ = 1/λ. We

compute H(X,µ) as

H(X, µ) = 2

∫ 1/λ

0
(1− e−λx) dx = 2

(

x+
e−λx

λ

) ∣
∣
∣
∣

1/λ

0

=
2

λe
=
(
2

e

)

σ (37)

In terms of σ , for this distribution H(X,µ) = (2/e)σ ≈
0.74σ .

The median is M = (log 2)/λ. The MAD about median is

then

H(X, M) = (µ −M)+ 2

∫ log 2/λ

0
(1− e−λx) dx

=
(
1

λ
−

log 2

λ

)

+ 2

(

x+
e−λx

λ

) ∣
∣
∣
∣

log 2/λ

0

=
log 2

λ

(38)

3. F (Fisher–Snedecor) distribution with α,β > 0 degrees

of freedom: The corresponding density f (x) and cumulative

distribution function F(x) are given by Johnson and Kotz [20]

and Feller [34],

f (x α,β) =

√
(αx)αββ

(αx+β)α+β

xB
(

α
2 ,

β
2

) and F(x) = Iz

(
α

2
,

β

2

)

,

where











z = αx
/(αx+β)

x > 0, if α = 1

x ≥ 0 if α > 0

The mean µ and standard deviation σ are defined only for

β > 2 and β > 5 respectively and are given by

µ =
β

β − 2
, for β > 2 and

σ =
β

(β − 2)

√

2(α + β − 2)

α(β − 4)
, for β > 4

To compute H(X,µ) we note that x = βz/(α(1 − z)) and

therefore, dz = (β/α(1 − z)2)dz. Let µ∗ = αµ/(αµ + β) =
α/(α + β − 2β). Therefore, for the MAD, we obtain

H(X,µ) = 2

∫ µ

0
F(x) dx =

2β

α

∫ µ∗

0

Iz (α/2,β/2)

(1− z)2
dz

=
2β

αB (α/2,β/2)

[
∫ µ∗

0

B (z; α/2,β/2)

(1− z)2
dz

]

To compute the integral, we note that B′(z; α/2,β/2) =
zα/2−1(1 − z)β/2−1. If we consider the function h(z) =
B(z; α/2,β/2)/(1− z) then

h′(z) =
B′(z; α/2,β/2)

(1− z)
+

B(z; α/2,β/2)

(1− z)2

= zα/2(1− z)β/2−1 +
B(z; α/2,β/2)

(1− z)2

This immediately gives us the expression for the integral

∫
B (z; α/2,β/2)

(1− z)2
dz =

B (z; α/2,β/2)

(1− z)

− B (z; α/2, β/2− 1)

We can now compute the MAD for the F distribution:

H(X,µ)

=
2β

αB (α/2,β/2)

[
B (z; α/2,β/2)

(1− z)
− B (z; α/2,β/2− 1)

] ∣
∣
∣
∣

µ∗

0

=
2β

αB (α/2,β/2)

[
B (µ∗; α/2, β/2)

(1− µ∗)
− B

(

µ∗; α/2, β/2− 1
)
]

(39)

4. Gamma distribution with shape parameter α > 0 and rate β >

0: The corresponding density f (x) and cumulative distribution

function F(x) are given by Johnson andKotz [20] and Feller [34]:

f (x) =
βαxα−1e−βx

Ŵ(α)
and F(x) =

ν(α,βx)

Ŵ(α)
, x ≥ 0

where Ŵ(·) denotes the Gamma function (Equation 25

and ν(·) denotes the lower incomplete Gamma function

(Equation 24). The mean of this distribution is µ = α/β and

its standard deviation σ =
√

α/β .

Let us define z = βx. Then we have

H(X, µ) =
2

Ŵ(α)

∫ µ

0
ν(α,βx) dx =

2β

Ŵ(α)

∫ α

0
ν(α, z) dz

=
2β

Ŵ(α)

[

zαe−z
]

∣
∣
∣
∣
∣

α

0

=
2βααe−α

Ŵ(α)

(40)

There is no closed-form expression for the median M. The

MAD (around median) is

H(X, M) = (µ −M)+ 2

∫

x≤M
F(x) dx =

(
α

β
−M

)

+
2β

Ŵ(α)

∫ βM

0
ν(α,βx)d(βx)

=
(

α

β
−M

)

+
2β

Ŵ(α)

[

zαe−z
]

∣
∣
∣
∣
∣

βM

0

=
(

α

β
−M

)

