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Unstable interfaces govern many processes in fluids, plasmas, materials, in

nature and technology. In distinct physical environments, the interface dynamics

exhibit similar characteristics and couple micro to macro scales. Our work

establishes the rigorous theory examining the classical problem of the dynamics

of an interface with mass and energy fluxes under destabilizing accelerations.

We consider thermally conducting fluids in the low Mach regime with weak

compressibility prevailing over thermal transport. We find the attributes of

perturbation waves, solve the boundary value problem, and identify the flow

field structure, the interface perturbations growth, and the interface velocity.

The interface dynamics is stabilized primarily by the inertial mechanism and

is unstable when the acceleration exceeds a threshold. The thermal heat flux

provides extra stabilizations, seeds energy perturbations, creates the vortical field

in the bulk, and rescales the interface velocity. Our results agreewith experiments

in plasmas and complex fluids and with contained turbulence experiments. We

outline extensive benchmarks for experiments and simulations and chart future

research directions.

KEYWORDS

interface dynamics, multiphase dynamics, boundary value problem, fluid instabilities,
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1 Introduction

Interfaces and interfacial mixing are omnipresent in nature and technology in fluids,

plasmas, and materials [1, 2]. Examples of relevant processes include the supernova blasts,

the convection in planetary interiors, the confluence of rivers, the materials processing

in nanofabrication, the detonation of energetic materials, the purification of water, and

the inertial confinement fusion [3–13]. In these realistic environments, the relaxations are

weak, the energy releases are high, the accelerations are strong, the matter (fluid, plasma,

and material) has well separated phases, and its fields change sharply and rapidly [3–13].

The matters are discerned by a phase boundary—an interface that can be microscopically

thin and can have the macroscopically observable fluxes of mass and energy [7–11]. The

interface dynamics couple micro to macro scales. It is challenging to study in theory,

experiments, and simulations [3–16]. Our work examines and finds characteristics of the

interface dynamics in thermally conducting fluids in the low Mach regime [16].

Dynamics of a phase boundary is a classical problem in science, mathematics, and

engineering [1–16]. A phase boundary is defined broadly as an interface separating

different matters [15, 16]. These can be the distinct kinds of matter; it can be the same kind

of matter having distinct thermodynamic characteristics, or undergoing a phase transition

or changing a chemical composition [15, 16]. A conventional wisdom is that for immiscible
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matters the interface is thin and it is a front with zero mass

flux, whereas for miscible matters the interface is thick and it

has diffusive transports of mass and energy across it [12–14].

In realistic matters (e.g., complex fluids, high energy density

plasmas, and energetic materials), a thin interface can have

observable fluxes of mass and energy, well beyond diffusion

scenarios [3, 5, 7–11]. The matter’s properties change dramatically

at miniscule scales [1–5, 7–11, 14–19]. This causes the occurrence

of the microscopic transports at the interface and the formation

of the macroscopic fields in the bulk [15, 16]. The rigorous

theory is required to capture the multiphase dynamics in realistic

conditions [15, 16].

The theory of interface dynamics is an intellectual challenge

[1–3, 6, 14–16, 20]. It demands one to solve a singular boundary

value problem at a freely evolving discontinuity and an ill-posed

initial value problem, in addition to solving the governing—

non-linear partial differential—equations in the bulk [14–16].

For fronts in Rayleigh–Taylor/Richtmyer–Meshkov instabilities,

the linear theories were developed [21–26]; the group theory

captured the unstable dynamics in the scale-dependent and self-

similar regimes [3, 27, 28]. For interfaces with mass and energy

fluxes, the rigorous theory of multiphase dynamics was recently

developed [15, 16, 29, 30]. It discovered the inertial mechanism

of the interface stabilization and the instabilities of the accelerated

interface in ideal fluids and in realistic fluids in the regimes

of advection, diffusion, and low Mach [15, 16]. It resolved the

prospect of Landau [20] and found that the classical Landau’s

solution for Landau–Darrieus instability is a perfect mathematical

match [6, 14–16, 29, 30].

Our present work examines the interface dynamics in

thermally conducting fluids in the low Mach regime [16]. In

this regime, the flow fields are subsonic, the length scale set

by the thermal conductivity is substantially greater than that set

by the initial perturbation, and the compressibility prevails over

the thermal transport [16]. The low Mach regime is important

to study: because it focuses on the effect of the thermal heat

flux on the interface dynamics, and because the dominance of

compressibility enables one to capture a direct link between the

thermal heat flux at the interface and the vortical structures

in the bulk [16, 29, 30]. Potential applications of our present

work range across research areas from astrophysical to atomic

scales [1–13].

Particularly, in a type-Ia supernova, the interfacial mixing

of matters of a progenitor star enables synthesis of iron peak

chemical elements [3, 4, 31, 32]. The process of mixing of

matter in solar and planetary interiors is affected by finger

type interfacial structures bearing mass and momentum inside

the convection zone [33, 34]. At geophysical scales, the global

stability of the interface in the confluence of rivers is a

long-standing puzzle [35, 36, 69]. The far from equilibrium

dynamics of interfaces is critical for capturing realistic turbulent

processes, such as turbulent combustion, turbulent mixing, and

compressible turbulence [37, 38]. An in-depth understanding of

the interface dynamics is needed for effectiveness of purification

of water [10, 39] and the transportation security of liquefied

natural gas [40]. The comprehension of the coupling of

microscopic interfacial transports and macroscopic volumetric

fields is essential for the detonation of energetic materials,

the materials processing in nanofabrication, and the micro-

fluidics [7–9, 41–44]. The control upon the interfacial mixing

of hot and cold neutral plasmas and the ablative stabilization

of plasmas are critically important in the inertial confinement

fusion [5, 45, 46].

In these realistic vastly distinct physical environments,

the interface dynamics exhibits similar characteristics [1–3,

15, 16]. It can be viewed as a theoretical problem of the

dynamics of the interface with mass and energy fluxes [14–

16]. To solve this problem, we employ the rigorous analytical

framework [15, 16, 29]. We self-consistently derive the boundary

conditions at the interfaces from the governing equations in

the bulk, including the conditions balancing the fluxes of

mass, momentum, and energy and the conditions for the

thermal heat flux. We obtain the structure of the perturbation

waves: the mechanical and energetic waves in the bulk of

the heavy and the light fluids and the interface perturbation.

We rigorously solve the boundary value problem in the low

Mach regime and identify the structure of the flow fields

in the bulk, the interface stability, the growth rate of the

interface perturbations, and the interface velocity. The inertial

and accelerated dynamics are considered in a broad range

of parameters.

We find that in the low Mach regime, the interface is

stabilized primarily by the macroscopic inertial mechanism.

The microscopic thermodynamics and the thermal heat provide

additional stabilizations. The inertial dynamics is stable at

global scales. The accelerated dynamics is stable only when the

acceleration magnitude exceeds a threshold. The seeds of the

thermal heat flux create the energy perturbations and the vortical

field in the bulk and rescale the effective interface velocity.

When the seeds are absent, the low Mach dynamics in thermally

conducting fluids coincides with the conservative dynamics in ideal

fluids [15, 16, 29].

Our theory defines the interface as the place where balances

are achieved. We elaborate qualitative and quantitative attributes

of the low Mach dynamics not measured and diagnosed before.

This calls for further developments of theoretical approaches,

numerical methods, and experimental metrologies of the interface

dynamics [6–11, 20, 47–53, 56–59]. Our theoretical results are

consistent with and explain the geophysical observations, the

experiments in high energy density plasmas, the experiments in

complex fluids, and the experiment on contained turbulence [39,

54, 55].

The study is structured as follows: After the Introduction

in Section 1, we present Theoretical foundations in Section 2:

governing equations (2.1), theoretical approximation (2.2), and

methodology (2.3). Results are given in Section 3: solutions

structure (3.1), boundary value problem (3.2), fundamental

solutions (3.3), thermal heat flux (3.3), inertial dynamics (3.4), and

accelerated dynamics (3.5). Theory Outcomes are given in Section

4: comparison with models (4.1), comparison with observations

(4.2), and benchmarks and diagnostics (4.3). Summary is in Section

5. Acknowledgments, Data availability, Author contributions,

Conflict of interest, Generative AI statement, Publisher’s note and

References are provided.
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FIGURE 1

Schematics of the dynamics (in a far field, not to scale). Blue color

marks the planar interface (dashed line) and the perturbed interface

(solid curve).

2 Theoretical foundations

2.1 Governing equations

The governing equations are the partial differential equations

including the conservation laws in the bulk, the boundary

conditions at the interface, the boundary conditions far away from

the interface, and the initial conditions [14–16]. Figure 1 presents

the schematics of the problem.

We consider the dynamics of thermally conducting fluids in

an inertial frame of reference. In the bulk, the equations for the

conservation of mass, momentum, and energy are

∂ρ

∂t
+ ∂ρvi

∂xi
= 0,

∂ρvi

∂t
+
∂ρvivj

∂xj
+ ∂P

∂xi
= 0,

∂E

∂t
+ ∂ (E+ P) vi

∂xi
+ ∂Qi

∂xi
= 0 (1.1)

and the heat flux equation is:

Qi +
∂ (χe)

∂xi
= 0 (1.2)

In Equations 1.1, 1.2, the spatial coordinates are x = xi =
(x1, x2, x3) =

(

x, y, z
)

, time is t, and thermal conductivity is χ . The

scalar and vector fields include the density ρ , the velocity v = vi,

the pressure P, the energy density E =
(

e+ v2i /2
)

, the specific

internal energy e, and the thermal heat fluxQ = Qi. For the system

of Equations 1.1, 1.2, the closure equation is the equation of state.

For purposes of this work, the equation of state is presumed to be

P = s ρ e with a constant s [14–16]. Our theoretical framework is

unconstrained to an “ideal gas” equation of state. Other equations

of state can also be considered. For constant thermal conductivity

χ , the heat flux (Equation 1.2) is reduced to the Fourier equation

for heat conduction. The inertial frame of reference has a constant

velocity V0. For definiteness and free from loss of generality, the

velocity of the inertial frame of reference is set as V0 = (0, 0,V0)

[15, 16, 29, 30].

The governing equations in the bulk (Equations 1.1, 1.2)

describe non-ideal thermally conducting inviscid fluids [14–16].

When the thermal heat flux and the thermal conductivity are

negligible, Q = 0 and χ = 0 in Equations 1.1, 1.2, the equations

become the Euler equations in ideal fluids. A detailed study of the

interface dynamics in ideal fluids is given in the works [15, 29,

30]. In the presence of the kinematic viscosity, the momentum

and energy equations in the system (Equations 1.1) are further

modified, to be considered in the future. The governing equation

(Equation 1.1) are applicable for both inertial dynamics and the

dynamics being a subject to a body force and an acceleration; in

the latter case, the pressure field is modified.

