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This study introduced an e�cient method for solving non-linear equations.

Our approach enhances the traditional spectral conjugate gradient parameter,

resulting in significant improvements in the resolution of complex nonlinear

problems. This innovative technique ensures global convergence and descent

condition supported by carefully considered assumptions. The e�ciency and

e�ectiveness of the proposedmethod is highlighted by its outstanding numerical

performance. To validate our claims, large-scale numerical simulations were

conducted. These tests were designed to evaluate the capabilities of our

proposed algorithm rigorously. In addition, we performed a comprehensive

comparative numerical analysis, benchmarking our method against existing

techniques. This analysis revealed that our approach consistently outperformed

others in terms of theoretical robustness and numerical e�ciency. The

superiority of our method is evident in its ability to solve large-scale

problems with accuracy in function evaluations, fewer iterations, and improved

computational performance thereby, making it a valuable contribution to the

field of numerical optimization.

KEYWORDS

non-linear equation, convex constraints, monotone operator, global convergence,

spectral parameter

1 Introduction

In recent years, large-scale systems of nonlinear equations have become increasingly

important in many scientific and engineering fields. Solving these equations is essential for

improving computational techniques across a variety of domains. This study introduces a

novel approach that utilizes iterative optimization methods.

The main goal of this study is to find solutions for the nonlinear monotone system of

equations presented below.

9(x) = 0, x ∈ �. (1)

Lipschitz continuity and monotonicity are the characteristics that define the function

9 :R
n → R

n, where � ⊆ R
n represents a non-empty closed and convex set. In this

context, Rn denotes the n-dimensional real space equipped with the Euclidean norm ‖ · ‖.

Additionally, 9k refers to 9(xk).
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Definition 1.1. A mapping 9 :R
n → R

n is defined as monotone

for any x and y in R
n if the following condition holds:

〈9(x)− 9(y), x− y〉 ≥ 0. (2)

Therefore, Equation 1 is classified as a monotone system of

nonlinear equations if function 9 satisfies the condition outlined

in Equation 2. The study of monotone mappings, which belong

to a category of nonlinear equations, was initially explored in

[26, 32, 42] within the framework of Hilbert spaces.

Many methods can be used to solve these problems,

including Newton and quasi-Newton approaches, conjugate

gradient techniques, fixed-point techniques, and their variations.

For more details, refer to [4, 6, 45].

The system of nonlinear equations described in Equation 1

has various applications in multiple fields. For instance, they

can be used in power flow calculations [38], motion control for

planar robotic manipulators [36], economic equilibrium problems

[18], and chemical equilibrium systems [31]. Furthermore, it has

applications in generalized proximal algorithms that employ the

Bregman distance in Iusem and Solodov [25]. Both fixed-point and

normal maps are utilized to address problems related to monotone

variational inequalities [20, 44]. Each of these contributes to the

development of Equation 1. Recent developments highlight the

effectiveness of signal and image recovery algorithms for solving

nonlinear monotone equation systems [3, 5, 7, 39].

Initial approaches were developed to benefit from the rapid

convergence. However, both techniques require the use of a

Jacobian matrix or its approximation in each iteration to solve

their respective problems. This reliance may affect their ability to

handle complex nonlinear systems of equations (for more details

see [6, 21, 40, 43]).

However, there are various techniques are available for solving

large-scale unconstrained and constrained optimization problems,

including spectral gradient methods, conjugate gradient methods,

and spectral conjugate gradient methods. These approaches offer

several advantages, such as ease of use and minimal storage

requirements. These benefits motivated researchers to further

explore the application of these techniques to solve nonlinear

equations [33, 34].

For example, consider the projection method introduced

by Solodov and Svaiter [35]. This method has inspired many

researchers to expand the use of conjugate gradient (CG) methods

to solve unconstrained optimization problems. These CG methods

serve as effective tools for addressing systems of nonlinear

equations by reformulating the problem to minimize an objective

function. Gradient-based approaches, such as the gradient descent

and conjugate gradient methods, iteratively adjust the variables in

the direction of the steepest descent to find a solution.

The CG-DESCENT method determines the conjugate

parameter for the conjugate gradient method, as discussed

by Liu and Li [30]. To solve Equation 1, Dai et al. [17]

introduced a modified version of Perry’s conjugate gradient-

based derivative-free approach. This approach is used to obtain the

conjugate parameters.

Wang et al. [37] developed a projection-based method to solve

systems of nonlinear monotone equations. At each iteration, a test

point was generated by approximately solving a linear system of

equations. They then created a predictor-corrector point using a

line search technique that follows the search direction determined

by both the test point and the current point. This approach

effectively enhanced the iteration process. To demonstrate the

effectiveness of the algorithm, the authors presented numerical tests

and provided evidence for the global convergence of the method.

Cheng [15] addressed nonlinear monotone equations by

introducing a new approach that combines the traditional

Polak-Ribiere-Polyak (PRP) method with hyperplane projection

techniques. This innovative combination sought to harness the

strengths of both the methods. The PRP method is effective

for iterative optimization, whereas hyperplane projection is

useful for managing constraints and guiding solutions toward

feasible regions.

Liu and Li [28] introduced a spectral DY-type method to

solve nonlinear monotone equations, drawing inspiration from the

well-known Dai-Yuan DY-conjugate gradient parameter [16]. This

approach leverages the unique characteristics of the DY parameter,

which is particularly effective in conjugate gradient methods, and

applies them within a spectral framework to address nonlinear

equations. Building on this, Liu and Li [29] introduced another

DY-type algorithm to solve Equation 1 using a multivariate spectral

approach. Their study integrated both the DY conjugate gradient

parameter and multivariate spectral gradient methodology. They

simulated these approaches and assessed their global convergence.