+
2β(βM)α

Ŵ(α)
e−βM

(41)

5. χ2 Distribution with k degrees of freedom: The corresponding

density f (x) and the cumulative distribution function F(x) are

given by Johnson and Kotz [20] and Feller [34]:

f (x) =
xk/2−1 e−x/2

2k/2 Ŵ(k/2)
and F(x) =

ν(k/2, x/2)

Ŵ(k/2)
, x > 0

where Ŵ(·) denotes the Gamma function (Equation 25

and ν(·) denotes the lower incomplete Gamma function

(Equation 24. The mean of this distribution is µ = k and its

standard deviation σ =
√
2k. This is a special case of Gamma
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distribution with shape α = k/2 and rate β = 1/2. This

immediately gives us

H(X, µ) =
(2e)−k/2 kk/2

Ŵ(k/2)
and

H(X, M) = (k−M)+
(M/2)k/2 e−M/2

Ŵ(k/2)
(42)

6. Gumbel type I (extreme value distribution) with location µ and

scale β > 0: The corresponding density and f (x) and cumulative

distribution function F(x) are given by [20]):

f (x) =
1

β
e−(z+e−z) and F(x) = e−e−z

, x ∈ R, z = (x−µ)/β

Its mean is µ∗ = (µ+βγ ) where γ is the Euler-Mascheroni

constant. Its standard deviation σ = βπ/
√
6. Let t = e−z . Then

dt = (t/β) dx or dx = βt−1dt. Then for MAD (about mean) we

obtain

H(X,µ∗) = 2

∫

x≤µ∗
F(x) dx = 2β

∫ e−γ

0
e−tt−1 dt

= 2β ν(0, e−γ ) (43)

where ν(·) denotes the incomplete lower gamma function in

Equation 24.

The median for this distribution is M = µ − β log(log 2).

Therefore, for the MAD about the median we have

H(X,M) = (µ∗ −M)+ 2

∫

x≤M
F(x) dx = β

(

γ + log(log 2)
)

+ 2β

∫ log 2

0
e−zz−1 dz

= β
[

γ + log(log 2)+ 2 ν(0, log 2)
]

(44)

7. Half-normal distribution with scale parameter σ > 0:

The corresponding density f (x) and cumulative distribution

function F(x are given by Johnson and Kotz [20]):

f (x) =
√
2

σ
√

π
e−x2/(2σ 2), and F(x) = erf

(
x

σ
√
2

)

. x ≥ 0

The mean is µ = σ
√
2/π and standard deviation σ ∗ = σ (1 −√

2/π). Let z = x/(σ
√
2). Then dx = σ

√
2 dz and we have

H(X,µ) = 2σ
√
2

∫ 1/
√

π

0
erf (z) dz

= 2σ
√
2

[

z erf (z)+
1

√
π
e−z2

]
∣
∣
∣
∣
∣

1/
√

π

0

= 2σ

√

2

π

[

erf

(
1

√
π

)

+ e−1/π − 1

]

(45)

The median isM = σ
√
2erf−1(1/2). Define c = erf−1(1/2).

Then the MAD around the medianM we have

H(X, M) = (M − µ)+ 2σ
√
2
∫ c
0 erf (z) dz

= σ
√
2
(

1√
π
− c

)

+ 2σ
√
2
[

z erf (z)+ 1√
π
e−z2

]
∣
∣
∣
∣
∣

c

0

= σ
√
2

π

(

2e−c2 − 1
)

(46)

8. Laplace distribution with locationµ and scale b: The density f (x)

and cumulative distribution function F(x) are given by Johnson

and Kotz [20] and Feller [34]:

f (x) =
1

2b
e−|x−µ|/b andF(x) =

{
1
2 e

(x−µ)/b, if x ≤ µ

1− 1
2 e

−(x−µ)/b, if x ≥ µ

For this distribution, µ = M = b and σ = b
√
2. For the

MAD, we obtain

H(X,µ) = H(X,M) =
∫ µ

∞
e(x−µ)/b dx = b e(x−µ)/b

∣
∣
∣
∣

µ

−∞
= b

(47)

In terms of σ , we have H(X,µ) = σ
√
2/2 ≈ 0.71σ .