We focus on the multiphase dynamics of two distinct fluids

separated by a freely evolving interface. To track the interface, we

define a continuous scalar function θ
(

x, y, z, t
)

, such that θ > 0 in

one fluid, θ < 0 in the other fluids, and θ = 0 at the interface. We

represent the fields and quantities in the bulk by using theHeaviside

step function H (θ) as:

(ρ, v, P,E, e,Q,χ , s) = (ρ, v, P,E, e,Q,χ , s)hH (θ)

+(ρ, v, P,E, e,Q,χ , s)lH (−θ) (1.3)

.

We presume that the fluids differ by their densities and mark

the heavy (light) fluid with subscript h
(

l
)

.

The generalized functions—the Heaviside step function H (θ)

and the Dirac delta function δ (θ) with δ (θ) = ∂H (θ)/∂θ —were

first used in multiphase dynamics (Equation 1) in the works [3,

11, 15, 16, 27–30]. This rigorous approach enables a self-consistent

derivation of the boundary conditions at a freely evolving interface

directly from the governing equations in the bulk; it can be used in

other multiphase physical systems [3, 11, 15, 16, 27–30].

At the interface, the fluxes of mass, momentum, and energy are

balanced [15, 16]. This leads to:

[

j̃ · n
]

= 0,

[(

P +
(

j̃ · n
)2

ρ

)

n

]

= 0,

[

(

j̃ · n
) (

j̃ · τ
)

ρ
τ

]

= 0,

[

(

j̃ · n
)

(

W + j̃2

2ρ2

)

+Q · n
]

= 0 (2.1)
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We also require the thermal heat flux to be normal to the

interface at each side of the interface:

(Q · τ)|θ=0+ = 0, (Q · τ)|θ=0− = 0 (2.2)

In the Equations 2.1, 2.2, a quantity jump at the interface is

denoted with [...]. The normal and tangential unit vectors of the

interface are n, τ , with n = ∇θ/|∇θ | , (n · τ) = 0. The

mass flux across the moving interface is j̃ = ρ
(

v+ nθ̇/|∇θ |
)

.

The specific enthalpy is W = e + P/ρ , including the enthalpy

of formation [14–16, 29, 30]. Per the third of the Equation 2.1,

the tangential component of the velocity v is continuous at the

interface, and the velocity field is free from shear at the interface

[15, 16, 29, 30].

Per the equations in the bulk and at the interface (Equations 1.2,

2.2), in each fluid, the thermal heat fluxQi is parallel to the gradient

∂ (χe)/∂xi . For the internal energy function (χe), the interface

is a level surface (level curve). The value (χe) is constant at each

side of the interface θ (x, t) → 0±. This self-consistent boundary
condition for the thermal heat flux was first formulated in the

works [16].

For the velocity field, the boundary conditions at the outside

boundaries are:

vh|z→−∞ = Vh = (0, 0,Vh) , vl|z→+∞ = Vl = (0, 0,Vl) (3)

The interface velocity is Ṽ. For a steady planar interface, it is

constant Ṽ = Ṽ0. This constant velocity Ṽ0 can be equal to the

velocity of the inertial frame of reference Ṽ0 = V0. For an unsteady

non-planar interface, the interface velocity is not constant Ṽ 6= Ṽ0.

We have:

Ṽ · n = −v · n|θ=0 = − j̃ · n/ρ
∣

∣

θ=0
(4)

The importance of non-constancy of the interface velocity in

an inertial frame of reference was first identified in the works

[15, 16, 29, 30].

The initial conditions are the initial perturbations of the

interface and the flow fields. They define the dimensionality, the

symmetry, the length scale, and the time scale of the dynamics

[3, 15, 16].

Theoretical problem (Equations 1–4) is at least as challenging

as the Clay Institute Millennium problem of the Navier–Stokes

equation [14–16, 60]. In addition to the partial differential

equations in the bulk, it involves a singular boundary value problem

at a freely evolving discontinuity and an ill-posed initial value

problem [3, 11, 14–16, 27–30].

2.2 Theoretical approximation

2.2.1 Fields and the interface
To solve the problem (Equations 1–4), we consider the

dynamics for constant thermal conductivity χ . We presume that

to the leading order, the flow fields are uniform (ρ, v, P, e) =
(ρ, v, P, e)0, the thermal heat flux Q0 is constant, and the interface

is planar n = n0, τ = τ0. We perturb the fields of the density

ρ = ρ0 + ρ̄, the velocity v = v0 + u, the pressure P = P0 + p,

the inertial energy e = e0 + ē, and the enthalpy W = W0 + w.

We perturb the mass flux j̃ = J + ĵ and the thermal heat flux

Q = Q0 + q. We perturb the interface with the normal n =
n0 + n1 and tangential τ = τ0 + τ1 vectors. For each of these

quantities, the magnitude of the perturbation is small compared to

its leading order value. We presume that to the leading order the

mass flux J is normal to the interface, J · τ0 = 0 with J · n1 =
0 [16].

2.2.2 Leading order dynamics
To the leading order, the scalar and vector fields are uniform,

and the equations in the bulk (Equations 1.1, 1.2) are obeyed by

default. From the boundary conditions far away from the interface

(Equation 4), the fields are:

(

ρ, v, P, e,W, j̃,Q
)

h(l)
= (ρ0,V, P0, e0,W0, J,Q0)h(l) (5)

At the interface, they satisfy the boundary conditions for the

fluxes of mass, momentum, and energy:

[J · n0] = 0,

[(

P0 +
(J · n0)2
ρ0

)

n0

]

= 0,

[

(J · n0)
(

W0 +
J2

2ρ20

)

+ (Q0 · n0)
]

= 0 (6.1)

and the boundary condition for the thermal heat flux:

(Q0 · τ0)|θ=0+ = 0, (Q0 · τ0)|θ=0− = 0 (6.2)

In the incompressible limit and in the absence of the thermal

heat flux [14–16], these boundary conditions (Equations 6.1,

6.2) become:

ρ0V
2

P0
→ 0,

V2

W0
→ 0,

∣

∣

∣

∣

(Q0 · n0)
(J · n0) W0

∣

∣

∣

∣

→ 0

⇒ [J · n0] = 0, [P0 n0] = 0, [W0] = 0 (6.3)

For the subsonic dynamics, wemust retain the thermal heat flux

in the boundary condition for the energy in the Equation 6.1 as:

[

(Q0 · n0)+ (J · n0)
J2

2ρ20

]

= − [(J · n0) W0] (6.4)

This is because the thermal heat flux (Q0 · n0) 6= 0 seeds the

perturbations of the internal energy [16].

2.2.3 First order dynamics
To first order, in the bulk, the conservation laws are:

(

∂

∂t
+ V · ∇

)

ρ̄ + ρ0∇ · u = 0, ρ0

(

∂

∂t
+ V · ∇

)

u+∇p = 0,

ρ0

(

∂

∂t
+ V · ∇

)

ē+∇ · q+ P0∇ · u = 0

(7.1)
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and the heat equation and the equation of state are:

q+ ∇ (χ ē) = 0,
p

P0
= ρ̄

ρ0
+ ē

e0
(7.2)

The boundary conditions at the interface are, respectively, for

the fluxes of mass, normal and tangential momentum, and energy:

[(

j+ j̄
)

· n0
]

= 0,
[(

p+ 2(J·n0)(j·n0)
ρ0

+ (J·n0)(j̄·n0)
ρ0

)

n0

]

= 0,
[

(J · n0)
(

J · τ1 + j · τ0
)

τ0
ρ0

]

= 0
[

(J · n0)
(

w+ (J·j)
ρ20

)

+
(

q · n0
)

]

= 0

and for the thermal heat flux:

(

Q0 · τ1 + q · τ0
)
∣

∣

θ=0+ = 0,
(

Q0 · τ1 + q · τ0
)
∣

∣

θ=0− = 0 (8.2)

Here, the perturbations of the mass flux are ĵ = j + j̄,

including the ‘mechanical’ j = ρ0
(

u+ n0θ̇
)

and the density j̄ =
(ρ̄/ρ0 ) J perturbations.

The perturbations of the flow fields decay far away from

the interface:

{

ρ̄, u, p, ē, j, j̄, q,w
}

h

∣

∣

z→−∞ = 0,
{

ρ̄, u, p, ē, j, j̄, q,w
}

l

∣

∣

z→+∞ = 0

(9)

The perturbed velocity of the interface is Ṽ = Ṽ0 + ṽ, |ṽ| <<
∣

∣Ṽ0

∣

∣. Up to the first order, it is:

Ṽ = Ṽ0 + ṽ, ṽ · n0 = −
(

u · n0 + θ̇
)∣

∣

θ=0

(10)

This illustrates the non-constancy of the interface velocity in

the multiphase dynamics [15, 16, 29, 30].

We solve the multi-parameter problem (Equations 1–10)

within the general framework [15, 16, 29].

We consider a sample case of a two-dimensional flow periodic

in the x direction, free from the motion in the y direction and

spatially extended in the z direction.We use the interfacial function

θ = −z + z∗ (x, t), where the perturbed interface is z∗ =
Z∗ exp

(

ikx+�t
)

, the wave vector is k = 2π/λ , and the

wavelength λ is set by the initial conditions:

θ = −z + z∗ (x, t) , z∗ = Z∗ exp
(

ikx+�t
)

, k = 2π/λ (11.1)

The perturbed velocity vector field can have the potential and

the vortical components u = ∇8 + ∇ × 9 . In a two-dimensional

flow, the vortical field is 9 = (0,9 , 0), and the vorticity field is

∇ × u = (0,19 , 0). This summarizes to:

u = ∇8+∇ ×9 , 9 = (0,9 , 0) , ∇ × u = (0,19 , 0) (11.2)

The formal representations (Equation 11) enable one to link the

interface dynamics and the structure of the flow fields. It was first

done in the works [15, 16, 29, 30].

TABLE 1 MatrixMS defining the structure of the perturbation waves in the

bulk.

MS =
(

k2 − K2
)

ρ0 0 0 −KV +� 0

(−KV +�)ρ0 1 0 0 0

0 0 (−KV +�)ρ0 0 0

−(k2−K2)
ρ0

0 0 0
V(k2−K2)

KmP0
+

(−KV+�)
P0

0 1
P0

0 −1
ρ0

−1
e0

2.3 Methodology

2.3.1 Perturbation waves
To find the structure of the perturbation wave(s) in the

expressions (Equations 7, 9, 11), we represent the flow fields as [16]:

(

8, p,9 , ρ̄, ē
)

=
(

8̂, p̂, 9̂ , ρ̂, ê
)

exp
(

ikx− Kz +�t
)

(12.1)

Here, K is the wave vector in the direction of motion that must

be found [16]. In the domain of the heavy (light) fluid, the values of

this wave vector are K < 0 (K > 0), as required by the boundary

conditions (Equation 9) far away from the interface.

The representation (Equation 12.1) reduces the perturbed

equations in the bulk (Equations 7.1, 7.2) to the linear system

MSz = 0 (see Table 1). In this system, the vector z =
(

8, p,9 , ρ̄, ē
)T

is defined by the variables (Equation 12.1), and the

5 × 5 matrix MS corresponds to the Equations 7.1, 7.2 for these

variables; subscript S stands for structure; the fifth row in thematrix

MS corresponds to the equation of state [14, 16]. In each fluid, the

components of the matrix MS depend on the values �, k,K, the

quantities V , ρ0, P0, e0, and the parameters χ , s. Particularly, the

mass flux ρ0V and the thermal conductivity χ define the natural

scale with the wave vector Km = ρ0V/χ . The importance

of this characteristic scale was first recognized in the work [16].