Notably, before establishing global convergence, they impose a

restriction on the Lipschitz constant, ensuring that L < 1 − r

with r ∈ (0, 1). In recent years, numerous techniques have been

developed to solve Equation 1, several of which are referenced in

[8–10, 12–14, 22, 24].

Abbass et al. [2] introduced a novel approach to solve

monotone nonlinear equations with constraints. This innovative

technique ensures both global and R-linear convergence rates

while satisfying the essential descent conditions. To demonstrate

the effectiveness of their method, the authors conducted two

comprehensive sets of numerical tests [1]. In their study, they

adapted the proposed search direction and extended it to address

a system of nonlinear monotonic equations. Their modifications

to the search direction ensured compliance with the descent

condition, thereby eliminating the need for a line search.

The authors established the global convergence of their

algorithm under valid assumptions, which provided a solid

foundation for their study. The initial experiment highlighted

the superior performance of their approach compared with

existing methods, showcasing its potential for solving constrained

monotone nonlinear equations. The second experiment further

assessed the effectiveness of the algorithm in compressive sensing,

underscoring its versatility and applicability across various problem

domains. Overall, the search direction achieves sufficient descent

without the necessity of a line search.

Motivated by the above-mentioned contributions, in this

study, we introduce an effective spectral conjugate gradient

method designed to tackle convex constraint approaches for

systems of nonlinear monotone equations. Our approach builds

on modifications made to the DY-conjugate gradient method

proposed by Liu and Feng [27]. The proposed method utilizes a
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convex combination of the Dixon-type parameter and a modified

conjugate gradient parameter to define the search direction. These

enhancements are specifically tailored to address the unique

challenges presented in this study.

The following are some of the contributions of this paper:

• The paper presents a new Dixon-type parameter and a

modified conjugate gradient parameter.

• The search direction satisfies the sufficient descent without any

line search.

• The proposed algorithm is applied to solve a large-scale system

of monotone nonlinear equations and, ultimately, to address

some signal processing problems.

2 Preliminaries and algorithm

We propose a spectral conjugate gradient method designed

to effectively tackle nonlinear monotone equation systems with

convex constraints. This method incorporates a modified CD

parameter along with a convex Dixon-type parameter. Our

approach can be viewed as amodification of the concept introduced

by Yu et al. [41]. We demonstrated the global convergence of the

proposed algorithm under reasonable assumptions. Furthermore,

the algorithm was utilized to recover a noisy signal.

Definition 2.1. [3] Let � ⊂ R
n be a non-empty convex and closed

set. Then for any x ∈ R
n its projection onto � is defined as

P�(x) = argmin
{∥∥x− y

∥∥ : y ∈ �
}

(3)

The following property is included in the projection map.:

∥∥P�(x)− y
∥∥ ≤

∥∥x− y
∥∥ , ∀ x, y ∈ R

n (4)

Spectral and conjugate gradient algorithms use the following

formula to generate a sequence of iterations:

xk+1 = xk + αkdk (5)

where xk is the previous iteration, while xk+1 is the current

iteration, αK represents the step size, and dk is the conjugate

gradient search direction as follows:

dk =

{
-9k, if k = 0;

-9k + βkdk−1, if k ≥ 1,
(6)

By using different values for parameters νk and βk, various

spectral and conjugate gradient directions can be developed. The

method can satisfy sufficient descent conditions for direction dk,

which is necessary to ensure global convergence.

9T
k dk ≤ −c ‖9k‖ (7)

where c > 0. The DY conjugate gradient parameter, first proposed

in Dai and Yuan [16], is a well-known parameter provided in this

direction. This is defined as follows:

βDY
k =

‖9k‖
2

yT
k−1

dk−1

(8)

such that, in the direction of Equation 6,

dK =





-9k, if k = 0;

-9k +
‖9k‖

2

yT
k−1

dk−1
if k ≥ 1,

(9)

where yk−1 = 9k − 9k−1. However, Equation 9 fails to satisfy

Equation 7, which is crucial for global convergence. Liu and

Feng [27], modified the approach proposed in Dai and Yuan

[16]. They introduced a spectral conjugate gradient technique

to solve Equation 1. The direction proposed by Liu and Feng

adheres to the condition specified in Equation 7. Additionally, they

presented adequate evidence demonstrating global convergence

under mild assumptions.

Remark 2.2. To solve Equation 1, we propose a new spectral

Dixon-type Global Algorithm convergence (GAC) approach. The

method is described in more detail below, leveraging the convexity

of the Dixon parameter along with a modified conjugate descent

parameter to satisfy the sufficient requirement outlined in property

(Equation 7).

dk =

{
-9k if k = 0;

-9k(1− 8k)+ βGAC
k

dk−1 if k ≥ 1,

(10)

8k =
9T

k
dk−1(

dT
k−1

yk−1

)2 (11)

βGAC
k dk−1 = −

‖9k‖
2

(dT
k−1

yk−1)2
dk−1 and yk−1 = 9k − 9k−1.