9. Logistic distribution with location µ and scale s > 0:

The corresponding density function f (x) and cumulative

distribution function F(x are given by Johnson and Kotz [20]:

f (x) = −
e−(x−µ)/s

s(1+ e−(x−µ)/s)2
, and F(x) =

1

1+ e−(x−µ)/s
, x ∈ R

The mean and the median are µ and the standard deviation

isσ = sπ/
√
3. Let z = (x − µ)/s. Since for this distribution

M = µ, we have H(X,µ) = H(X,M). Using Equation 34 we

obtain

H(X,µ) = H(X,M) = 2

∫ µ

−∞

dx

1+ e−(x−µ)/s
= 2

∫ 0

−∞

z dz

1+ e−z

= 2s
[

z + log(1+ e−z)
]
∣
∣
∣
∣

0

−∞

= 2s
[

z + log
(

e−z(ez + 1)
)
]
∣
∣
∣
∣

0

−∞

= 2s log(ez + 1)

∣
∣
∣
∣

0

−∞
= 2s log 2

(48)

In terms of σ we have H(X,µ) = (2
√
3 log 2/π)σ ≈ 0.76 σ

10. Log-normal distribution with parameters µ ∈ (∞,+∞) and σ 2

(σ > 0): The density f (x) and cumulative distribution function

F(x) are given by Johnson and Kotz [20] and Feller [34]:

f (x) =
1

x σ
√
2π

e−(log x−µ)2/2σ 2
= xσ φ

(
log x− µ

σ

)

, and

F(x) = 8

(
log x− µ

σ

)

, x > 0

We will use the notation µ∗ and σ ∗ to denote the mean and

standard deviation of X to distinguish it from the mean µ and

standard deviation σ of the underlying normal distribution. The

mean of the log-normal distribution is µ∗ = eµ+σ 2/2 and its

standard deviation σ ∗ = eµ+σ 2/2
√

eσ
2 − 1.

To compute H(X,µ), define z = (log x− µ)/σ . Then, dx =
σx dz = σ eµ+σ z dz and using Equation 30 with a = 1/

√
2 and
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b = σ , we obtain

H(X,µ∗) = 2

∫ µ∗

0
8

(
log x− µ

σ

)

dx = 2σ eµ
∫ σ/2

−∞
eσ z8(z) dz

= 2σ eµ
∫ σ/2

−∞
eσ z

[
1

2
+

1

2
erf

(
z
√
2

)]

dz

= 2 eµ+σ 2/2 erf

(
σ

2
√
2

)

(49)

The median M = eµ and therefore for the MAD around

median, we obtain

H(X,M) = (µ∗ −M)+ 2

∫ M

0
8

(
log x− µ

σ

)

dx

= eµ(eσ
2/2 − 1)+ 2σ eµ

∫ 0

−∞
eσ z8(z) dz

= eµ(eσ
2/2 − 1)+ 2σ eµ

∫ 0

−∞
eσ z

[
1

2
+

1

2
erf

(
z
√
2

)]

dz

= eµ+σ 2/2 + σ eµ
∫ 0

−∞
eσ z erf

(
z
√
2

)

dz

= eµ+σ 2/2 erf

(
σ
√
2

)

(50)

11. Maxwell (or Maxwell-Boltzmann) distribution with scale

parameter b > 0: The density function f (x) and the cumulative

distribution function F(x) are given by Johnson and Kotz [20]

f (x) =
1

b3

√

2

π
x2 e−x2/(2b)2 and

F(x) = 28
(x

b

)

−
1

b

√

2

π
x e−x2/(2b)2 x ≥ 0

We can re-write these as

f (x) = 2
(x

b

)2
φ
(x

b

)

and

F(x) = 28
(x

b

)

− 2
(x

b

)

φ
(x

b

)

x ≥ 0

The mean is µ = 2b
√
2/π and standard deviation σ =

b
√

(3π − 8)/π . We let z = x/b. Then dx = b dz and using

Equations 28, 29, with a = 1/b, we obtain

H(X,µ) = 4b

∫ 2
√
2

0

(

8(z)− zφ(z)
)

dz

= 4b
(

z8(z)+ 2φ(z)
)
∣
∣
∣

2
√
2/
√

π

0

= 4b

√

2

π

(

erf

(
2

√
π

)

+ e−π/4

)

(51)

There is no simple closed-form for the medianM.