Traditional approaches appear to overlook it [6, 14, 20, 47–53].

To find the wave vector(s) K and the associated structure(s)

of the perturbation wave(s), we need to solve the linear system

MSz = 0. In each fluid, the condition detMS = 0 yields a fifth

order polynomial equation for the wave vector(s) K:

detMs = 0, detMs = (KV −�)
(

K4 + K3c3 + K2c2 + Kc1 + c0
)

(12.2)

The coefficient c0 (1) (2) (3) in the polynomial (Equation 12.2)

depends on the values �, k,Km, the quantities V , ρ0, P0, and the

constant s (see Table 2).

2.3.2 Boundary value problem
The Equation 12.2 has five solutions for the wave vector

K. The five solutions (Equation 12), with
(

8, p,9 , ρ̄, ē
)

=
(

8̂, p̂, 9̂ , ρ̂, ê
)

exp
(

ikx− Kz +�t
)

, and the interface perturbation

(Equation 11), with z∗ = Z∗ exp
(

ikx+�t
)

, define the six

independent waves—the degrees of freedom of the dynamics. We
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TABLE 2 Polynomial equation detMS = 0 and its coe�cients.

∀P0 , s, ρ0 ,V ,Km , k,�

detMS = :: V
(

K − �
V

) (

K4 + K3c3 + K2c2 + Kc1 + c0
)

c3 = :
Km(P0(1+s)−ρ0V2)+2ρ0�

P0−ρ0V2

c2 = : − k2V(2P0−ρ0V2)+Km(P0(1+s)−3ρ0V
2)�+ρ0V�2

V(P0−ρ0V2)

c1 = : − k2KmP0(1+s)+2k2ρ0V�+3Kmρ0�
2

P0−ρ0V2

c0 = :
k4P0V+k2KmP0(1+s)�+k2ρ0V�

2+Kmρ0V�
3

V(P0−ρ0V2)

employ these waves to solve the boundary value problem at the

interface (Equation 8).

With the six boundary conditions (Equation 8) (the interfacial

conditions for the conservation of mass, normal and tangential

components of momentum and energy, and for the thermal heat

flux) and the six variables (the five waves in the bulk and the

interface perturbation), the boundary value problem at the interface

is reduced to the linear system:

M r = 0, r =
(

8h,8l,Vhz
∗,9l,

ēh

kVh
,
ēl

kVl

)T

(13.1)

In this system, the vector r is given by the independent waves

(Equations 11, 12), and the 6 × 6 matrix M is derived from the

interfacial boundary conditions (Equation 8).

The solution for the system µ r = 0 (Equation 13.1) is:

r = Ciri (13.2)

with the fundamental solutions ri and the integration constants

Ci. To find the fundamental solutions ri, we apply the condition

det M = 0 and reduce the corresponding matrixM to row-echelon

form [15, 16].

The number of the fundamental solutions is equal to (smaller

than) the number of the degrees of freedom for a non-degenerate

(degenerate) dynamics. The system M r = 0 results from a system

P ṙ = S r with matrices (P,S), presuming that vector r varies with

time as r ∼ e�t , leading to M = (S−�P), as

P ṙ = S r, ṙ = P-1Sr, r ∼ e�t , M r = 0, M = (S−�P)(13.3)

In a non-degenerate case, the inverse matrix P-1 exists, and

the system is transformed to a standard form ṙ = P-1Sr. In a

degenerate case, the transformation is unattainable, resulting in a

smaller number of the fundamental solutions than the number of

the degrees of freedom, similarly to [15, 16, 29, 61].

3 Results

3.1 Solutions’ structure

To find the structure of the perturbation waves in the bulk, we

solve the Equation 12. By taking into account that for the vortical

field the wave vector is K = �/V , we reduce the Equation 12 to

a fourth order polynomial equation that can be resolved for any

values c0 (1) (2) (3). In a broad range of quantities (V , ρ0, P0, e0,χ , s),

the solutions exist; they are cumbersome; they can be investigated

by using, e.g., artificial intelligence tools.

To capture the physics of the process, we analyze weakly

compressible dynamics, with ρ0V
2/P0 << 1. For these subsonic

perturbations, there are three regimes, dominated by the process

of, respectively, advection, diffusion, and weak compressibility

[16]. These regimes are defined by relating two dimensionless

parameters. One of them is the ratio Km/k . It describes the

interplay of the wave vector Km = ρ0V/χ set by the

thermal conductivity with the wave vector k set by the initial

conditions. The other is the ratio ρ0V
2/P0 , representing the effect

of compressibility.

In the regime of advection, the thermal conductivity wave

vector is large
(

Km/k
)

h(l)
→ ∞ , and the pressure is high

(

P0/ρ0V
2
)

h(l)
→ ∞ . In the regime of diffusion, the thermal

conductivity wave vector is small
(

Km/k
)

h(l)
<< 1, and the

dynamics is nearly incompressible
((

ρ0V
2/P0

)

/
(

Km/k
) )

h(l)
→

0. In the low Mach regime, the dynamics is weakly compressible
(

ρ0V
2/P0

)

h(l)
<< 1, and the thermal transport is vanishing

compared to the compressibility
((

Km/k
)

/
(

ρ0V
2/P0

) )

h(l)
→

0 [16].

Our work investigates the weakly compressible low Mach

regime. This regime is important to study because it concentrates

on the effect of the thermal heat flux on the interface dynamics.

In the dynamics, the length scale of the thermal conductivity

K−1
m , K−1

m = χ/ρ0V , is substantially greater than the length

scale of the initial perturbation k−1, k−1 = λ/2π . The vanishing

thermal transport
((

Km/k
)

/
(

ρ0V
2/P0

) )

h(l)
→ 0 permits one

to elucidate the direct link between the thermal heat flux at the

interface and the formation of vortical structures in the bulk [15,

16, 29, 30].

To find the wave vector(s) K and the associated structure(s) of

the perturbation wave(s), in the low Mach regime, we present the

equation detMS = 0 (Equation 12.2) in the form:

detMS = V (K −�/V ) (K − K1) (K − K2)

(K − K3) (K − K4) = 0 (14.1)

Its solutions K1 (2) (3) (4) are associated with the coefficients

c0 (1) (2) (3), and solution K5 is precise:

c3 = − (K1 + K2 + K3 + K4) ,

c2 = (K1K2 + K1K3 + K1K4 + K2K3 + K2K4 + K3K4) ,

c1 = − (K1K2K3 + K1K2K4 + K2K3K4) , c0 = K1K2K3K4,

K5 = �/V

(14.2)

See Table 2. We expand the coefficient(s) c0 (1) (2) (3)
and the wave vector(s) K1 (2) (3) (4) for

(

Km/k
)

h(l)
<< 1

and for
(

ρ0V
2/P0

)

h(l)
<< 1, taking the limit

((

Km/k
)

/
(

ρ0V
2/P0

) )

h(l)
→ 0 (see Tables 2, 3). Up to the

first order, the wave vector(s) K1 (2) (3) (4) (5) are:

K = −k (14.3.1)
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TABLE 3 Expansion of the coe�cients of the polynomial equation

detMS = 0.

ρ0V
2

P0
<< 1, Km

k
<< 1, Km/k

ρ0V2/P0
→ 0

c3 → : 2k
(

ρ0V
2

P0

)

(

�
kV

)

c2 → : −2k2
(

1+
(

ρ0V
2

2P0

) (

1+
(

�
kV

)2
))

c1 → : −2k3
(

ρ0V
2

2P0

)

(

�
kV

)

c0 → : k4
(

1+
(

ρ0V
2

2P0

) (

1+
(

�
kV

)2
))

K = −Kh, Kh = k+ k̃h, k̃h = k
(

1+ �
kV

)2

h

(

ρ0V
2

2P0

)

h
,

Kh ≈ k
(14.3.2)

K = k (14.3.3)

K = Kl, Kl = k+ k̃l, k̃l =
(

1− �
kV

)2

l

(

ρ0V
2

2kP0

)

l
,

Kl ≈ k
(14.3.4)

K = �

Vl
(14.3.5)

The wave vectors correspond to the perturbation waves

in the bulk in the heavy fluid (Equations 14.3.1, 14.3.2) and

in the light fluids (Equations 14.3.3, 14.3.4) and the vortical

field in the bulk of the light fluid (Equation 14.3.5). They

are independent of
(

Km/k
)

h(l)
, due to the vanishing thermal

transport
((

Km/k
)

/
(

ρ0V
2/P0

) )

h(l)
→ 0.

For each wave vector K (Equation 14.3), by reducing the

matrix MS in Table 1 to row-echelon form, we find the associated

perturbation waves. By further augmenting the five perturbation

waves in the bulk with the perturbation of the interface

(Equation 11.1) with the wave vector K = 0, we obtain

the six perturbation waves—four mechanical waves and two

energetic waves.

The perturbed fields are (the subscript stands for energetic):

(8)h(l) =
(

8̄+ 8̄e

)

h(l)
,
(

p
)

h(l)
=
(

p̄+ p̄e
)

h(l)
, z∗,

9 = 9l, (ρ̄)h(l) = (ρ̄e)h(l), (ē)h(l) (15)

The four mechanical perturbation waves are:

(

8̄, p̄
)

h
= 8̂h

(

1, −kρ0V
(

1+ �
kV

))

h
eikx+kz+�t , K = −k (16.1.1)

(

8̄, p̄
)

l
= 8̂l

(

1, kρ0V

(

1− �

kV

))

l

eikx−kz+�t , K = k (16.1.2)

z∗ = Z∗eikx+�t , K = 0 (16.1.3)

9l = 9̂eikx−(�/Vl )z+�t , K = �

kVl
(16.1.4)

These waves describe the perturbations of the associated fields

of the velocity potential and the pressure in the heavy fluid

(Equation 16.1.1) and in the light fluid (Equation 16.1.2), the

interface (Equation 16.1.3), and the vortical field of the light fluid

(Equation 16.1.4). The mechanical waves are the same as in the

conservative dynamics in ideal fluids with the constant inertial

energy in the absence of the thermal heat flux [15, 16].We highlight

that the vortical field (Equation 16.1.4) is dissociated from and

does not contribute to the pressure field. The vortical field is

energetic—rather than dynamic—in nature [14–16, 29, 30].

The two energetic perturbation waves are:

(

ē, 8̄e, ρ̄e, p̄e
)

h
= êh

(

1, ρ0sV
2kP0

− 2s
(kV+�) ,

ρ20 s

P0
, 2ρ0s

)

h
eikx+Khz+�t ,

K = −Kh (17.2.1)

(

ē, 8̄e, ρ̄e, p̄e
)

l
= êl

(

1, − ρ0sV
2kP0

+ 2s
(kV−�) ,

ρ20 s

P0
, 2ρ0s

)

l
eikx−Klz+�t ,

K = Kl (17.2.2)

These waves are due to the perturbations of the internal energy

in the heavy and light fluids. They describe the fields of the

velocity potential, the density, and the pressure associated with the

inertial energy.