(12)

From the definitions of Equations 10, 12, it is easy to obtain

9T
k dk = −‖9k‖

2(1− 8k)−
‖9k‖

2

(dT
k−1

yk−1)2
9T

k dk−1

= −‖9k‖
2


1−

9T
k
dk−1(

dT
k−1

yk−1

)2


 −

‖9k‖
2

(dT
k−1

yk−1)2
9T

k dk−1

= −‖9k‖
2 +

‖9k‖
2

(
dT
k−1

yk−1

)2 9T
k dk−1 −

‖9k‖
2

(dT
k−1

yk−1)2
9T

k dk−1

≤ −‖9k‖
2, (13)

from Equation 13 for c = 1, a sufficient descent (Equation 7)

is satisfied. Therefore, this assures that the sufficient-descent CG

direction for the constrained monotone equation of the Dixon type

is established.
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Input. x0 ∈ R
n, ρ ∈ (0, 1), η > 0, σ > 0, and tol > 0.

Set k : = 0.

Step 1. If ‖9k‖ ≤ tol,

conclude. Otherwise, proceed

to step 2.

Step 2. Compute dk by Equation 10

Step 3. Assume that zk = xk + α̌kdk Then, for each

i = 0, 1, . . . , where i is the smallest non-negative

integer fulfilling, and compute the step

length α̌k = ρi,

− 9(zk)
Tdk ≥ σαk‖dk‖

2. (14)

Step 4. Compute

xk+1 = P�[xk − ηk9(zk)], (15)

where

ηk =
9(zk)

T(xk − zk)

‖9(zk)‖2
, 9(zk) 6= 0. (16)

Step 5. Let k = k+ 1 and restart from Step 1.

Algorithm 1. GAC

3 Convergence analysis

The following section presents a detail investigation of the

global convergence of the proposed method. Before that, we

will provide some assumptions to help establish the theoretical

framework of our study.

Assumption 3.1. (A1) The solution set of Equation 1 is

nonempty and is symbolized by �.

(A2) The mapping 9 is uniformly monotone, i.e., ∀x, y ∈ R
n,

such that

(x− y)T(9(x)− 9(y)) ≥ c
∥∥x− y

∥∥2 . (17)

(A3) Themapping F is Lipschitz continuous, meaning that there

exists a positive constant L such that

∥∥9(x)− 9(y)
∥∥ ≤ L

∥∥x− y
∥∥ , ∀x, y ∈ N. (18)

Remark 3.2. From assumption (Equations 17, 18), we obtain

yTk−1dk−1 ≥ cα̌k−1

∥∥dk−1

∥∥2 . (19)

This implies

1

yT
k−1

dk−1

≤
1

cα̌k−1

∥∥dk−1

∥∥2 < P Where P is a positive number.

(20)

Remark 3.3. It is true from the lemma 3.4 below that

‖xk − x̄‖ ≤ ‖x0 − x̄‖ .

Lemma 3.4. Let Assumptions A1–A3 hold, and that

the sequences {xk} and {zk} are generated by GAC, it

follows that both {xk} and {zk} are bounded. Furthermore,

we have

‖dk‖ ≤ P̂ where P̂ is a positive constant. (21)

lim
k→∞

‖xk − zk‖ = 0 (22)

lim
k→∞

‖xk+1 − xk‖ = 0. (23)

Proof. Consider any solution x̄ ∈ � of Equation 1, and

we show that the sequences {xk} and {zk} are bounded. By

applying the monotonicity principle of 9 , we arrive at the

following conclusion.

(xk − x̄)T9(zk) = (xk − zk + zk − x̄)T9(zk)

= (xk − zk)
T9(zk)+ (zk − x̄)T9(zk)

≥ (xk − zk)
T9(zk)+ (zk − x̄)T9(x̄)

= (xk − zk)
T9(zk). (24)

This can be ascertained by utilizing the characterization

of zk along with the line search criteria described

in Equation 14.

(xk − zk)
T9(zk) ≥ σα2

k‖dk‖
2 > 0. (25)

Nonetheless, by applying Definition 2.1 along with Equation 15,

we can show

‖xk+1 − x̄‖2 = ‖PC[xk − ηk9(zk)]− x̄‖2

≤ ‖xk − ηk9(zk)− x̄‖2

= ‖xk − x̄‖2 − 2ηk(xk − x̄)T9(zk)+ η2k‖9(zk)‖
2

≤ ‖xk − x̄‖2 − 2ηk(xk − zk)
T9(zk)+ η2k‖9(zk)‖

2

= ‖xk − x̄‖2 −
((xk − zk)

T9(zk))
2

‖9(zk)‖2
(26)

≤ ‖xk − x̄‖2,

from which we derive

‖xk+1 − x̄‖ ≤ ‖xk − x̄‖. (27)

This indicates that for all k, the distance ‖xk − x̄‖

is less than or equal to ‖x0 − x̄‖. Clearly, the sequence

{‖xk − x̄‖} exhibits a decreasing pattern. Consequently, set

{xk} is bounded. Additionally, by referring to Equation 27

and applying Assumptions A1–A3, we can gather

more insights.

‖9k‖ = ‖9k − 9(x̄)‖ ≤ L‖xk − x̄‖ ≤ L‖x0 − x̄‖. (28)
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If we let P̂ = L‖x0 − x̄‖, then we can conclude that Also, for k > 0,

using the Equations 10–12, we have

∥∥dk
∥∥ =

∥∥∥∥∥−9k(1− 8k)−
‖9k‖

2 dk−1

(dT
k−1

yk−1)2

∥∥∥∥∥

≤ ‖9k‖ +
‖9k‖

2
∥∥dk−1

∥∥
|dT

k−1
yk−1|

2
+

‖9k‖
2
∥∥dk−1

∥∥
|dT

k−1
yk−1|

2

≤ ‖9k‖ +
‖9k‖

2
∥∥dk−1

∥∥

c2α̌2
k−1

∥∥dk−1

∥∥4 +
‖9k‖

2
∥∥dk−1

∥∥

c2α̌2
k−1

∥∥dk−1

∥∥4

≤ ‖9k‖ + 2
‖9k‖

2

c2α̌2
k−1

∥∥dk−1

∥∥3

≤ P̂ +
2̂P2

c2α̌2
k−1

∥∥dk−1

∥∥3

≤ P̂ + 2̂P2P

where P = 1

c2α̌2
k−1‖dk−1‖

3 . From inequality (Equation 20) in the

Remark 3.2 therefore, limk → ∞αk‖dk‖ = 0, this implies that

α2
k−1

∥∥dk−1‖
〈
∞. P̂ bound of which defined in Equation 21.