12. Normal distribution N(µ, σ ): The density f (x) and cumulative

distribution function F(x) are [20, 34]:

f (x) =
1

σ
φ

(
x− µ

σ

)

and F(x) = 8

(
x− µ

σ

)

, x ∈ R

where 8(·) denotes the cumulative distribution of the

standard normal (Equation 23). Using Equation 28 with a =
−µ/σ and b = 1/σ we obtain

H(X,µ) = 2
∫

x≤µ
8
( x−µ

σ

)

dx = 2σ
(

x8(x)+ f (x)
)
∣
∣
∣
∣

0

−∞
= σ

√

2
π

(52)

In terms of σ , we have H(X,µ) = σ
√
2/π ≈ 0.80 σ . Since

this is a symmetric distribution H(X,M) = H(X,µ).

13. Pareto type I distribution with shape α > 0 and scale β > 0:

The density f (x) and the cumulative distribution function F(x)

are given by Johnson and Kotz [20]

f (x) =







αβα

xα+1
x ≥ β

0 x < β

and F(x) =









1−
(

β

x

)α

x ≥ β

0 x < β

the mean and standard deviation for this distribution are

µ = αβ

(α−1)
if α > 1 and

σ = β

(α−1)

√
α

(α−2)
if α > 2

This distribution has infinite mean µ for α ≤ 1 and infinite

variance for α ≤ 2. We assume that α > 1. Then for MAD, we

obtain

H(X,µ) = 2

∫ µ

β

(

1−
(

β

x

)α)

dx = 2

[

x+
βα

(α − 1)
x−α+1

]
∣
∣
∣
∣
∣

µ

β

= 2

[

αβ

(α − 1)
+

βα

(α − 1)

(
αβ

α − 1

)−α+1
]

− 2

[

β +
βα

(α − 1)
β−α+1

]

=
2β

α

(

1−
1

α

)α−2

(53)

The median isM = β
α
√
2. Therefore, for theMAD about the

median, we obtain

H(X,M) = (µ −M)+ 2

∫ M

β

(

1−
(

β

x

)α)

dx

=
(

αβ

(α − 1)
− β

α
√
2

)

+ 2

[

x+
βα

(α − 1)
x−α+1

]
∣
∣
∣
∣
∣

M

β

=
(

αβ

(α − 1)
+ β

α
√
2

)

+ 2

[
βα

(α − 1)
x−α+1

]
∣
∣
∣
∣
∣

β
α
√
2

β

=
αβ
(

α
√
2− 1

)

(α − 1)
(54)

14. Generalized Pareto (Type II) distribution with location µ ∈ R,

scale σ > 0, and shape ξ ∈ R: We exclude the case ξ = µ = 0,

that corresponds to the exponential distribution. The density
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f (x) and the cumulative distribution function F(x) are given by

Johnson and Kotz [20]:

f (x) =







1
σ

(

1+ ξ (x−µ)
σ

)−1/ξ−1
ξ 6= 0

exp
(

− (x−µ)
σ

)

ξ = 0
and

F(x) =







1−
(

1+ ξ (x−µ)
σ

)−1/ξ
ξ 6= 0

1− exp
(

− (x−µ)
σ

)

ξ = 0

where the support of X is x ≥ µ for ξ ≥ 0 and µ ≤ x ≤ σ/ξ

for ξ < 0. The mean µ∗ and standard deviation σ ∗ of this

distribution are defined only for ξ < 1 and ξ < 1/2 respectively

and are

µ∗ = µ +
σ

(1− ξ )
, ξ < 1 and

σ ∗ =
σ

(1− ξ )
√
1− 2ξ

, ξ < 1/2

To compute H(X,µ∗), we need to consider two cases

(a) ξ < 1 and ξ 6= 0. We have

H(X,µ∗) = 2

∫ µ∗

µ

F(x) dx

=

[

x+
σ

1− ξ

(

1+
ξ (x− µ)

σ

)1−1/ξ
] ∣
∣
∣
∣
∣

µ∗

µ

= 2

[

µ +
σ

1− ξ
+ σ

(
1

1− ξ

)2−1/ξ
]

−2

[

µ +
σ

1− ξ

]

= 2σ

(
1

1− ξ

)2−1/ξ

(55)

Note that the case ξ = −1 gives H(X,µ∗) = σ/4

and corresponds to continuous uniform distributionU(0, σ ).

The case ξ > 0 and location µ = σ/ξ corresponds to

the Pareto distribution with scale β = σ/ξ and shape

α = 1/ξ .

