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The connection between
non-normality and trophic
coherence in directed graphs

Catherine Drysdale1* and Samuel Johnson2

1Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Edgbaston,

United Kingdom, 2School of Mathematics, University of Birmingham, Edgbaston, United Kingdom

Trophic coherence and non-normality are both ways of describing the overall

directionality of directed graphs or networks. Trophic coherence can be regarded

as a measure of how neatly a graph can be divided into distinct layers, whereas

non-normality is a measure of how unlike a matrix is with its transpose. We

explore the relationship between trophic coherence and non-normality by first

considering the connections that exist in literature and calculating the trophic

coherence and non-normality for some toy networks. We then explore how

persistence of an epidemic in an SIS model depends on coherence and how

this relates to the non-normality. A similar e�ect on dynamics governed by a

linear operator suggests that it may be useful to extend the concept of trophic

coherence to matrices, which do not necessarily represent graphs.
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1 Introduction

In this perspective article, we aimed to explore the relationship between trophic

coherence and non-normality, which are both qualities used to describe directed graphs.

Non-normality refers to the overall asymmetry of an adjacency matrix. Trophic coherence

is defined as how neatly the network can be divided into distinct layers, but it can also be

interpreted as a tendency of edges to align with a global direction. These two notions come

together in directed graphs. A directed graph can be represented with an N ×N adjacency

matrix A. If the graph is unweighted then A is binary: Aij = 1 if there is an edge from node

vi to node vj, else Aij = 0. When there is an edge from vi to vj, we will say that vi “sees” vj. A

weighted directed graph can be represented with a matrix whose entries are real numbers.

For our purposes here, we will always assume that A is non-negative. Each node has an in-

degree and an out-degree: kini =
∑

j Aji and kouti =
∑

j Aij. These are sometimes referred

to as “strengths” if the directed graph is weighted.

Definition 1.1. (Non-normality.) Given a real matrix A and its transpose AT , we say that

the matrix A is normal if AAT − ATA = 0. It is non-normal otherwise.

Definition 1.2. (Trophic Coherence) A directed graph is said to be maximally coherent if it is

possible to assign to each node a natural number such that nodes assigned to n only see others

assigned to n + 1. The greater the deviation from such a configuration, the more incoherent

the graph.
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The need to understand non-normal matrices and operators

arises in the fields of fluid dynamics [1–4], PT-symmetry [5–

12], and mathematical biology [13] among other disciplines.

In particular, non-normal systems are often characterized by

eigenvalues that are sensitive to perturbation. It is for this non-

normality is considered an asset in information transfer and

communication as it can amplify small environmental changes

[14, 15]. Additionally, non-normal linear operators are difficult to

capture numerically as small discrepancies arising from machine

precision can manifest as large perturbations in the eigenvalues.

This has given rise to the study of pseudospectra; the ǫ-

pseudospectrum of a matrix A is defined as the set {z ∈ C : ||(A −
zI)−1|| < ǫ−1}). The definition of pseudospectra corresponds to

a measure of sensitivity to perturbations of size ǫ; an equivalent

definition of pseudospectra is the set {z ∈ Sp(A + B) : ||B|| ≤
ǫ} [16]. Despite this being one of the most useful tools for

understanding how eigenvalues respond to perturbation, it is not

necessarily the best way of understanding the sensitivity of directed

graphs to operators such as changing the weights of edges or edge

deletion. This is equivalent to putting a structure on the matrix B,

which thus breaks the correspondence between the “perturbation

view of pseudospectra” and the “transient phenomena” view

of pseudospectra. The latter is particularly relevant when the

adjacency matrix represents a discrete dynamical system.