From Equation 26, we have

((xk − zk)
T9(zk))

2 ≤ ‖9(zk)‖
2(‖xk − x̄‖2 − ‖xk+1 − x̄‖2) (29)

Based on the line search condition (Equation 14), we can infer

σ 2α2
k‖dk‖

4 ≤ α2
k(9(zk)

Tdk)
2. (30)

By merging Equation 29 with Equation 30, it can be concluded

that

σ 2α2
k‖dk‖

4 ≤ ‖9(zk)‖
2(‖xk − x̄‖2 − ‖xk+1 − x̄‖2). (31)

Because of boundedness of the sequence {9(zk)} and the

convergence of {‖xk − x̄‖}, we can take the limit of both sides of

Equation 31 to derive the following result.

σ 2 lim
k→∞

α2
k‖dk‖

4 ≤ 0,

thus

lim
k→∞

αk‖dk‖ = 0. (32)

By combining Equation 31 with the definition of zk, we can

deduce that Equation 22 is valid. Nonetheless, from the definition

of ηk, we can derive

‖xk+1 − xk‖ = ‖xk − ηk9(zk)− xk‖

= ‖ηk9(zk)‖

≤ ‖xk − zk‖.

(33)

This refers to Equation 23.

Theorem 3.5. Assuming that Assumptions A1–A3 are satisfied,

and considering the sequences {xk} and {zk} produced by the GAC

method, we obtain the following result:

lim inf
k→∞

‖9k‖ = 0. (34)

Proof. If we assume that Equation 34 is invalid, we can approach

this with a proof by contradiction. This implies that there must be

a positive value, denoted as ǫ0, such that:

‖9k‖ ≥ ǫ0 holds, ∀k > 0.

If we assume that ‖dk‖ 6= 0 at all points except at the solution,

then there exists a constant referred to as ǫ1

‖dk‖ ≥ ǫ1.

If the step length αk 6= ξ , then αk, ρ−1αk does not satisfy

(Equation 14) i.e.,

− 9(xk + ρ−1αkdk)
Tdk < σρ−1αk‖dk‖

2. (35)

Thus, combining Equations 13, 35 gives us

c‖9k‖
2 ≤ −9(xk)

Tdk,

= (9(xk + ρ−1αkdk)− 9(xk))
Tdk − 9(xk + ρ−1αkdk)

Tdk,

≤ σρ−1αk‖dk‖
2 + Lρ−1αk‖dk‖

2.

= αk‖dk‖(σ + L)ρ−1‖dk‖. (36)

Therefore, using Equation 36, we can conclude that

αk‖dk‖ >
c‖9k‖

2

‖dk‖

ρ

(σ + L)
≥

cǫ20
P̂

ρ

(σ + L)
. (37)

The inequality in Equation 37 contradicts Equation 32.

Therefore, Equation 34 holds, and the proof is complete.

4 Numerical simulation

This section assesses the numerical efficiency of the proposed

Algorithm 1 GAC using two different methodologies: the ETTDFP

technique introduced by Abdullahi et al. [5], and the MCHCG

method outlined by Nermeh et al. [33]. To evaluate the

performance of the algorithm, we considered key metrics such

as the number of iterations (IT), number of function evaluations

(FUNVAL), and computational time (CPUTIME) required to

approximate a solution. The effectiveness of a solver is determined

by its ability to achieve the lowest IT, FUNVAL, and CPUTIME

values across a wide range of problem instances. Therefore,

the most effective or exemplary solver is identified as one that

demonstrates superior performance by minimizing these metrics

across various problem sets. For the implementation of the GAC

algorithm, we set the parameters as follows: γ = 1.9, ρ = 0.6, σ =

0.0001, µ = 0.23. Parameters for ETTDFP and MCHCG are adopted

as specified in Abdullahi et al. [5], Nermeh et al. [33], respectively.

The experiments are carried out on a PC with an Intel Celeron

(R) processor, 16GB of RAM, and a 2.9GHz CPU usingMatlab 8.3.0

(R2014a). We set the number of iterations exceeds 1,000, or when

‖9k‖ ≤ 10−6, the terminating condition is set.

The numerical simulation was conducted using the following

five dimensions and six initial points. 1,000, 5,000, 10,000, 50,000,

and 100,000 and x1 = (1, . . . , 1)T , x2 =
(
1
2 , . . . ,

1
2n

)T
, x3 =(

1 − 1
n , 1 −

2
n , . . . , 0)

T , x̃4 =
(
1, 12 , . . . ,

1
n

)T
,x5 = (2, . . . , 2)T , and

x6 = (−10, . . . , 0)T , respectively.
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TABLE 1 Numerical results for GAC, ETTDFP, MCHCG on Problem 1.