(b) Case ξ = 0. For this case, we obtain

H(X,µ∗) = 2

∫ µ∗

x=µ

F(x) dx

= 2

[

x+ σ exp

(

−
(x− µ)

σ

)]
∣
∣
∣
∣
∣

µ∗

µ

= 2

[

µ +
σ

1− ξ
−

σ

exp(1− ξ )

]

− 2
[

µ +
σ

e

]

= 2σ

[
1

1− ξ
−

1

exp(1− ξ )
+

1

e

]

Note that for ξ = 0, the case µ = 0 corresponds to an

exponential distribution with parameter 1/σ .

For µ = 0 and ξ > 0, let α = 1/ξ and λ = ξσ . Then

we obtain the Lomax distribution with shape α > 0 and scale

λ > 0. Its mean µ∗ = λ/(α − 1) is defined only for α > 1

(corresponding to ξ < 1). Therefore, for α > 1 its MAD for the

Lomax distribution is

H(X,µ∗) = 2λα

(
α

α − 1

)2−α

15. Rayleigh distribution with scale parameter σ > 0: The density

function f (x) and the cumulative distribution function F(x) are

given by Johnson and Kotz [20]:

f (x) = −
x

σ 2
e−x2/(2σ )2 , and F(x) = 1− e−x2/(2σ )2 , x ≥ 0

The mean is µ = σ
√

π/2 and standard deviation is σ ∗ =
σ
√

(4− π)/2. Let z = x/2σ . Then dx = 2σ dz and we have

H(X,µ) = 2σ

√

π

2
− 4σ

∫ √
π/2

√
2

0
e−z2 dz

= 2σ
√

π

(√
2

2
− erf

( √
π

2
√
2

)
) (56)

For this distribution, the medianM = σ
√

2 log 2. Therefore,

H(X, M) = (µ −M)+ 2

∫

x≤M
(1− e−x2/(2σ )2 ) dx

= σ
(√

π/2−
√

2 log 2
)

+ 2σ
√

2 log 2

− 4σ

∫
√

(log 2)/2

0
e−z2 dz

= σ

[

√

π/2+
√

2 log 2)− 2
√

π erf

(√

log 2

2

)]

(57)

16. Student-t distribution with k > 1 degrees of freedom: Its

probability density function f (x) and its cumulative distribution

function F(x) are given by Johnson andKotz [20] and Feller [34]:

f (x) =
1

√
kB(k/2, 1/2)

(

1+
x2

k

)−(k+1)/2

and

F(x) = 1−
B(1/(1+ x2/k), k/2, 1/2)

2B(k/2, 1/2)
, x ∈ R

The mean µ is µ = 0 for k > 1, otherwise it is undefined.

The standard deviation is defined only for k > 2 and σ =
k/(k− 2). From Equation 8 we have

H(X,µ) = −2

∫ 0

−∞
xf (x) dx

= −
2

√
kB(1/2, k/2)

∫ 0

−∞
x

(

1+
x2

k

)−(k+1)/2

dx

= −
2

√
kB(1/2, k/2)

[

−
k

2(k− 1)

(

1+
x2

k

)−(k−1)/2
] ∣
∣
∣
∣
∣

0

−∞

=
√
k

(k− 1)B(k/2, 1/2)
(58)

Since this distribution is symmetric,M = µ andH(X,M) =
H(X,µ).

17. Triangular distribution with lower limit a, upper limit b and

mode c ∈ [0, 1]: The density function f (x) and the cumulative

distribution function F(x) is given by [20, 34, 35]:

f (x) =







2(x−a)
(b−a)(c−a)

2(b−x)
(b−a)(b−c

F(x) =







(x−a)2

(b−a)(c−a)
for 0 ≤ x ≤ c,

1− (b−x)2

(b−a)(b−c)
for c < x ≤ 1
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For this distribution, µ = (a + b + c)/3 and σ =
√

(b− a)2 − (c− a)(b− c)/3
√
2. It is easy to show that for 0 ≤

c ≤ (a+b)/2, we haveµ ≥ c and for (a+b)/2 ≤ c ≤ b, we have

µ ≤ c. Therefore,

H(X,µ) = 2
∫

x≤µ
F(x) dx

=







2
3(b−a)(b−c)

(
2b−(a+c)

3

)3
for 0 ≤ c ≤ (a+ b)/2

2
3(b−a)(c−a)

(
b+c−2a

3

)3
for (a+ b)/2 ≤ c ≤

The medianM of this distribution is

M =







b−
√
2
2

√
(b− a)(b− c) c ≤ (a+ b)/2

a+
√
2
2

√
(b− a)(c− a) c ≥ (a+ b)/2

(59)