Ecologists define the “trophic level” of a species as the average

level of its prey, plus one [17]. Trophic coherence was first proposed

as a solution to May’s paradox: the fact that large ecosystems are

stable [18]. If the trophic difference of each edge in a graph is the

difference between the trophic levels of the in- and out-neighbors,

then the broader the distribution of differences (i.e., the larger the

standard deviation of this distribution), the more incoherent the

network. It was found that ecosystem models based on sufficiently

coherent graphs became more stable, rather than less so, with

increasing size. It was subsequently shown, by means of graph

ensembles and numerical simulations, that trophic coherence

could be related to several aspects of directed networks more

generally, including the spectral radius and distribution of cycles

[19]; motif profiles [20]; non-normality and strong connectivity

[21, 22]; pseudospectra [23]; and various dynamical processes [24–

26]. However, relying on the ecological definition of trophic levels

restricted the application of trophic coherence to networks with

at least one node with in-degree zero. Hence, a new measure of

trophic levels was proposed that can be applied to any directed

graph [27]. This is the method we use here.

In this article, we wish to emphasize the connection between

trophic coherence and non-normality and to suggest that this

may be relevant not only for directed graphs but for other

systems described by matrices. In the first section, “Measuring

Trophic Coherence and Non-normality,” we take a deeper look

into literature and present results that connect the two ideas.

We also calculate the non-normality and trophic coherence

of some toy networks in order to help the reader build an

intuition. In the second section, we study an SIS model and

a simple linear dynamics, both of which are affected by the

coherence of an underlying matrix. We see how non-normality,

strong connectivity, and the spectral radius also change with

the trophic coherence. We then conclude by discussing potential

further avenues of research to establish stronger bonds between

these topics.

2 Measuring trophic coherence and
non-normality

Definition 2.1. The vector of trophic levels h of a directed graph with

adjacency matrix A is the solution to the equation

3h = v, (1)

where

3 = diag(u)− A− AT , (2)

and the vectors of total degree and degree imbalance are, respectively,

u = k
in + k

out and v = k
in − k

out [27]. As the solution to

Equation 1 is defined only up to an additive constant, the convention

that min(hi) = 0 is used (i.e., all the elements of h are positive except

for the smallest value which is set to zero.)

While Equation 1 always has a solution, which is unique given

the convention stated at the end of the definition, we should note

that one cannot obtain this solution by inverting 3, as this matrix

is always singular. One must therefore use some other method to

find the solution, such as LU decomposition, the Moore-Penrose

pseudo-inverse or an iterative method.

We can measure the trophic coherence of a directed graph with

the incoherence parameter F, given by:

Definition 2.2. The trophic incoherence of a directed graph with

adjacency matrix A and trophic levels h given by Equation 1 is

as follows:

F =
∑

ij Aij(hj − hi − 1)2

∑

ij Aij
. (3)

The incoherence F would coincide with the square of the

parameter q proposed by Johnson et al. [18] if trophic levels were

calculated as in ecology (F = q2) [18]. Using the trophic levels given

by Equation 1, F is bounded between zero and one: F = 0 implies

a perfectly coherent directed graph in which vertices fit into integer

trophic levels; and F = 1 corresponds to maximum incoherence,

which occurs if and only if the directed graph is balanced (v = 0)

[27].

Definitions 2.1 and 2.2 were originally derived by first writing

down (Equation 3) for generic levels, and then finding the solution

h that minimized F—which leads to Equation 1. In other words, the

trophic levels, under this definition, are those which minimize the

trophic incoherence.

The average trophic difference is z = 1 − F, so one

interpretation of trophic coherence is as the “directedness” of

the graph, and z can be referred to as the trophic coherence

[27]. Another interpretation is given by SpringRank [28], which

likens each edge to a spring with natural length l = 1. F is

then the energy, which is minimized at the solution h. However,

another interpretation of the same equation is Helmholtz-Hodge
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decomposition, whereby a vector field can be decomposed into a

gradient part and a zero divergence part [29]. When applied to

graphs, F is then its “circularity.” The fact the same equation has

appeared independently at least three times testifies to its wide

applicability [27]. We note also that if the “−1” in Equation 3

were replaced with a constant “−a,” this would simply multiply the

trophic levels by a: h′ = ah. Hence, a = 1 is a natural choice that

does not reduce generality.