GAC ETTDFP MCHCG

DIMENSION IP IT FUNVAL CPUTIME FNORM IT FUNVAL CPUTIME FNORM IT FUNVAL CPUTIME FNORM

1,000 ×1 1 2 0.187906 0 3 4 0.011614 0 15 17 0.012023 5.88E-08

×2 1 2 0.004859 0 3 4 0.011499 0 14 16 0.006611 8.36E-08

×3 1 2 0.005904 0 2 3 0.009385 0 21 22 0.006064 5.79E-08

×4 1 2 0.003155 0 1 2 0.001794 0 1 2 0.000897 0

×5 1 2 1.088662 65,535 3 4 0.005433 0 17 19 0.005869 9.43E-08

×6 1 2 1.023715 65,535 2 3 0.002208 0 18 20 0.006775 5.1E-08

5,000 ×1 1 2 0.019085 0 3 4 0.007261 0 16 18 0.018958 3.07E-08

×2 1 2 0.002386 0 3 4 0.006557 0 15 17 0.015454 5.59E-08

×3 1 2 0.00332 0 2 3 0.004036 0 21 22 0.020028 5.79E-08

×4 1 2 0.003866 0 1 2 0.002218 0 1 2 0.00157 0

×5 1 2 5.178917 65535 3 4 0.009314 0 18 20 0.019375 6.4E-08

×6 1 2 4.979207 65,535 2 3 0.007755 0 18 20 0.016211 5.09E-08

10,000 ×1 1 2 0.007935 0 3 4 0.017278 0 16 18 0.035812 4.18E-08

×2 1 2 0.003487 0 3 4 0.012889 0 15 17 0.034252 7.9E-08

×3 1 2 0.003689 0 2 3 0.006984 0 21 22 0.036558 5.79E-08

×4 1 2 0.003429 0 1 2 0.003348 0 1 2 0.002511 0

×5 1 2 4.779059 65,535 3 4 0.01499 0 18 20 0.032375 9.07E-08

×6 1 2 4.778832 65,535 2 3 0.009836 0 18 20 0.041894 5.09E-08

50,000 ×1 1 2 0.012978 0 3 4 1.073263 0 17 19 2.729704 8.53E-08

×2 1 2 0.011819 0 3 4 0.925199 0 17 19 2.576433 5.03E-08

×3 1 2 0.011081 0 2 3 0.583033 0 21 22 3.10187 5.79E-08

×4 1 2 0.009158 0 1 2 0.238717 0 1 2 0.163703 0

×5 1 2 13.74766 65,535 3 4 0.980325 0 20 22 2.86621 5.78E-08

×6 1 2 14.59721 65,535 2 3 0.603938 0 18 20 2.656582 5.09E-08

100,000 ×1 1 2 0.032275 0 3 4 0.107887 0 17 19 0.294908 3.83E-08

×2 1 2 0.028545 0 3 4 0.098317 0 16 18 0.262582 7.5E-08

×3 1 2 0.02408 0 2 3 0.060306 0 21 22 0.313595 5.79E-08

×4 1 2 0.023612 0 1 2 0.021636 0 1 2 0.018872 0

×5 1 2 31.05992 65,535 3 4 0.147515 0 19 21 0.314953 8.62E-08

×6 1 2 25.69789 65,535 2 3 0.053082 0 18 20 0.279107 5.09E-08
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TABLE 2 Numerical results for GAC, ETTDFP, MCHCG on Problem 2.