Therefore, the MAD about the median is then

H(X,M) = (µ −M)+
∫

x≤M
F(x) dx

=







(b−a)+(b−c)−
√
2(b−a)(b−c)

3 a ≤ c ≤ (a+ b)/2

(b−a)+(c−a)−
√
2(b−a)(c−a)

3 (a+ b)/2 ≤ c ≤ b

(60)

18. Uniform continuous distribution in [a, b]: The density function

f (x) and the cumulative distribution function F(x) are given by

Johnson and Kotz [20] and Feller [34]:

f (x) =
1

(b− a)
and F(x) =

(x− a)

(b− a)
x ∈ [a, b]

Mean is µ = (a + b)/2 and standard deviation σ = (b −
a)/2

√
3. The MAD is

H(X,µ) = 2

∫ µ

0

(x− a)

(b− a)
dx =

(x− a)2

(b− a)

∣
∣
∣
∣

(a+b)/2

0

=
(b− a)

4
=

√
3

2
σ (61)

19. Weibull distribution with scale α > 0 and shape k > 0: The

density f (x) and the cumulative distribution function F(x) are

given by Johnson and Kotz [20].

f (x) =
k

α

( x

α

)k−1
e−(x/α)k and F(x) = 1− e−(x/α)k , x ≥ 0

Its mean is µ = αŴ(1 + 1/k) and its standard deviation is

σ = α(Ŵ(1 + 2/k) − Ŵ2(1 + 1/k)), If we let z = x/α then

dx = α dz and using Equation 24 we obtain

H(X,µ) = 2

∫ Ŵ
(

1+ 1
k

)

0

(

1− e−zb
)

dz

=
2α

k
Ŵ

(
1

k
, zk

)
∣
∣
∣
∣
∣

Ŵ
(

1+ 1
k

)

0

+ 2µ

=
2α

k
Ŵ

(
1

k
, Ŵ k

(

1+
1

k

))

−
2α

k
Ŵ

(
1

k

)

+ 2α Ŵ

(

1+
1

k

)

=
2α

k
Ŵ

(
1

k
, Ŵ k

(

1+
1

k

))

(62)

For k = 1 we have Ŵ(1 + 1/k) = 1, µ = 2α, and

Ŵ(1, 1) = 1/e. Therefore, H(X,µ) = 2α/e. This case with k = 1

corresponds to exponential distribution with λ = 1/α.

The median M = α k
√

log 2. Therefore for MAD about

median, we obtain

H(X, M) = (µ −M)+ 2

∫ M

0

(

1− e−zb
)

dz

= (µ +M)+
2α

k
Ŵ

(
1

k
, zk

)
∣
∣
∣
∣
∣

M

0

= α

(

Ŵ

(

1+
1

k

)

+ k
√

log 2+
2

k

[

Ŵ

(
1

k
, αk log 2

)

−Ŵ

(
1

k

)])

= α

[

k
√

log 2+
2

k
Ŵ

(
1

k
, αk log 2

)

−
1

k
Ŵ

(
1

k

)]

6 MAD computations for discrete
distributions

In this section, we compute MADs for the following

discrete distributions (in alphabetical order): binomial, geometric,

logarithmic, negative binomial, Poisson, uniform, Zipf, and zeta

distributions. For some of these distributions, the expressions

for MAD have been known, whereas for some distributions like

logarithmic, the formulae for MAD have not been published, to our

knowledge.

1. Binomial distribution with parameters n ∈ N and success

probability 0 < p < 1: Let q = 1 − p. Its density f (x) and

umulative distribution function F(x) are [20, 34]:

f (k) =
(
N

k

)

pk(1− p)N−k and F(k) = Iq(N − k, 1+ k)

k = {0, 1, . . . ,N}

where Iq(·) is the regularized incomplete beta function

defined in equation 27.

The mean µ = Np and standard deviation is σ =
√

Np(1− p). Let n = ⌊Np⌋. Then we have

H(X,µ) = 2nF(n)− 2I(n)

= 2

[

Np

n
∑

k=0

(
N

k

)

pk(1− p)N−k

]

− 2

[
n
∑

k=0

k

(
N

k

)

pk(1− p)N−k

]

= 2

n
∑

k=0

(Np− k)

(
N

k

)

pk(1− p)N−k

= (N + 1)

(
N

n+ 1

)

pn+1(1− p)N−n

(63)

The last step in the above equation can be established by

induction on N.
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2. Geometric distribution with success probability 0 < p < 1: The

density f (x) and cumulative distribution function are [20, 34]:

f (k) = p(1−p)k and F(k) = 1−(1−p)k+1, k = 0, 1, 2, . . .