3.2 Boundary value problem

To find the interface stability and the structure of the flow fields,

we solve the boundary value problem at the interface (Equation 8)

by using the six perturbation waves—the six degrees of freedom—

four mechanical and two energetic. The dynamics can be subject

to a body force and an acceleration. We consider the destabilizing

acceleration g. It is directed from the heavy to the light fluid in the z

direction of motion, g =
(

0, 0, g
)

and has the constant magnitude g.

The boundary value problem at the interface (Equation 8) is hence

reduced to the linear system M r = 0 (Equation 13) [15, 16].

Table 4 represents in the dimensionless form the matrix µ

in the low Mach dynamics. We use the following scales for the

dimensionless dynamics: 1/k as the length scale; 1/kVh as

the time scale;
(

V/k , ρ0, ρ0V
2
)

h
as the scales for the velocity

potentials, the density, and the pressure, respectively. We employ

the dimensionless values of the growth rate ω = �/kVh , the

gravity G = g/kV2
h

,G ≥ 0, and the thermal wave vector(s)
(

km
)

h(l)
=
(

Km/k
)

h(l)
. The density ratio is R = ρ0h/ρ0l ,R ≥

1. The modified Mach number is
(

Ma2
)

h(l)
=

(

ρ0V
2/P0

)

h(l)
.

We scale the thermal heat flux with the internal energy (e0)h
as (Q0)h(l) = (Je0ε0)h(l). This defines the seeds (ε0)h(l) =
(

Q0 · J/J2e0
)

h(l)
of the internal energy perturbations. The spatial

coordinates, the time, the wave vectors, and the amplitudes of the

perturbation waves are rescaled as

kxi → xi, t/
(

kVh

)

→ t,
(

Kh(l)/k
)

→ kh(l),
(

Km/k
)

h(l)
→
(

km
)

h(l)

8̂h(l)/
(

Vh/k
)

→ “φh(l), Z∗k → “z, 9̂l/
(

Vh/k
)

→ “ψ l,
(

ê/e0
)

h(l)
→ “eh(l)

(18.1)

In the system M r = 0 (Equation 13), the vector r of the

perturbation waves has the form:

r =
(

“φhe
ix+z+ωt , “φle

ix−z+ωt , “zeix,

“ψ le
ix−(ω/R )z+ωt , “ehe

ix+khz+ωt , “ehe
ix−klz+ωt

)T
(18.2)

In Table 4, the elements of the matrix µ depend on ω and the

dimensionless quantities
(

R,G,
(

km, ε0,Ma, s
)

h(l)

)

. In the matrix
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TABLE 4 Matrix M for the interfacial boundary value problem in the low Mach dynamics.

µ =

−R −1 −ω + Rω i − 3
2
kmhMa2hRsh

3 kmlMa2
l
Rsl

2R

1 −1 1− R i ω
R

1
2
kmhMa2hsh

kmlMa2
l
sl

2R

R− Rω R+ ω −G+ GR −2iR 2kmhshR
(

1+Ma2h
)

−2kmlsl
(

1+Ma2l
)

ω −ω ω − Rω iR 1− kmh (1+ sh)−
kmhMa2

h
sh

2
1+ kml (1+ sl)+

kmlMa2
l
sl

2

0 0 iε0h 0 −i 0

0 0 iε0l 0 0 −i

M = M
(

ω,R,G,
(

km, ε0,Ma, s
)

h(l)

)

, the terms
(

km
)

h(l)
are given

for completeness. They can be omitted, since the thermal transport

is vanishing as
(

km
)

h(l)
→ 0 with

(

km/Ma2
)

h(l)
→ 0, and the low

Mach dynamics is weakly compressible
(

Ma2
)

h(l)
<< 1.

In the dimensionless form, the fundamental solutions are ri =
ri (ωi, ei). Each has the eigenvalue ωi, the eigenvector ei, and the

associated amplitude vector êi of the perturbation waves:

r = Ciri, ri = ri (ωi, ei) , êi =
(

“φh, “φl, “z, “ψ l, “eh, “el
)T

i
(18.3)

Table 5 presents in the dimensionless form the matrixes (P,S),

with M = (S− ω P), in the low Mach dynamics. In the matrix

P , the fifth and six rows (columns) have null elements. Hence,

det P = 0, the inverse matrix P-1 is undefined. This suggests a

degeneracy of the low Mach dynamics and a smaller number of

fundamental solutions than the number 6 of the degrees of freedom

(Equation 13.3) [15, 16, 29, 61].

3.3 Fundamental solutions

In the low Mach dynamics, the fundamental solutions have the

following attributes:

(1) The low Mach dynamics is degenerate. It has only four

fundamental solutions r1(2)(3)(4) for the six equations with

the six degrees of freedom. Mathematically, the degeneracy

is associated with the matrix P, for which the inverse

matrix P-1 is undefined. Physically, the degeneracy is due to

the thermodynamic (rather than mechanical) nature of the

internal energy perturbations (ē)h(l); these perturbations are

due to the seeds of the thermal heat flux with (ē)h(l)(ε0)h(l)
(see also the works [15, 16, 29, 61]).

(2) For the fundamental solutions r1(2), the potential and vortical

fields of the velocity are coupled with the interface perturbation

and with the thermal heat flux. In case of the null thermal

heat flux, the velocity fields are potential in both fluids. The

fundamental solutions r1(2) depend on the density ration,

the acceleration strength, and the seeds of the thermal heat

flux
(

R,G, (ε0)h(l)

)

. These solutions are independent of the

parameters
(

km,Ma, s
)

h(l)
in the low Mach dynamics (see also

the work [16]).

(3) The fundamental solutions r3(4) depend only on the density

ratio R. These solutions are the same as the corresponding

solutions for the conservative dynamics in ideal fluids in the

absence of the thermal heat flux. They do not contribute to the

dynamics (see also the works [15, 16, 29, 30]).

The fundamental solutions r1(2) depend on the parameters
(

R,G, (ε0)h(l)

)

. The solution r1 can be stable or unstable. The

solution r2 is stable. We define the solution rCDGM , where the

subscript stands for the conservative dynamics (CD) under the

gravity (G) in the lowMach (M) dynamics. For a real eigenvalueω1,

the solution rCDGM is the fundamental solution r1, as rCDGM = r1,

with the eigenvalueωCDGM = ω1, the eigenvector eCDGM = e1, and

the amplitude vector êCDGM = ê1. For an imaginary eigenvalue ω1,

the solution rCDGM is given by the fundamental solutions r1 and r2

(with r1 = r∗2 , ω1 = ω∗
2 and e1 = e∗2), as rCDGM =

(

r1 + r∗1
)

/2 ;

the asterisk marks the complex conjugate.

For the solution rCDGM , the heavy fluid velocity is represented

by the potential field, uh = ∇8h with 8h =
(

8̄+ 8̄e

)

h
, whereas

the light fluid velocity is given by the potential and vortical fields,

ul = ∇8l + ∇ × 9l with 8l =
(

8̄+ 8̄e

)

l
and 9l = (0,9l, 0).

In the solution rCDGM , the growth rate ωCDGM and the amplitude

vector êCDGM =
(

“φh, “φl, “z, “ψ l, “eh, “el
)T

CDGM
are:

ωCDGM = ±i
√
R

√

1− G
(R+ 1)

R (R− 1)
− 2

(ε0h + ε0l)
(R− 1)2

,

êCDGD = (∗, ∗, 1, ∗, ∗, ∗)T (19.1)

The symbol ∗ stands for functions on
(

R,G, (ε0)h(l)

)

. These

functions are explicitly given in Table 6.

We introduce the critical acceleration Gcr =
R(R− 1)/(R+ 1) , the same as in the conservative dynamics

in ideal fluids [15, 16]. We introduce the parameter

F = −(ε0h + ε0l)/(R− 1)2 of the thermal heat flux [16].

The growth rate is transformed to:

ωCDGM = ±i
√
R

√

(1+ 2F)− G

Gcr
(19.2)

The dynamics rCDGM is stable Re [ωCDGM] ≤ 0 for the

accelerations G < Ḡcr and is unstable Re [ωCDGM] > 0

for G > Ḡcr . The ‘thermal’ critical acceleration Ḡcr is Ḡcr =
Gcr (1+ 2 F) [16].

The fundamental solution r2 is stable in the stable regime,

where the eigenvalue is imaginary, with r2 = r∗1 , ω2 = ω∗
1 , e2 = e∗1 ,

and with rCDGM =
(

r1 + r∗1
)

/2 . The solution r2 is stable, even

when the growth rate ωCDGM = ω1 is real and the dynamics

rCDGM = r1 is unstable. In this case, the integration constant
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TABLE 5 Matrices (P,S), with M = (S − ω P), in the low Mach dynamics.

P = (−1 )× S =

0 −1+ R 0 0 0 −R −1 0 i 0 0

0 0 0 i/R 0 0 1 −1 1− R 0 0 0

−R 1 0 0 0 0 R R G (R− 1) −2iR 0 0

1 −1 1− R 0 0 0 0 0 0 iR 1 1

0 0 0 0 0 0 0 0 iε0h 0 −i 0

0 0 0 0 0 0 0 0 iε0l 0 0 −i

The matrix S elements are given in the limit
(

km
)

h(l)
→ 0.

TABLE 6 Amplitude vector êCDGM =
(

“φh, “φl, “z, “ψ l, “eh, “el
)τ

CDGM
for the solution rCDGM.

“φh =:

√
R−1

−G(1+R)+(R−1)R(1+2F+R)
×

(

−G
(√

R− 1+
√
G (R+ 1)− (1+ 2F)R (R− 1)

)

+ (R− 1)
(

F
√
G (R+ 1)− (1+ 2F)R (R− 1)+

R
(√

R− 1+ F
√
R− 1+

√
G (R+ 1)− (1+ 2F)R (R− 1)

)))

“φl =:

−
√
R−1

−G(1+R)+(R−1)R(1+2F+R)
×

(

F (R− 1)R
√
R− 1−

√
G (R+ 1)− (1+ 2F)R (R− 1) +

(

G+ R− R2
) (

−R
√
R− 1+

√
G (R+ 1)− (1+ 2F)R (R− 1)

))

“z =: 1

“ψ l =: iF(R−1)3R
−G(1+R)+(R−1)R(1+2F+R)

“eh =: ε0h

“el =: −ε0h − F(R− 1)2

C2 = 0 must be zero, for the waves of the solution r2 to satisfy

the boundary conditions far away from the interface (Equation 9).

For the fundamental solution r3, the eigenvalue ω3 and the

amplitude vector ê3 are:

ω3 = R, ê3 = (0, i, 0, 1, 0, 0)T (20.1)

While this solution is unstable, its perturbation fields for the

velocity and the pressure are null for any integration constant.