GAC ETTDFP MCHCG

DIMENSION IP IT FUNVAL CPUTIME FNORM IT FUNVAL CPUTIME FNORM IT FUNVAL CPUTIME FNORM

1,000 ×1 1 2 0.083454 0 2 3 0.001777 0 4 6 0.007597 3.6E-08

×2 1 2 0.001465 0 2 3 0.001102 0 3 5 0.001884 5.17E-10

×3 1 2 0.001305 0 2 3 0.001426 6.45E-20 134 135 0.032247 5.08E-08

×4 1 2 0.0012 0 1 2 0.000849 0 1 2 0.000953 0

×5 1 2 0.3145 155.8398 2 3 0.001498 0 1,001 1,002 0.270356 4.93E-05

×6 1 2 0.293803 155.8398 2 3 0.001248 0 190 191 0.044241 7.14E-10

5,000 ×1 1 2 0.002322 0 2 3 0.002331 0 4 6 0.004408 6.26E-09

×2 1 2 0.001837 0 2 3 0.002067 0 3 5 0.003483 3.5E-11

×3 1 2 0.00212 0 2 3 0.002174 1.28E-20 233 234 0.210131 2.55E-09

×4 1 2 0.00186 0 1 2 0.001555 0 1 2 0.001444 0

×5 1 2 1.101009 508.6249 2 3 0.002482 0 1,001 1,002 0.732673 0.000861

×6 1 2 1.093716 508.6249 2 3 0.002126 0 276 277 0.192649 3.15E-10

10,000 ×1 1 2 0.002888 0 2 3 0.003274 0 4 6 0.007159 3.62E-09

×2 1 2 0.003526 0 2 3 0.003661 0 3 5 0.005857 1.21E-11

×3 1 2 0.003605 0 2 3 0.003755 6.41E-21 247 248 0.352513 1.83E-11

×4 1 2 0.00306 0 1 2 0.002203 0 1 2 0.002049 0

×5 1 2 2.110348 807.4756 2 3 0.003551 0 1,001 1,002 1.46612 0.006191

×6 1 2 2.181007 807.4756 2 3 0.003246 0 268 269 0.380806 2.08E-09

50,000 ×1 1 2 0.008915 0 2 3 0.22538 0 4 6 0.522835 4.28E-10

×2 1 2 0.010824 0 2 3 0.249339 0 2 4 0.359095 5.81E-08

×3 1 2 0.012086 0 2 3 0.235237 1.28E-22 262 263 28.39929 1.17E-12

×4 1 2 0.008866 0 1 2 0.134599 0 1 2 0.116933 0

×5 1 2 7.718992 2,193.948 2 3 0.250771 0 1,001 1,002 109.5338 0.054346

×6 1 2 7.810252 2,193.948 2 3 0.237741 0 283 284 31.15074 4.31E-08

100,000 ×1 1 2 0.021907 0 2 3 0.022368 0 4 6 0.057068 9.27E-10

×2 1 2 0.019961 0 2 3 0.024968 0 2 4 0.037532 5.4E-08

×3 1 2 0.018858 0 2 3 0.023189 6.41E-22 278 279 3.221168 8.76E-10

×4 1 2 0.019755 0 1 2 0.013169 0 1 2 0.013482 0

×5 1 2 13.75431 3,300.624 2 3 0.035616 0 1,001 1,002 11.78903 0.020371

×6 1 2 13.28197 3,300.624 2 3 0.03504 0 274 275 3.189057 1.8E-08
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TABLE 3 Numerical results for GAC, ETTDFP, MCHCG on Problem 3.

GAC ETTDFP MCHCG

DIMENSION IP IT FUNVAL CPUTIME FNORM IT FUNVAL CPUTIME FNORM IT FUNVAL CPUTIME FNORM

1,000 ×1 33 35 0.061267 3.77E-08 1,000 1,002 0.711108 36.6359 40 42 0.022977 3.14E-22

×2 29 31 0.01654 4.28E-08 1,001 1,002 0.673643 36.6359 34 36 0.012625 2.09E-22

×3 31 33 0.017779 5.6E-08 1,001 1,002 0.763057 38.73264 36 38 0.011744 6.7E-08

×4 31 33 0.018911 6.86E-08 1,001 1,002 0.657965 76.85482 1,001 1,002 0.305686 0.001308

×5 31 33 0.026104 7.28E-08 1,001 1,002 0.647907 109.0923 42 44 0.01349 2.15E-23

×6 27 29 0.015854 4.45E-08 1,001 1,002 0.649335 76.85482 37 39 0.011883 9.06E-08

5,000 ×1 33 35 0.061059 8.42E-08 1,001 1,002 2.600159 81.92037 41 43 0.0482 7.02E-22

×2 29 31 0.050432 9.57E-08 1,001 1,002 2.589881 81.92037 35 37 0.053476 7.02E-22

×3 33 35 0.055563 4.23E-08 1,001 1,002 2.50181 83.7947 36 38 0.047931 6.7E-08

×4 33 35 0.057524 5.18E-08 1,001 1,002 2.803237 150.5128 167 169 0.210567 9.98E-08

×5 33 35 0.055411 5.5E-08 1,001 1,002 2.859141 243.4822 44 46 0.041369 1.82E-23

×6 27 29 0.046703 4.45E-08 1,001 1,002 2.865702 160.8534 37 39 0.047249 9.06E-08

10,000 ×1 35 37 0.117964 4.02E-08 1,001 1,002 5.162117 115.8529 41 43 0.084818 0

×2 31 33 0.101451 4.57E-08 1,001 1,002 5.197521 115.8529 35 37 0.077685 0

×3 33 35 0.11354 5.98E-08 1,001 1,002 5.237432 117.3946 36 38 0.073569 6.7E-08

×4 33 35 0.125004 7.33E-08 1,001 1,002 4.613329 216.2938 1,001 1,002 2.252493 0.000471

×5 33 35 0.113932 7.78E-08 1,001 1,002 4.651168 344.3359 44 46 0.084387 2.65E-23

×6 27 29 0.097658 4.45E-08 1,001 1,002 4.44102 229.4259 37 39 0.081384 9.07E-08

50,000 ×1 35 37 0.454657 8.99E-08 1,001 1,002 4.44102 229.4259 37 39 5.673541 8.61E-19

×2 33 35 0.428168 3.45E-08 1,001 1,002 4.44102 229.4259 29 31 4.522275 1.5E-19

×3 35 37 0.438815 4.52E-08 1,001 1,002 4.44102 229.4259 36 38 5.537648 6.7E-08

×4 35 37 0.450555 5.53E-08 1,001 1,002 4.44102 229.4259 134 136 21.12405 9.71E-08

×5 35 37 0.426858 5.87E-08 1,001 1,002 4.44102 229.4259 41 43 6.664557 2.21E-21

×6 27 29 0.390992 4.45E-08 1,001 1,002 4.44102 229.4259 37 39 5.790502 9.07E-08

100,000 ×1 37 39 0.898639 4.29E-08 1,001 1,002 4.44102 229.4259 38 40 0.667605 3.35E-20

×2 33 35 0.79582 4.88E-08 1,001 1,002 4.44102 229.4259 32 34 0.54808 2.51E-20

×3 35 37 0.864856 6.39E-08 1,001 1,002 4.44102 229.4259 36 38 0.629592 6.7E-08

×4 35 37 0.824666 7.82E-08 1,001 1,002 4.44102 229.4259 142 144 2.631263 8.94E-08

×5 35 37 0.870839 8.3E-08 1,001 1,002 4.44102 229.4259 42 44 0.756485 3.45E-22

×6 27 29 0.746045 4.45E-08 1,001 1,002 4.44102 229.4259 37 39 0.656352 9.07E-08
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TABLE 4 Numerical results for GAC, ETTDFP, MCHCG on Problem 4.