The mean µ = (1 − p)/p and standard deviation is σ =√
1− p/p. Let n = ⌊µ⌋ = ⌊1/p⌋ − 1. Therefore, we obtain

H(X,µ) = 2
∑

k≤ n

F(n) = 2
∑

k≤ n

(1− (1− p)k+1)

= 2(n+ 1)−
n
∑

k=0

(1− p)k+1

= (n+ 1)−
(1− p)

(

1− (1− p)n+1
)

p

= (1− p)⌊1/p⌋⌊
1

p
⌋ = 2(n+ 1)(1− p)n+1

(64)

3. Logarithmic distribution with parameter 0 < p < 1: The density

f (x) and cumulative distribution function are [20]:

f (k) = −
pk

k log(1− p)
and F(k) = 1+

B(p; k+ 1, 0)

log(1− p)
,

k = 1, 2, . . .

where B(·) is the incomplete beta function. Its mean µ =
−p/((1− p) log(1− p)).

Let n = ⌊µ⌋. Therefore, for the MAD, we obtain

H(X,µ) = 2

n
∑

k=1

F(k) =
n
∑

k=1

(

1+
B(p, k+ 1, 0)

log (1− p)

)

= 2n+
2

log (1− p)

n
∑

k=1

B(p, k+ 1, 0)

= 2n+
2

log (1− p)

n
∑

k=1

[
∫ p

0

tk

(1− t)
dt

]

= 2n+
2

log (1− p)

∫ p

0

[
n
∑

k=1

tk

(1− t)
dt

]

= 2n+
2

log (1− p)

∫ p

0

t(1− tn)

(1− t)2
dt

= 2n+
2

log (1− p)

[∫ p

0

t

(1− t)2
dt

]

−
2B(p; n+ 2,−1)

log(1− p)

To evaluate the integral in the above equation, we note that

log′(1−t) = −1/(1−t) and (1/(1−t))′ = −1/(1−t)2. Therefore,

for this integral, we have

∫ p

0

t

(1− t)2
dt =

[
t

(1− t)
+ log (1− t)

]
∣
∣
∣
∣
∣

p

0

=
p

(1− p)
+ log (1− p)

= −µ log(1− p)+ log(1− p)

Substituting this into the above equation for H(X,µ), we

obtain

H(X,µ) = 2−
2B(p; n+ 2,−1)

log(1− p)
(65)

4. Negative binomial distribution with number of successes

parameter r > 0 and success probability 0 < p < 1: The density

f (x) and cumulative distribution function are [20, 34]:

f (k) =
(
k+ r − 1

k

)

(1− p)kpr and

F(k) = Ip(r, k+ 1), k = 0, 1, 2, . . .

where Ip(·) denotes the regularized incomplete beta

function.

The mean is µ = r(1 − p)/p and standard deviation is

σ =
√

r(1− p)/p. Let n = ⌊µ⌋. Then from Equation 26 we have

F′(n) = I′p(r, n + 1) = (1 − p)npr−1/B(r, n + 1). On the other

hand, we have

F′(n) =
n
∑

k=0

f ′(k) =
n
∑

k=0

(
k+ r − 1

k

)

(

−k(1− p)k−1pr + r(1− p)kpr−1
)

=
n
∑

k=0

[

−
kf (k)

(1− p)
+

rf (k)

p

]

= −
I(n)

(1− p)
+

rF(n)

p

From this, we obtain

I(n) =
r(1− p)

p
F(n)−

(1− p)n+1pr−1

B(r, n+ 1)
= nF(n)−

(1− p)n+1pr−1

B(r, n+ 1)

Using Equation 26 for B·), we obtain for the MAD

H(X,µ) = 2nF(n)− 2I(n) = 2
(1− p)n+1pr−1

B(r, n+ 1)

= 2r

(
n+ r

r

)

(1− p)n+1pr−1 (66)

5. Poisson distribution with rate λ > 0: The density f (x) and

cumulative distribution function F(x) are [20, 34]:

f (k) =
λke−λ

k!
and F(k) = Q(k+1, λ) λ > 0, k = 1, 2, . . .

where Q(·) is the regularized Gamma function in

Equation 25.