3 is twice the Laplacian of the undirected version of the

graph (A + AT)/2, which can be considered an undirected graph

as all edges now have an opposite edge of the same weight. In

particular, an interpretation is that 3h = v is the corresponding

inhomogenous equation to the homogenous equation (L(A) +
L(AT))x = 0. The multiplicity of the eigenvalue 0 corresponds

to the number of connected components in the undirected case,

hence can be seen as when we “force” (L(A) + L(AT))x = 0, by

unbalancing the in and out degrees on each node.

Whereas the trophic coherence can be captured by a single

number, it is not so easy to have a single number which captures

non-normality. Various measures have been proposed to quantify

the non-normality of matrices, the most obvious being ||AAT −
ATA|| for some suitable norm (here and in the paper we use

the Frobenius norm). Another method is Henrici’s deviation from

normality: Hen(A) =
√

||A||2F −
∑n

i=1 |λi|2, where || · ||F is the

Frobenius norm and {λi} are the eigenvalues of A. This can be

normalized by dividing through by the ||A||2F giving the parameter

dF =
√
1− ν, where ν =

∑n
i=1 |λi|2

||A||2F
(4)

is known as the “normality” [27]. Note that a directed graph

with normal adjacency matrix A would have
∑N

j=1 |λj|2 = ||A||2F
and hence ν = 1 (dF = 0), but a “very non-normal” network

would have |λj| = 0 for all j and in this case ν = 0

(dF = 1). However, we stress that the idea of “very non-

normal” is also subjective with respect to which measure. The

norm ||AAT−ATA|| can be considered more sensitive to structural

features such as skewness or asymmetry, whereas Henrici’s measure

aggregates deviations related to eigenvalue magnitudes, potentially

smoothing out localized anomalies. In particular, for matrices close

to being symmetric, but not normal, the two measures might

diverge significantly. The measure ||AAT − ATA|| could show a

large deviation, while Henrici’s measure may remain small if the

eigenvalues are unaffected.

In Table 1, we compute the trophic coherence and non-

normalitymeasures for two graphs (the loop on five vertices and the

so-called vortex graph on five vertices).We consider thesemeasures

for both the adjacency matrix and the non-symmetric Laplacian

L(A). We also add an edge to the cycle and delete an edge. We see

that trophic coherence increases (trophic incoherence F decreases)

in both settings. In addition, we can relate back to our previous

discussion regarding pseudospectra. where deletion and addition

of an edge can be considered a norm of the same size; hence, a

more nuanced approach is needed. In addition, we have that the

two measures of non-normality behave differently as the Henrici

norm perceives the graph with edge deletion as more non-normal

regarding the adjacency matrix and the Laplacian, whereas the

converse is true for the other measure. Further analysis is needed to

establish if there is a physical meaning to this in certain scenarios,

i.e., the graph represents a dynamical system. Although, in both

cases, the orientation of each edge can be reversed resulting in the

same graph, the fact that flow is not conserved on the “loop under

edge addition” may make this graph more asymmetric. Further

study must be done in this direction to establish this.

Asllani et al. [30] have recently studied the effects of non-

normality in directed graphs, where it was shown that dF correlates

strongly with a measure of structural asymmetry. Furthermore,

the structures of graphs with different degree distributions were

calculated. The approach of the Henrici norm has also been used

recently in work looking at non-normality in the context of trophic

coherence [21, 27].

It is possible to estimate the expected value of various

magnitudes given that a network has a specified trophic coherence,

by means of graph ensembles [19, 21, 27]. The “coherence

ensemble” is the set of all possible directed graphs with a given

degree sequence and trophic coherence. Thus, the expected value

of the spectral radius is as follows:

ρ = eτ , where τ = lnα+
LB

2(L− LB)
−

1− F

2F
, (5)

and the bar denotes expectation [19]. L is the number of edges, LB
is the number of edges connected to the source or sink nodes (those

with no incoming or outgoing edges), and the “branching factor” is

α = 〈kinkout〉/〈k〉 where the brackets are averages over vertices. τ is

referred to as the “loop exponent.” Because τ is positive for F ≃ 1

but becomes negative when F ≃ 0, directed graphs fall into one of

two regimes, referred to as “loopful” (τ > 0) and “loopless” (τ < 0)

[19]. In the former the number of circuits of length l increases

exponentially with l, whereas in the latter they decay exponentially.