GAC ETTDFP MCHCG

DIMENSION IP IT FUNVAL CPUTIME FNORM IT FUNVAL CPUTIME FNORM IT FUNVAL CPUTIME FNORM

1,000 ×1 8 9 0.04393 0 1,001 1,002 1.82408 5.96E-06 1,001 1,002 0.875398 6.27E-06

×2 9 10 0.022243 0 1,001 1,002 1.881007 5.96E-06 1,001 1,002 0.856166 6.27E-06

×3 8 9 0.02361 0 1,001 1,002 1.882309 5.96E-06 1,001 1,002 0.860569 6.27E-06

×4 8 9 0.020559 0 1,001 1,002 1.961857 5.96E-06 1,001 1,002 0.852448 6.27E-06

×5 8 9 0.025226 0 1,001 1,002 2.026935 5.96E-06 1,001 1,002 0.858876 6.27E-06

×6 9 10 0.020077 0 1,001 1,002 1.903949 5.96E-06 1,001 1,002 0.849638 6.26E-06

5,000 ×1 8 9 0.103321 0 1,001 1,002 9.652391 18,743.49 1,001 1,002 4.474593 5.62E-07

×2 9 10 0.079894 0 1,001 1,002 9.420364 18,743.49 1,001 1,002 4.497466 5.62E-07

×3 8 9 0.073777 0 1,001 1,002 9.199823 18743.49 1,001 1,002 4.548933 5.62E-07

×4 8 9 0.071923 0 1,001 1,002 9.137648 18,743.49 1,001 1,002 4.544428 5.63E-07

×5 8 9 0.07874 0 1,001 1,002 9.119286 18,743.49 1,001 1,002 4.541519 5.62E-07

×6 9 10 0.074865 0 1,001 1,002 9.090157 18,743.49 1,001 1,002 4.543953 5.62E-07

10,000 ×1 8 9 0.147682 0 1,001 1,002 18.51882 37,483.27 1,001 1,002 8.992783 1.99E-07

×2 9 10 0.155665 0 1,001 1,002 18.83241 37,483.27 1,001 1,002 9.048869 1.99E-07

×3 8 9 0.153659 0 1,001 1,002 18.9005 37483.27 1,001 1,002 8.884663 1.99E-07

×4 8 9 0.164511 0 1,001 1,002 18.6759 37,483.27 1,001 1,002 8.839898 1.99E-07

×5 8 9 0.151749 0 1,001 1,002 18.67724 37,483.27 1,001 1,002 8.91531 1.99E-07

×6 9 10 0.155314 0 1,001 1,002 18.63457 37,483.27 1,001 1,002 8.694682 1.99E-07

50,000 ×1 8 9 0.79028 0 1,001 1,002 94.78275 187,401.4 50 51 23.63302 8.12E-08

×2 8 9 0.824519 0 1,001 1,002 95.88751 187,401.4 41 42 19.37015 9.04E-08

×3 8 9 0.76133 0 1,001 1,002 95.12493 187401.4 42 43 19.85428 9.26E-08

×4 8 9 0.792204 0 1,001 1,002 93.95787 187,401.4 61 62 28.59468 8.22E-08

×5 8 9 0.787887 0 1,001 1,002 93.99665 187,401.4 45 46 21.3508 7.91E-08

×6 9 10 0.83819 0 1,001 1,002 95.01987 187,401.4 49 50 22.91484 7.53E-08

100,000 ×1 8 9 1.559308 0 1,001 1,002 187.6321 374,799.1 50 51 4.534272 9.58E-08

×2 8 9 2.095699 0 1,001 1,002 188.2328 374,799.1 42 43 3.764695 7.95E-08

×3 8 9 1.656212 0 1,001 1,002 188.221 374,799.1 42 43 3.761439 9.31E-08

×4 8 9 1.56322 0 1,001 1,002 190.9567 374,799.1 61 62 5.488447 8.23E-08

×5 8 9 1.512854 0 1,001 1,002 189.4707 374,799.1 46 47 4.0781 8.04E-08

×6 9 10 1.642122 0 1,001 1,002 188.5852 374,799.1 49 50 4.453714 7.59E-08
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TABLE 5 Numerical results for GAC, ETTDFP, MCHCG on Problem 5.