The mean is µ = λ and standard deviation is σ =
√

λ. Let
n = ⌊λ⌋. For this distribution, we have

F′(n) =
n
∑

k=1

F′(k) =
n
∑

k=1

[

−
λke−λ

k!
+

k

λ
·
λke−λ

k!

]

= −F(n)+
I(n)

λ

On the other hand, from Equation 24, we have F′(n) =
Q′(n + 1, λ) = −e−λλn/n!. Therefore, I(n) = λF(n) −
e−λλn+1/n! and we obtain for the MAD

H(X,µ) = 2µF(µ)− 2I(µ) = 2nF(n)− 2

[

λF(n)−
e−λλn+1

n!

]

=
2e−λλn+1

n!
(67)

6. Uniform (discrete) distribution on interval [1,N]: The density

f (x) and cumulative distribution function F(x) are [20, 34]:
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f (k) =
1

N
and F(k) =

k

N
, k = {1, . . . ,N}

Its mean µ = N/2 and its standard deviation is σ =√
N2 − 1/2

√
3. Let n = ⌊µ⌋. Then, for the MAD, we obtain

H(X,µ) = 2

n
∑

i=1

F(k) =
(n+ 1)n

N

There are two cases to consider:

(a) N is odd. Then N = (2m+ 1) for some m and µ = (m+ 1).

Then n = (m + 1) and H(X,µ) = (m + 1)(m + 2)/N =
(N − 1)(N + 1)/4N.

(b) N is even. Then N = 2m for some m and µ = (m + 1/2).

Then n = m and H(X,µ) = m(m+ 1)/N = N/4

We summarize both cases as follows:

H(X,µ) =

{
(N−1)(N+1)

4N N is odd
N
4 N is even

(68)

For odd N we can express MAD in terms of σ as H(X,µ) =
12σ 2/N

7. Zipf and zeta distributions We start with generalized Zipf

distribution [20, 34]. Assume X is distributed according to zeta

distribution with parameters s > 1 and integer N. Its density

f (x) and cumulative distribution functions are

f (k) =
k−s

hN,s
and F(k) =

hk,s

hN,s
, k = {1, 2, . . . ,N}

where hk,s is the generalized harmonic number defined as

hk,s =
∑

i≤k i
−s. The mean and standard deviation of this

distribution are

µ =
hN,s−1

hN,s
and σ =

√

hN,s−2 hN,s − h2N,s−1

hN,s

Let n = ⌊µ⌋. Then, using the following equation for the sum
of harmonic numbers

n
∑

k=1

hk,s = (n+ 1)hn,s − hn,s−1 for s > 1

we obtain the MAD of the Zipf ’s distribution with N

elements

H(X,µ) = 2

n
∑

k=1

hk,s

hN,s
= 2

[
(n+ 1)hn,s − hn,s−1

hN,s

]

(69)

For s > 1, we can extend to N = ∞. In this case, we

have the Zeta distribution, with its density f (x) and cumulative

distribution function given by

f (k) =
k−s

ζ (s)
and F(k) =

hk,s

ζ (s)
, k = 1, 2, . . .

where ζ (s) is the Riemann zeta function ζ (s) =
∑

i>0 i
−s.

The mean µ is defined for s > 2 and standard deviation σ is

defined for s > 3 and are

µ =
ζ (s− 1)

ζ (s)
, s > 2 and σ =

√

ζ (s− 2)ζ (s)− ζ 2(s)

ζ (s)
,

s > 3

Let n = ⌊ζ (s− 1)/ζ (s)⌋. Then, using the above equation for

the sum of harmonic numbers we obtain for the MAD of Zeta

distribution:

H(X,µ) = 2

n
∑

k=1

hk,s

ξ (s)
= 2

[
(n+ 1)hn,s − hn,s−1

ξ (s)

]

(70)

7 Concluding remarks

This article presented a unified approach to compute MADs

from cumulative distribution functions. The computation involves

computing integrals of these functions often expressed in closed

form in terms of special functions such as beta, gamma, or error

functions. For many distributions, the integrals of these functions

are well known and the resulting expressions for MADs can be

easily obtained. For some of these distributions, the obtained results

have not been reported elsewhere. We hope that this study will be

useful for researchers and practitioners interested in using mean

absolute deviations.
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