The solution r3 does not contribute to the dynamics of thermally

conducting fluids, similarly to the conservative dynamics in ideal

fluids [15, 16, 29, 30]. We believe that the solution r3 is due to the

arbitrariness of choice of the inertial frame of reference.

For the fundamental solution r4, the eigenvalue ω4 and the

amplitude vector ê4 are:

ω3 = −R, ê3 =
(

2i

R+ 1
, −i

R− 1

R+ 1
, 0, 0, 0, 0

)T

(20.2)

While this solution is stable, its integration constant must be

zero, C4 = 0, for the perturbation waves to satisfy the boundary

conditions far away from the interface (Equation 9) (see also the

works [15, 16, 29, 30]).

Figures 2–5 represent the perturbed fields of the velocity u,

the velocity streamlines s, the pressure p, the vorticity ∇ × u, the

internal energy ē, and the interface perturbation z∗ in the stable

and unstable low Mach dynamics rCDGM , free from and under the

destabilizing acceleration, and for vanishing and finite values of the

parameter of the thermal heat flux.

3.4 Thermal heat flux

We briefly outline a few effects of the thermal heat flux on the

low Mach dynamics rCDGM .

When the seeds of the thermal heat flux are null
(

ε0h(l) = 0, F = 0
)

, the vortical field is null, the energy

perturbations are null, and the solution rCDGM in thermally

conducting fluids is:

ωCDGM|F=0 = ±i
√
R

√

1− G

Gcr
,

êCDGD
∣

∣

ε0h(l)=0, F=0
= (∗, ∗, 1, 0, 0, 0)T (20.1)

It is the same as the solution rCDG for the conservative dynamics

in ideal fluids [15]. For the null seeds of the thermal heat flux,

the thermal conductivity effectively plays no role in the low Mach

dynamicsrCDGM (see Equations 14–17, 19 and Table 6).

The energy perturbations are identified through the leading

order interfacial boundary condition for the energy (Equation 6.4).

With seeds of the thermal heat flux (Q0)h(l) = (Je0ε0)h(l), it is

transformed to:
[

ε0e0 + V2

2 + W0

]

= 0

⇒ ε0l|θ=0 =
(

ε0h
e0h
e0l

− V2
h

2e0l

(

(

ρh
ρl

)2
− 1

)

+ (W0h−W0l)
e0l

)
∣

∣

∣

∣

θ=0

(20.2)

In the incompressible limit [W0] = 0, by presuming that the

heavy fluid is cold and is free from the thermal heat flux, ε0h = 0,
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and that the light fluid is hot and has the thermal heat flux, ε0l 6= 0,

the seed value is ε0l < 0; hence, the thermal heat flux parameter

F ∼ − (ε0h + ε0l) is F > 0. Here, we study the case F > 0. These

situations may occur in the processes of combustion and plasma

fusion [5, 6, 12–16, 45–54]. Our theory can be extended to the cases

F < 0 that may occur in, e.g., chemically reacting fluids, as well as

to the compressible case [W0] 6= 0 to be studied elsewhere.

Per the properties of the amplitude vector in Table 6, in the low

Mach dynamics, the vortical field exists only in the presence of the

thermal heat flux parameter “ψ l ∼ i F. The vortical potential 9l is

shifted by π/2 relative to the fields of the velocity potentials8h (l),

the internal energy perturbations ēh (l), the pressure ph (l), and the

interface perturbation z∗ for any values (F > 0, R > 1, G ≥ 0).

3.5 Inertial dynamics

Consider the inertial low Mach dynamics, with null

acceleration, G = 0, with rCDGM → rCDM :

ωCDGM|G=0 = ωCDM = ±i
√
R
√

(1+ 2F),

êCDGD
∣

∣

G=0
= êCDGD

∣

∣ = (∗, ∗, 1, ∗, ∗, ∗)T (21)

The dynamics rCDM is stable for F > 0 (formally, for F >

−1/2 ).

Figures 2, 3 illustrate the flow fields in the inertial low Mach

dynamics in thermally conducting fluids for the vanishing and

finite values of the thermal heat flux parameter, in consistency with

Table 6. At F = 0 in both fluids, the velocity field is potential and the

fields of the pressure and the energy perturbations are symmetric.

For a finite value F, the energy perturbations become asymmetric

in the heavy and the light fluids, and the velocity has the vortical

field in the light fluid bulk.

Since the growth rate is purely imaginary, ωCDM =
±i

√
R
√
(1+ 2F), the wave vector of the vortical field Kψl

=
ωCDM/R is imaginary. This creates a stable vortical pattern,

periodic in time and in space, in the bulk of the light fluid. The

vortical structures can be realized when the boundary conditions

away from the interface are somewhat noisy. Otherwise, the

integration constant for the stable solution rCDGM must be

zero, leading to zero perturbation fields and constant interface

velocity Ṽ = Ṽ0.

Consider the vortical field with the amplitude “ψ l and wave

vector Kψl
, and the energy field “el in the light fluid:

“ψ l = −i
F(R− 1)2R

R (R+ 1+ 2F)
, Kψl

= i

√

1+ 2F

R
,

“el = −εoh − F(R− 1)2 (22.1)

The amplitude of the vortical field
∣

∣“ψ l

∣

∣ increases with the

thermal heat flux F and the density ratio R. The wave vector of

the vortical field
∣

∣Kψl

∣

∣ increases with F and decreases with R. The

energy field |“el| increases with the thermal heat flux F and the

density ratio R. For a small thermal heat flux parameter F˜0+, for
fluids with similar, R˜1+, and different, R → ∞ , densities, these

quantities are:

F → 0+, R → 1+ ⇒ “ψ l ≈ −i F(R−1)2

2 ,

Kψl
≈ i

(

1+ F + R−1
2

)

, “el ≈ −εoh
(22.2)

F → 0+, R → ∞ ⇒ “ψ l ≈ −iFR,

Kψl
≈ i (1+ F)

√
R, “el ≈ −εoh − FR2

(22.3)

For a large thermal heat flux parameter, F → ∞ , these

quantities are:

F → ∞, R → 1+ ⇒ “ψ l ≈ −i (R−1)2

2 ,

Kψl
≈ i

√
2F
(

1+ (R−1)
2

)

, “el ≈ −εoh − F(R− 1)2
(22.4)

F → ∞, R → ∞ ⇒ “ψ l ≈ −iR
2

2 ,

Kψl
≈ i

√
F
√
R, “el ≈ −FR2

(22.5)

In the inertial low Mach dynamics, the vortical field has

no characteristic length scale, in contrast to the inertial Landau

dynamics in Landau–Darrieus instability [20, 29].

Consider the interface velocity Ṽ = Ṽ0 + ṽ. It stably oscillates:

ṽ · n0 = −
(

u · n0 + θ̇
)
∣

∣

θ=0
⇒ ṽ · n0 ∼ ei|ωCDM |t (23)

The expressions (Equations 21, 23) exhibit that in the inertial

low Mach dynamics in thermally conducting fluids, the primary

stabilization mechanism is the inertial mechanism. See the works

[15] explored the inertial stabilization of the conservative dynamics

of ideal fluids. This macroscopic mechanism is due to the

conservation of mass, momentum, and energy; it is associated

with the motion of the interface as a whole. The thermal mass

flux—microscopic in nature—influences the frequency of the stable

oscillations and, for the thermal heat flux parameter F 6= 0, it

creates the vortical field in the bulk (Equations 21–23) (Table 6).

We now represent the frequency ωCDM (Equation 21) in the

dimensional form as:

�CDGM = ±i kV̄h

√

ρ0h

ρ0l
,

V̄h

Vh
=

√

1+ 2

((

Q0 · J
J2e0

)

h

+
(

Q0 · J
J2e0

)

l

)

ρ2
0l

(ρ0h − ρ0l)2
(24)

Since the energy seeds (ε0)h(l) =
(

Q0 · J/J2e0
)

h(l)
are

identified by the leading order energy balance in the expressions

(Equation 6.4), the thermal heat flux keeps intact the linear

dependence of the frequency on the wave vector �CDM ∼ k. The

thermal heat flux changes the magnitude of the frequency �CDM .

The change may be interpreted as an effective rescaling of the

interface velocity Ṽ0.

3.6 Accelerated dynamics

Examine the low Mach dynamics under the

destabilizing acceleration.

Per the expressions (Equation 19), the dynamics rCDGM is

stable for small acceleration, G ∈
(

0, Ḡcr

)

, and it is unstable

for the acceleration magnitudes exceeding a threshold G > Ḡcr .

In the stable dynamics rCDGM , the frequency of the oscillations
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FIGURE 2

Flow fields for the inertial low Mach dynamics in thermally conducting fluids, when the thermal heat flux parameter is zero. Plots of real parts of

perturbed fields of the interface, the velocity, the velocity streamlines, the pressure, and the internal energy, with red (blue) for positive (negative) in

the contour plots. The perturbed vortical and vorticity fields are null.

is ωCDGM = ±i
√
R
√
(1+ 2F)− G/Gcr , and the flow fields are

qualitatively similar to those in the inertial low Mach dynamics.

Figures 4, 5 present the flow fields in the unstable accelerated

low Mach dynamics, G > Ḡcr , in thermally conducting fluids, with

the vanishing and finite values of the thermal heat flux parameter,

in consistency with Table 6. At F = 0 in both fluids, the velocity

field is potential and the fields of the energy perturbations are

symmetric. For a finite F value, the energy perturbation fields

become asymmetric in the heavy and the light fluids, and the

velocity has the vortical field in the bulk of the light fluid. The

vortical field is shifted relative to the fields of the pressure and

energy by π/2 (see Table 6). For given values of the density ratio

R and the thermal heat flux F, the strength of the vortical field “ψ l

overall decreases with an increase of the gravity G, with
∣

∣“ψ l

∣

∣ ˜G−1

for G → ∞ . The strength of the energy perturbation field(s) “eh(l)

is independent of the acceleration, and it is the same as that in the

inertial dynamics, in consistency with Figures 2, 3, and Table 6.

The expression (Equation 19) exhibits that in the low Mach

dynamics in thermally conducting fluids in the presence of the

thermal heat flux, the interface stability is defined primarily by

the interplay of the two macroscopic mechanisms—the stabilizing

inertial mechanism and the destabilizing acceleration. The inertia

dominates the buoyancy, and the dynamics is stable for G <

Ḡcr . The buoyancy dominates the inertia, and the dynamics is

unstable for G > Ḡcr [16]. This is similar to the interface

stability in the conservative dynamics in ideal fluids [15]. The

thermal heat flux—along with creating the vortical field—provides

additional stabilizations [16]. Particularly, it enlarges the value of

the acceleration threshold to Ḡcr = Gcr (1+ 2F), with Ḡcr → Gcr

for F → 0+ and with Ḡcr ≈ 2FGcr for F → ∞ .
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FIGURE 3

Flow fields for the inertial low Mach dynamics in thermally conducting fluids, when the thermal heat flux parameter is finite. Plots of real parts of

perturbed fields of the interface, the velocity, the velocity streamlines, the pressure, the vorticity, and the internal energy, with red (blue) for positive

(negative) in the contour plots.