GAC ETTDFP MCHCG

DIMENSION IP IT FUNVAL CPUTIME FNORM IT FUNVAL CPUTIME FNORM IT FUNVAL CPUTIME FNORM

1,000 ×1 0 1 0.022636 0 2 3 0.004452 0 0 1 0.00064 0

×2 3 4 0.01231 0 2 3 0.001467 0 113 115 0.10884 9.48E-08

×3 3 4 0.006289 0 2 3 0.001485 0 133 135 0.120173 9.71E-08

×4 3 4 0.00621 0 1 2 0.001196 0 99 101 0.096327 8.8E-08

×5 3 4 0.005268 0 2 3 0.001956 0 122 124 0.111456 9.89E-08

×6 2 3 0.003502 0 2 3 0.001417 0 178 180 0.173377 9.9E-08

5,000 ×1 0 1 0.001296 0 2 3 0.004362 0 0 1 0.00099 0

×2 3 4 0.015373 0 2 3 0.003642 0 94 96 0.424874 8.78E-08

×3 3 4 0.019185 0 2 3 0.002919 0 120 122 0.519455 9.43E-08

×4 3 4 0.017707 0 1 2 0.001129 0 143 145 0.640742 8.78E-08

×5 3 4 0.0155 0 2 3 0.004127 0 104 106 0.450532 8.5E-08

×6 2 3 0.009959 0 2 3 0.003233 0 172 174 0.592244 9.81E-08

10,000 ×1 0 1 0.001701 0 2 3 0.006454 0 0 1 0.001224 0

×2 3 4 0.026622 0 2 3 0.008108 0 89 91 0.763578 9.47E-08

×3 3 4 0.034644 0 2 3 0.006247 0 126 128 1.084023 9.32E-08

×4 3 4 0.033408 0 1 2 0.001923 0 192 194 1.768192 8.74E-08

×5 3 4 0.024845 0 2 3 0.005447 0 97 99 0.845082 9.81E-08

×6 2 3 0.015903 0 2 3 0.006515 0 174 176 1.262514 8.77E-08

50,000 ×1 0 1 0.005401 0 2 3 0.029293 0 0 1 0.063181 0

×2 3 4 0.090641 0 2 3 0.019624 0 57 59 41.03707 8.69E-08

×3 3 4 0.129273 0 2 3 0.01996 0 221 223 111.4172 9.93E-08

×4 3 4 0.142823 0 1 2 0.00583 0 2 3 1.045807

×5 3 4 0.099415 0 2 3 0.024713 0 66 68 46.94276 9.89E-08

×6 2 3 0.08018 0 2 3 0.023054 0 220 222 106.2384 9.72E-08

100,000 ×1 0 1 0.014038 0 2 3 0.04305 0 0 1 0.007511 0

×2 3 4 0.176896 0 2 3 0.040733 0 77 79 6.20199 9.36E-08

×3 3 4 0.232551 0 2 3 0.034945 0 134 136 9.189313 9.89E-08

×4 3 4 0.257595 0 1 2 0.008183 0 2 3 0.118848

×5 3 4 0.204156 0 2 3 0.043519 0 88 90 6.93369 9.72E-08

×6 2 3 0.113291 0 2 3 0.043119 0 169 171 10.51726 8.82E-08
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FIGURE 1

Dolan and Moré performance profile with respect to ITER.

Eight different problems are used for the evaluation, where

9 = (91,92, ...,9n)
T .

Problem 1 [11]

91(x) = ex1 − 1,

9i(x) = exi + xi − 1, i = 2, 3, . . . , n− 1,

where � = R
n
+.

Problem 2 [11]

91(x) = ex1 − 1,

9i(x) = xi − sin |xi − 1|, i = 1, 2, . . . , n,

where � = R
n
+.

Problem 3 [11]

91(x) = ex1 − 1,

9i(x) = 2xi − sin |xi|, i = 1, 2, . . . , n,

where � = R
n
+.

Clearly, Problem 3 is non-smooth at y = 0.

Problem 4 [23]

91(x) = ex1 − 1,

9i(x) = exi − 1, i = 1, 2, . . . , n,

where � = R
n
+.

Problem 5 [2]

91(x) = cos(x1)− 9+ 3x1 + 8 exp(x2), i = 1, 2, . . . , n,

9i(x) = cos(xi)− 9+ 3xi + 8 exp(xi−1), i = 1, 2, . . . , n,

whereas � = R
n
+.

Tables 1–5 offer a thorough summary of the numerical

experiments carried out, providing important information

including the number of function evaluations (FVAL), iterations

(ITER), CPU time (TIME), and the function value at the

approximate solution. These tables are crucial for evaluating the

FIGURE 2

Dolan and Moré performance profile with respect to FVAL.

FIGURE 3

Dolan and Moré performance profile with respect to TIME.

efficiency and performance of the studied algorithms across various

problem scenarios. By thoroughly analyzing the data presented

in these tables, researchers can enhance their understanding

of the convergence behavior, computational efficiency,

and overall effectiveness of each method in addressing the

optimization tasks.

Figures 1–3 illustrate performance profiles using Dolan and

Moré methodology [19]. These fig-depicts the comparative

performance of the GAC algorithm in relation to HDP and

DLP across key factors such as ITER, FVAL, and TIME.

These profiles provide a comprehensive understanding of the

relative efficiency and effectiveness of each algorithm in solving

optimization problems.
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Based on the analysis in Figures 1–3, it is clear that the

Global Algorithm Convergence (GAC) algorithm is the top

performer. This demonstrates superior accuracy and potential

across all evaluated parameters. One particularly notable aspect

is the performance in terms of the number of iterations.

As shown in Figure 1, GAC consistently outperformed HDP

and DLP and, converged with fewer iterations in most cases.

Importantly, the instance demonstrates exceptional performance,

with GAC successfully converging in over 80% of the cases

using fewer iterations compared to both HDP and DLP.

This highlights the effectiveness and efficiency of the GAC

algorithm in solving optimization problems, making it highly

promising.

Furthermore, Figures 2, 3 shed light on the efficiency of

GAC which proves to be more efficient by succeeding in

almost 82% of the examples with a lower number of function

evaluations. However, it is worth noting that GAC exhibits

suboptimal performance in terms of CPU time compare to the

other metrics.

5 Conclusions

This study introduces a groundbreaking iterative optimization

method that surpasses the traditional spectral conjugate gradient

technique. By incorporating a novel line-search-independent

projection approach tailored for solving complex monotone

systems of nonlinear equations under convex constraints, we

achieve global convergence with remarkable efficiency and

effectiveness. Extensive numerical experiments on challenging

problems with up to 100,000 dimensions validated the

superior performance of our method. Comparative analyses

against established techniques consistently highlight its

robust theoretical foundations and exceptional numerical

efficiency, establishing it as a significant advancement in

iterative optimization.
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