Consider the interface velocity Ṽ = Ṽ0 + ṽ. It is time-

dependent:

ṽ · n0 = −
(

u · n0 + θ̇
)
∣

∣

θ=0
⇒ ṽ · n0 ∼ e+|ωCDGM |t (25)

The unstable low Mach dynamics in thermally conducting

fluids superposes the growth of the interface velocity as whole

and the growth of the interface perturbation. These growths are

exponential in time in the linear regime and are expected to be

a power law in time in the non-linear regime, similarly to the

conservative dynamics in ideal fluids [15].

We now represent the frequency ωCDM (Equation 19) in the

dimensional form as:

g > ḡcr : �CDGM = kV̄h

(

ρh

ρl

)
√

g

ḡcr
− 1;

ḡcr = kV̄2
h

(

ρh

ρl

)(

ρh − ρl
ρh + ρl

)

(26.1)

where the rescaled velocity magnitude V̄h is provided by

the expression (Equation 24). For given values
(

k, V̄h

)

for fluids

with different densities and with similar densities, the critical

acceleration is:

ρh

ρl
→ ∞ :

ḡcr

kV̄2
h

≈
(

ρh

ρl

)

→ ∞;

ρh

ρl
→ 1+ :

ḡcr

kV̄2
h

≈ ρh − ρl
2ρh

→ 0+ (26.2)

For given values of the acceleration g > ḡcr , the energy seeds

(ε0)h(l) =
(

Q0 · J/J2e0
)

h(l)
, and the fluid densities ρh (l), we find

the critical wave vector kcr stabilizing the dynamics:

�CDGM|k=kcr = 0 : kcr =
g

V̄2
h

(

ρl

ρh

)(

ρh + ρl
ρh − ρl

)

(27.1)

We further find the maximum wave vector kmax at which the

unstable dynamics has the largest growth:

∂�CDGM

∂k

∣

∣

∣

∣

k=kmax

= 0,
∂2�CDGM

∂k2

∣

∣

∣

∣

k=kmax

< 0 :

kmax =
1

2

g

V̄2
h

(

ρl

ρh

)(

ρh + ρl
ρh − ρl

)

(27.2)
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FIGURE 4

Flow fields for the unstable low Mach dynamics in thermally conducting fluids, under the destabilizing acceleration, when the thermal heat flux

parameter is zero. Plots of real parts of perturbed fields of the interface, the velocity, the velocity streamlines, the pressure, and the internal energy,

with red (blue) for positive (negative) in the contour plots. The perturbed vortical and vorticity fields are null.

From the expressions (Equations 26, 27), we obtain for any

density ratio and for any thermal heat flux:

kmax

kcr
= 1

2
,

kcr

k
= g

ḡcr
,

kmax

k
= 1

2

g

ḡcr
,

�CDGM

�CDGM|k=kmax

= 2

√

ḡcr
(

g − ḡcr
)

g2
(27.3)

Remarkably, in the low Mach dynamics in thermally

conducting fluids, the ratio is 1/2 of the maximum and critical

wave vectors; it is the same as that in the conservative dynamics

in ideal fluids [15]. This is because the seeds of the energy

perturbations are defined by the leading order balance for the

thermal heat flux (Equation 6.4). It keeps intact the dependences

of the critical kcr and maximum kmax wave vectors and their

ratio kcr/kmax on the acceleration g and the velocity Vh. At the

same time, through the velocity rescaling, Vh → V̄h the thermal

heat flux changes the values of the kcr and kmax magnitudes. The

critical wavelength λcr = 2π/kcr and the maximum wavelength

λmax = 2π/kmax increase with the thermal heat flux.

Consider the effect of the density ratio on the dispersion curve

and the maximum growth rate for given values of the thermal

heat flux and the acceleration. For fluids with different densities in

Equations 27.1–27.3, the critical andmaximumwave vector and the

growth rate are:

ρh

ρl
→ ∞ : kcr ≈

g

V̄2
h

ρl

ρh
, kmax ≈

g

2V̄2
h

ρl

ρh
,

�CDGM|k=kmax
≈ g

2V̄h

√

ρl

ρh
(27.4)
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FIGURE 5

Flow fields for the unstable low Mach dynamics in thermally conducting fluids under the destabilizing acceleration, when the thermal heat flux

parameter is finite. Plots of real parts of perturbed fields of the interface, the velocity, the velocity streamlines, the pressure, the vorticity, and the

internal energy, with red (blue) for positive (negative) in the contour plots.

For fluids with similar densities in Equations 27.1–27.3, these

quantities are:

ρh

ρl
→ 1+ : kcr ≈

2g

V̄2
h

ρh

ρh − ρl
, kmax ≈

g

V̄2
h

ρh

ρh − ρl
,

�CDGM|k=kmax
≈ g

V̄h

ρh

ρh − ρl
(27.5)

Hence, the dispersion curve is located at small wave vectors

and small growth rates for fluids with different densities

(Equation 27.4), and at large wave vectors and large growth rates for

fluids with similar densities (Equation 27.5). This is consistent with

quasi-homogeneity of the dynamics at small density ratios [15, 16].

4 Outcomes

Our theory investigates in detail the low Mach dynamics in

thermally conducting fluids and finds the attributes not earlier

discussed. This includes, e.g., the new fluid instability, the interplay

of the destabilizing acceleration with the macroscopic inertial

stabilization and the microscopic thermodynamics, and the link

of the structure of the flow fields to the thermal heat flux. We

compare our results with other theories and models, connect to

existing experiments, outline the extensive theoretical benchmarks

for experiments and simulations, and chart perspectives for

future studies.

4.1 Comparison with models

The interface dynamics with interfacial fluxes of mass and

heat is a long-standing problem in science, mathematics, and

engineering [6, 11–14, 20, 47, 48]. Its traditional applications

include the processes of premixed combustion (in the context of

flame stability) and inertial confinement fusion (in the context of

stability of laser ablated plasma) [2–14, 16, 20, 47–54].

4.1.1 Interface stability in fluids
Figure 6 presents the dependence of the growth rates on

the acceleration magnitude for the low Mach dynamics in

thermally conducting fluids with and without the thermal heat

flux (Equation 24, 26) and for the classical Landau–Darrieus and

Rayleigh–Taylor instabilities in ideal fluids. In Landau–Darrieus

instability under gravity (LDG) and in Rayleigh–Taylor instability
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FIGURE 6

Dependence of the growth rate on the destabilizing acceleration of

the low Mach dynamics and the classical Landau–Darrieus and

Rayleigh–Taylor dynamics at some values of the density ratio and

the thermal heat flux parameter.

(RT), the growth rates are [14, 20, 21]:

�LDG = − kVh ρh
ρh+ρl +

√

gk
ρh−ρl
ρh+ρl +

(

kVh

)2 ρh
ρl

(

ρ2
h
+ρhρl−ρ2l

)

(ρh+ρl)2
,

�RT =
√

gk
ρh−ρl
ρh+ρl (28)

For a given density ratio ρh/ρl and strong accelerations,

g >> ḡcr , the unstable low Mach dynamics �CDGM grows faster

compared to �LDG, and �RT , achieving the largest growth for the

zero heat flux.

The low Mach dynamics conserves mass, momentum, and

energy in the bulk and, at the interface, and obeys the boundary

conditions for the thermal heat flux at the interface. It is

stabilized primarily by the inertial mechanism. In Landau–Darrieus

instability, the Landau’s dynamics conserves mass and momentum

in the bulk and, at the interface, and is incompatible with the

energy conservation at the interface. It postulates the constancy of

the interface velocity and thus preempts the inertial stabilization

mechanism to occur. In Rayleigh–Taylor dynamics, the inertial

mechanism is absent due to the zero mass flux across the interface

(see Equations 19, 21, 24, 26, Figure 6, and the works [3, 6, 11–14,

20, 21, 47, 48]).

In the low Mach dynamics, the velocity fields have potential

and vortical components under the thermal heat flux and have

only potential components at the zero thermal heat flux. In

Landau–Darrieus dynamics, the velocity fields have potential and

vortical components, whereas in Rayleigh–Taylor dynamics the

velocity fields have only the potential component. In the low Mach

dynamics, the velocity vortical field in the bulk is induced by the

thermal heat flux, and the velocity is shear-free at the interface.

In Landau–Darrieus dynamics, the velocity is shear-free at the

interface, whereas Rayleigh–Taylor dynamics has the velocity shear

at the interface. In the inertial frame of reference, the interface

velocity is variable in the low Mach dynamics in both stable and

unstable regimes, and it is constant in Landau–Darrieus dynamics

and is zero in Rayleigh–Taylor dynamics. One can distinct between

the low Mach dynamics and Landau–Darrieus/Rayleigh–Taylor

dynamics by diagnosing the growth of the interface perturbations,

the structure of flow fields in the bulk, and the interface velocity

(see Equations 19, 24, 26, 28, Table 6 and Figure 6, and the works

[3, 6, 11–14, 16, 20, 21, 28–30, 47, 48]).

4.1.2 Interface stability in plasmas
To directly compare our theoretical results with experiments

in inertial confinement fusion, a scrupulous analysis of raw data is

required. Since the data are a challenge to access, we compare the

growth rates and dispersion relations in the low Mach dynamics

and in themodels of ablative Rayleigh–Taylor/Richtmyer–Meshkov

instability in plasmas.

The pioneering models [49, 62] of ablative Rayleigh–Taylor

instability suggest that in a single fluid, the growth rate is �B,AK

(subscript is for Bodner, Anisimov, Kull). For strong accelerations,

this growth rate �B,AK is in conformity with our results in

Equations 24, 26:

�B,AK = −kVa +
√

gk, �B,AK

∣

∣

(g/kV2
a )→∞ →

√

gk,

�CDGM|(g/kV2
a )→∞ →

√

gk,

Va = V̄h (29.1)

Here, the ablation velocity is Va, and we set Va = V̄h. The

pioneering works [50, 62] advise that ablative Richtmyer–Meshkov

instability has a purely imaginary growth rate �N (subscript is for

Nishihara) for any density ratio. This is consistent with our results

for the inertial dynamics in Equations 21, 24, 26:

Re [�N] = 0, �CDGM|(g/kV2
a )=0 = ±ikVa

√

ρh

ρl
, Va = V̄h (29.2)

The model [51] suggests the other growth rate in ablative

Rayleigh–Taylor instability; the same expression is given in the

model [52]; its growth rate is �SPI,B (subscript is for Sanz, Piriz,

Ibanez, Betti). The model [53] proposes for ablative Rayleigh–

Taylor/Richtmyer–Meshkov instability the growth rate �G,AV

(subscript is for Goncharov, Aglitsky, Velikovich). They are:

�SPI,B = −kVa
2ρh

ρh + ρl
+

√

gk
ρh − ρl
ρh + ρl

−
(

kVa

)2 ρh

ρl

(

ρh − ρl
ρh + ρl

)2

,

�G,AV = −2kVa +
√

gk−
(

kVa

)2 ρh

ρl
(30.1)

For given values
(

k, Va

)

in the models [51–53], the critical

accelerations stabilizing the dynamics are:

gcr
∣

∣

PSI,B
= kV2

a

ρh

ρl

(

ρh + ρl
ρh − ρl

)

, gcr
∣

∣

G,AV
= kV2

a

(

4+ ρh

ρl

)

(30.2)

In plasma fusion, the models [5, 46] are usually applied in a

single fluid limit. For (ρh/ρl ) → ∞ , the growth rates �SPI,B

�G,AV are consistent with �B,AK (at g/kV2
a >> 1) and �N (at

g/kV2
a << 1) (Equation 29) [49, 50, 62, 63]. In the models [51–53]

in Equation 30.1, for fluids with very different densities, the critical
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acceleration, the critical andmaximumwave vectors, themaximum

growth rate, and the frequency of the inertial dynamics are:

ρh
ρl

→ ∞ :
gcr
kV2

a

∣

∣

∣

CDGM(PSI,B)(G,AV)
≈ ρh

ρl
, kcr

∣

∣

SPI,B(G,AV)
≈ g

V2
a

ρl
ρh
,

kmax

∣

∣

SPI,B(G,AV)
≈ kcr

2 ,

�SPI,B(G,AV)

∣

∣

k=kmax
≈ g

2Va

√

ρl
ρh
,

�SPI,B(G,AV)

∣

∣

(g/kV2
a )=0

≈ ±ikVa

√

ρh
ρl

(30.3)

This is consistent with our theory in the low Mach dynamics,

upon the rescaling Va = V̄h, (Equations 24, 26, 27).

For purposes of completeness, we consider the models [51–53]

for fluids with very similar densities (ρh/ρl ) → 1+. Then, the
critical acceleration, the maximum and critical wave vectors, the

maximum growth rate, and the frequency of the inertial dynamics

are in the models [51, 52]:

ρh
ρl

→ 1+ :
gcr
kV2

a

∣

∣

∣

PSI,B
≈ 2ρh

ρh−ρl , kcr
∣

∣

SPI,B
≈ g

2V2
a

ρh−ρl
ρh

,

kmax

∣

∣

SPI,B
≈ g

8V2
a

ρh−ρl
ρh

,

�SPI,B

∣

∣

k=kmax
≈ g

8Va

ρh−ρl
ρh

,

�SPI,B

∣

∣

(g/kV2
a )=0

≈ −kVa

(

1± i
2
ρh−ρl
ρh

)

(30.4)

and they are in the model [53]:

ρh
ρl

→ 1+ :
gcr
kV2

a

∣

∣

∣

G,AV
≈ 5, kcr

∣

∣

G,AV
≈ g

5V2
a
,

kmax

∣

∣

G,AV
≈ g

2
√
5V2

a

(√
5− 2

)

,

�G,AV

∣

∣

k=kmax
≈ g

10Va

(

5− 2
√
5
)

(
√

9+ 4
√
5− 2

)

,

�G,AV

∣

∣

(g/kV2
a )=0

≈ −kVa (2± i)

(30.5)

These expressions depart from our theory of the low Mach

dynamics (Equations 24, 26) and the works [15, 16].

Figure 7 presents the dependence of the critical acceleration

gcr/kV
2
a , scaled with Va = V̄h, on the density ratio ρh/ρl in the

low Mach dynamics (Equations 24, 26) and in the models [51–53].

As expected (Equation 30), the models [51–53] are consistent with

(depart from) our theory (Equations 26, 27) for fluids with very

different (similar) densities.

Figure 8 presents the dependence of the growth rate � on the

wave vector k in the low Mach dynamics (Equations 26, 27) and

in the models [51–53]. The values are scaled with �CDGM|k=kmax
,

kcr
∣

∣

CDGM
, and Va = V̄h in the low Mach dynamics (Equations 26,

27). The dispersion curve in the models [51–53] is similar to that

in our rigorous theory for very large density ratios (e.g., ρh/ρl =
4× 104). For reasonably large density ratios (e.g., ρh/ρl = 40), the

models [51–53] depart from our theory (Equations 26, 27) [16].

It is reported that the models [51–53] tend to agree with

experiments at very large density ratios. By reproducing the results

of the prior models for fluids with very different densities, our

theory effectively agrees with the experimental data in fusion

plasmas to the same (and, possibly, greater) extent [5, 46]. Our

results illustrate the need for data availability and the importance

of specific technical details, including the density ratio, the thermal

heat flux, and the acceleration in the experiments (see Equations 24,

26 and Figure 6) [16, 46].

Our theory accurately finds the perturbation waves in the bulk,

precisely formulates the boundary conditions for the thermal heat

FIGURE 7

Dependence of the critical acceleration on the density ratio in the

low Mach dynamics and the models of ablative Rayleigh–Taylor

instabilities. The models are consistent with (depart from) the low

Mach dynamics for fluids with very di�erent (similar) densities.

FIGURE 8

Dependence of the growth rate on the wave vector in the low Mach

dynamics and the models of ablative Rayleigh–Taylor instabilities in

the unstable regime. The dispersion curves in the models of ablative

Rayleigh–Taylor instabilities coincide with that in the low Mach

dynamics for very large density ratios. For large finite density ratios,

the models of ablative Rayleigh–Taylor instabilities depart from the

low Mach dynamics.

flux, and rigorously solves the boundary value problem at the

interface. It finds the characteristics of the low Mach dynamics—as

well as the advection and the diffusion dynamics—in a broad range

of conditions, with (ρh/ρl ) ∈ (1,∞) and
(

Km/k
)

h(l)
∈ [0,∞),

well beyond the scope of the models [51–53]. This opens venues,

unexplored before, for modeling interface dynamics in fusion

plasmas. In particular, the growth of the unstable interface velocity

additionally to the growth of the interface perturbations can explain

a quick extinction of the hot spot in the inertial confinement fusion,

which is observed in experiments [5, 46].

4.2 Comparison with observations

4.2.1 Prospect of Landau
Dynamics of an interface, having fluxes of heat and mass

across it, is a long-standing challenge in mathematics, science,

and engineering [6, 11–14, 20, 47, 48]. The classical theory
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of Landau [20] predicted that the interface with mass flux is

unconditionally unstable, leading to Landau–Darrieus instability

[14, 20]. For incompressible ideal fluids, the instability was a

challenge to directly observe in the experiments [12–14]. The

consensus addressing this paradox suggested the following: at small

length scales, the interface dynamics is stabilized by microscopic

thermodynamic mechanisms (e.g., viscosity, thermal conductivity,

and surface tension). Large scale processes are difficult to realize in

controlled laboratory environments [6, 12–14, 47].

Our theory resolves the paradox [20]. It finds [15, 16] that

in both ideal and thermally conducting fluids, the interface is

stabilized primarily by the macroscopic inertial mechanism and is

destabilized by the acceleration. The microscopic thermodynamics

and the thermal heat flux provide extra stabilizations and create

vortical fields in the bulk. The unstable Landau’s solution—

by postulating constancy of the interface velocity—is a perfect

mathematical match preempting the inertial mechanism to occur.

Mathematical and physical properties of the multiphase dynamics

found by our theory enable an unambiguous differentiation

between the low Mach, Landau–Darrieus dynamics, and Rayleigh–

Taylor dynamics in experiments and simulations, to be done in the

future [3, 6, 14–16, 20, 21, 25–30].

4.2.2 Geophysics and astrophysics
Our theory finds that in the inertial low Mach dynamics, the

interface is stable at global scales. This is consistent with and

qualitatively explains the observations in geophysical multiphase

flows [16, 35, 69]. The latter include the confluence of Green

and Colorado Rivers and the stable border between the Pacific

and Atlantic oceans. In these cases, distinct waters meet and do

not mix, and the interface between the waters is globally stable

[35, 69]. Our theory further finds that in the unstable accelerated

low Mach dynamics, the interface velocity increases with time

and the interface is free from the shear-driven vortical structures.

These characteristics can aid better understanding of dynamics and

morphology of filamentary structures in supernova remnants [3, 4].

4.2.3 Experiments in plasmas
The scaled laboratory experiments in high energy density

plasmas examine the interfacial mixing of matters in supernova

relevant conditions [46, 54]. The experiments [54] investigated

the effect of the thermal heat flux on the interface stability and

observed qualitative differences between the dynamics with high

and low thermal heat flux values. Our theory is consistent with

these observations [16, 54].

We find that in the experiments [54], the low flux case

corresponds to the classical Rayleigh–Taylor instability, whereas

the high flux case is related to the accelerated interfacial dynamics

with mass and heat fluxes. Per our theory, these dynamics

have distinct qualitative and quantitative properties (Equations 24,

26, 28, Figure 6); these distinctions explain the experimental

observations [16].

Particularly, (i) in the low flux case in Rayleigh–Taylor

dynamics, the interface perturbations grow quicker than in the

unstable interfacial dynamics in the high flux case because the

accelerations in the experiments are relatively low. (ii) In the

unstable interfacial dynamics in the high flux case, the interfacial

structure propagates quicker than in Rayleigh–Taylor dynamics

in the low flux case because the inertial mechanism enlarges the

velocity of the interface as a whole. (iii) The interface dynamics

with fluxes of mass and heat is free from the interfacial shear and

from shear-driven vortical structures at the interface. In Rayleigh–

Taylor dynamics with the null mass flux, the shear and the vortical

structures are present at the interface. This explains the distinctions

in the interface morphology observed in the experiments in the

high flux case and the low flux case (see Equations 24, 26, 28,

Figure 6) [16, 54, 64].

4.2.4 Experiments in complex fluids
In our theory, the mass flux and the heat flux are separate

physical quantities allowing one to independently analyze their

contributions to the dynamics. This consideration is applicable in

a broad range of conditions, including the microscopically thin

interfaces with macroscopically observable mass and heat fluxes

found in the experiments and molecular dynamics simulations [7–

10, 18, 39, 44]. Our theory highlights the need in experimental

systems that can autonomously control the flux of mass and the

flux heat, or—in other words—the flux of mass and the flux of

energy (Equations 24, 26, 28) [15, 16]. While such conditions may

be a challenge to reach in regular fluids or plasmas, they may be

achievable in complex matters involving chemical processes and

transports of species and charges.

The experiments [39] investigated the chemical process of

liquid–liquid extraction with the metastable precipitation and the

transports of ions. This process is accompanied by the formation

of interfaces separating the phases of matter (i.e., the liquids). The

chemistry of the process controls the flux of mass and the flux

of energy at and across the interfaces. The experimental system

exhibits rich dynamics. This includes the formation of quasi-

convective vortical structures associated with the energy imbalance

at the interface, and quasi Rayleigh–Taylor fingering structures

occurring when the fluxes of mass and energy across the interface

are reduced [39]. The observations are in qualitative agreement

with our theoretical results. In addition, the experiments and

theory are consistent with the molecular dynamics simulations

revealing complexity of energy transport in energetic materials and

in reactive systems [18, 39].

4.2.5 Experiments on contained turbulence
Our theory identifies opportunities, not discussed before, for

realizing turbulence in a laboratory.

It is traditionally believed that turbulence develops from a

laminar flow via a tangential discontinuity mechanism, or a velocity

shear. In this mechanism, the velocity shear at the discontinuity—

the thin interface with zero mass flux across it—makes the interface

unstable due to the Kelvin–Helmholtz instability and creates

vortical structures at the interface [14]. The vortical structures are

then presumed to propagate to the bulk, causing turbulence to

develop [14, 65, 66].

Our theory suggests another mechanism of generating vortical

fields and vortical structures in the bulk. We find that for an

interface with fluxes of mass and energy, the velocity field is free
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from the interfacial shear. The vortical field in the bulk is created

by the energy flux across the interface. For the stable interface, the

vortical field is represented by periodic vortical structures. They

may cause turbulence to develop (see Equations 24, 26, 28 and the

works [15, 16, 29]).

The experiments [55] examined how to create turbulence in a

contained geometry, free from using extended tunnels and applying

a velocity shear as it is done in turbulent boundary layers or a

jet turbulence [65, 66]. The experiments employ a ring of jets to

blow loops—vortex rings—into a tank of water until an isolated

ball of turbulence forms and lasts, thus observing a contained

turbulence in the tank. These observations are in a qualitative

consistency with our theoretical results (Equations 24, 26, 28) and

with the works [15, 16, 29]. Particularly, the turbulence ball is

isolated; it is effectively separated from the ambient by a self-

formed interface; the mass and energy are transported through

the interface; hence, turbulence can develop. By using our theory

[15, 16, 29] and the experiments [55], one can directly examine

Kolmogorov turbulence—a process driven by an external energy

source causing strong stochastic fluctuations [14, 37, 38, 67, 68].

4.3 Benchmarks and diagnostics

By finding benchmarks of interface dynamics not earlier

diagnosed, our theory opens opportunities for experiments and

simulations (see Equations 12–27, Tables 1–6, Figures 2–8) [16].

For validating the low Mach dynamics in experiments and

simulations, it is required, in addition to the velocity vector field, to

precisely measure the scalar fields of the inertial energy, the density,

and the pressure. These fields are correlated (Equations 14–17). In

the heavy (light) fluid, they have the initial perturbation length scale

k̃−1 and are modulated with waves with the length scale k̃−1
h

(k̃−1
l

).

In the lowMach dynamics, the length scale k̃−1
h

(k̃−1
l

) is independent

of the thermal conductivity and is greater than the length scale

of the initial perturbation kk̃−1
h(l)

<< 1 (see Equations 14–17,

Tables 1–3, Figures 2–5) [16].

Our theory directly links macroscopic attributes of the low

Mach dynamics (the vortical structures in the bulk and the interface

stability) to the microscopic thermodynamic properties (the

thermal heat flux and the thermal conductivity). To qualitatively

detect the presence of the thermal heat flux at the interface, one has

tomeasure the velocity vortical and vorticity fields in the bulk; these

fields are produced by the energy excess (i.e., the thermal heat flux)

at the interface. To quantify the thermal heat flux at the interface,

one has to accurately balance the values of the specific enthalpy

W0 and the specific kinetic energy
(

J2/2ρ20
)

, where the physical

enthalpy isW0 = W̄0 +CP2 , the enthalpy of formation is W̄0, the

specific heat at constant pressure is CP, and the temperature is 2

(see Equations 19–27, Tables 4–6, Figures 2–6) [16].

In the low Mach dynamics, the interface stability is defined

primarily by the macroscopic inertial mechanism balancing the

destabilizing acceleration, and the thermal heat flux creates vortical

fields in the bulk. The instability of the low Mach dynamics in

thermally conducting fluids differs qualitatively and quantitatively

from the instability of the conservative dynamics in ideal fluids.

The low Mach dynamics has the potential and vortical velocity

fields, whereas the conservative dynamics has only the potential

velocity fields. Remarkably, in the unstable low Mach dynamics for

the maximum and critical wave vectors, the ratio is the same as that

in the conservative dynamics; the growth rates of these dynamics

can be linked with one another upon appropriate velocity scaling

(see Equations 25–27, Table 6, Figure 6) [16].

Our rigorous theory inspires the experiments and simulations

to further advance diagnostics and the data’ accuracy, precision,

and statistics, for better understanding multiphase dynamics. In

realistic fluids, in addition to the interface growth and growth

rate, experimental diagnostics have to include the structure of

the macroscopic fields in the bulk, the properties of microscopic

transports at the interface, and the unsteadiness of the interface

velocity. In high energy density plasmas, the experiments have

to employ the capabilities of high power laser facilities in pulse

shaping and in target fabrication for precise controlling the thermal

heat flux and the thermal transport. In materials, for better

understanding the interplay of mass and energy transports at

the interface, one can employ the highly accurate experiments

in complex fluids, and the Eulerian and Lagrangian methods of

numerical modeling (see Equations 19–27, Table 6, Figures 2–8)

[5–10, 18, 19, 32–34, 39, 42–46, 54–59, 64–66].

The advancements in experimental and numerical approaches

enable one to quantify with high fidelity and ample statistics the

microscopic transport at the interface and the macroscopic fields in

the bulk. In synergy with our theory, they can provide new insights

in far from equilibrium dynamics of interfaces and interfacial

mixing in nature, technology, and industry (see the works [1, 2]).

5 Summary

We examine analytically the classical problem of the interface

dynamics with the interfacial fluxes of mass and heat in thermally

conducting inviscid fluids. The low Mach regime is thoroughly

investigated, in which the flow fields are subsonic (including

the uniform fields and the perturbation waves), the thermal

conductivity length scale is large compared to that of the initial

perturbation, and the weak compressibility dominates over the

thermal transport (see Equations 1–4) [16].

We employ the rigorous theoretical framework to solve this

long-standing problem [15, 16]. By using the generalized functions,

the boundary conditions at the interface are self-consistently

derived from the governing equations in the bulk, including

the conditions for the fluxes of mass, momentum, and energy

and for the thermal heat flux. The thermal heat flux at the

interface and the seeds of perturbations of the internal energy are

accurately evaluated. We precisely identify the degrees of freedom

of the dynamics, including the four mechanical perturbation

waves and the two energetic waves seeded by the internal energy

perturbations. We solve the boundary value problem in a broad

range of parameters and find the growth of the interface and the

structure of the flow fields in the bulk, thus linking the processes at

micro and macro scales (see Equations 5–17, Tables 1–5).

The low Mach dynamics possess the following characteristics.

The interface is stabilized primarily by the macroscopic inertial

mechanism that balances the destabilizing acceleration. The

microscopic thermodynamics and the thermal heat flux provide
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additional stabilizations. The interface is unstable, when the

dynamics is accelerated, and the acceleration magnitude exceeds

a threshold. The interface is globally stable, if the dynamics is

inertial. The thermal heat flux at the interface forms the vortical

and vorticity velocity fields in the bulk. The vortical field is

energetic—rather than dynamic—in nature. For the zero thermal

heat flux, the internal energy perturbations vanish, and the velocity

has only potential fields in the bulk. The velocity field is free

from the shear at the interface (see Equations 18–27, Table 6,

Figures 2–5).

In the inertial frame of reference, the low Mach dynamics is a

superposition of the two motions—the dynamics of the interface

as a whole and the dynamics of the interface perturbations.

The velocity of the interface is variable. In the stable regime, it

oscillates along with oscillations of the interface perturbations.

In the unstable regime, its magnitude increases in time, along

with the amplitude growth of perturbations of the interface

and the flow fields. The low Mach dynamics is degenerate; it

has the smaller number of the fundamental solutions than the

number of the degrees of freedom. The degeneracy is due to the

thermodynamic nature of the internal energy perturbations. For

the zero thermal heat flux parameter, the low Mach dynamics

in thermally conducting fluids coincides with the conservative

dynamics in ideal fluids (see Equations 19–27, Tables 5, 6,

Figures 2–6) [16].

Qualitative and quantitative properties reveal that the

low Mach dynamics differ substantially from the dynamics

of the Landau–Darrieus and Rayleigh–Taylor instabilities.

One can clearly distinguish in experiments and simulations

between the low Mach, Landau–Darrieus, and Rayleigh–Taylor

dynamics, to be done in the future. Our theory accurately

reproduces in certain limiting cases the results of the models

of ablative Rayleigh–Taylor instability. Our approach is

applicable in a broad range of the acceleration magnitudes,

the thermal heat flux values, and the density ratios, thus

providing experiments and simulations in fluids and plasmas with

benchmarks not diagnosed before (see Equations 28–30, Figures 7,

8) [16].

Our theory is consistent with and explains the existing

observations [39, 54, 55]. This includes the scaled laboratory

experiments in high energy density plasmas examining the

interfacial mixing in supernova relevant conditions [54]; the

experiments on the ablative stabilization of plasmas in the inertial

confinement fusion [5, 46]; the experiments in complex fluids

investigating the process of liquid–liquid extraction with the

metastable precipitation and the transports of ions [39]; and

the experiments [55] examining the creation of turbulence in a

contained geometry, beyond the use of the tangential discontinuity

mechanism and the velocity shear in extended tunnels. This further

includes the numerical simulations of the energetic materials and

the reactive systems [18]. Our results on the interface stability in the

inertial dynamics are harmonious with observations in geophysical

and astrophysical flows at global scale [31–35, 69].

By directly linking far from equilibrium dynamics and

kinetics—i.e., the dynamics of the interface and the flow fields

at macroscopic scales and the microscopic thermodynamic

properties associated with the interactions and motions of multiple

particles interface—our theory identifies qualitative attributes

and quantitative benchmarks not measured and not studied

before. In the low Mach dynamics, these include the dependence

of the interface stability, the structure of the flow fields and

the characteristic scales on the density ratio, the thermal heat

flux, and the acceleration magnitude; the interplay of the weak

compressibility with the thermal heat flux, the mass flux and

the initial conditions; and the unsteadiness of the interface

velocity and the rescaling of the interface velocity magnitude with

the thermal heat. Our theory points out a necessity in further

advancing numerical methods and experimental metrologies in

fluids, plasmas, and materials (see Equations 14–27, Table 6,

Figures 2–6) [16].

We find that the interface is a place where balances are

achieved, by coupling microscopic transport and thermodynamics

to macroscopic flow fields in the bulk. By varying the thermal

heat flux, the thermal conductivity, the initial conditions, and

the acceleration, one can impact the stability of the interface and

the structure of the flow fields in the low Mach dynamics. Our

analytical framework can be employed to investigate the far from

equilibrium dynamics and kinetics of interfaces and interfacial

mixing in a wide range of processes in nature and technology. They

include the type-Ia supernova blasts, the filamentary structures

in supernova remnants, the convection in planetary interiors,

the multiphase geophysical flows, the ablative stabilization of

plasma in inertial confinement fusion, the nanofabrication, the

transportation security of liquefied natural gas, the purification of

water, the electro-catalysis, and the energetic materials. We urge

our theoretical results be considered in investigations of these

processes and interpretations of the observational data [1–13, 18,

19, 32–35, 39, 42–46, 54–59, 64–66, 69].
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