This can have a crucial bearing on many other topological and

dynamical features of complex systems, as we illustrate below with

the example of an SIS model: an epidemic perdures indefinitely

when τ > 0 but quickly goes extinct when τ < 0.

This approach has been used to show that the expected non-

normality is bounded, dF ≥
√

1− e2τ /〈k〉 [21], and approximated

by dF ≃
√

1− exp(1− 1/F) [27]. Hence, trophically coherent

graphs (F → 0 or τ → −∞) are non-normal (dF → 1). The

fact that the expected value of the non-normality is bounded below

by the expected spectral radius [21] is natural when considering

the transient wave-packet phenomena that can happen with non-

normal matrices [16].

3 Spreading processes with graphs
and operators

It is known that the trophic coherence of directed graphs can

exert an important influence on the dynamics of various complex

systems [21]. Similarly, in dynamical systems governed by linear

operators, the non-normality thereof will fundamentally affect

system behavior [16].We go on to show, using two simple examples

of spreading processes, that there are close similarities between

these two kinds of phenomena. First we look at the SIS model on

coherent directed graphs and then we compare this to the action

of a non-normal linear operator. These examples also show that
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TABLE 1 Comparison of various properties for di�erent types of networks (vortex graph on five vertices, loop on five vertices, loop under edge addition,

loop under edge deletion).

Vortex graph on
five vertices V5

Loop on five
vertices P5

Loop under edge
deletion (chain)

Loop under edge
addition

Property

Adjacency Matrix





























0 1 1 0 0

0 0 1 1 0

0 0 0 1 1

1 0 0 0 1

1 1 0 0 0

























































0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

























































0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

























































0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 1 0 0 0





























Laplacian

(L = Dout − A)





























2 −1 −1 0 0

0 2 −1 −1 0

0 0 2 −1 −1

−1 0 0 2 −1

−1 −1 0 0 2

























































1 −1 0 0 0

0 1 −1 0 0

0 0 1 −1 0

0 0 0 1 −1

−1 0 0 0 1

























































1 −1 0 0 0

0 1 −1 0 0

0 0 1 −1 0

0 0 0 1 −1

0 0 0 0 0

























































1 −1 0 0 0

0 1 −1 0 0

0 0 1 −1 0

0 0 0 1 −1

−1 −1 0 0 2





























Trophic incoherence (F) 1 1 0 0.91

Trophic levels (0,0,0,0,0) (0,0,0,0,0) (0,1,2,3,4) (0,0.18, 0.27, 0.36, 0.54)

Adjacency non-normality

||ATA− AAT ||
0 0 1.41 2.44

Laplacian non-normality

||LTL− LLT ||
0 0 2 4

Adjacency non-normality

(Henrici)

0 0 1 0.37

Laplacian non-normality

(Henrici)

0 0 0.71 0.38

the methods which have been proposed to generate directed graphs

with tunable trophic coherence might also be useful for studying

other matrices numerically [24, 31].

The SIS (susceptible-infectious-susceptible) model is perhaps

the simplest which can be used to study the spread through a

population of an infectious disease—typically one which confers

little or no immunity [32]. We will use this paradigm to

demonstrate the influence of trophic coherence or non-normality

on even the simplest of dynamical processes.

Consider an unweighted, directed network given by the N × N

adjacency matrix A. To each node i is associated with a dynamical

variable si(t) which can take, at each discrete time t, either the value

0 or 1, representing susceptible or infectious states, respectively. Let

gi(t) =
∑

j Ajisj(t). The system then evolves according to:

si(t + 1) = 1 if si(t) = 0 and gi(t) > 0, or (6)

si(t + 1) = 0 otherwise, (7)

with all nodes updated in parallel. In other words, a susceptible

node becomes infectious for one time step if at least one of its

in-neighbors is infectious.

Will an epidemic die out naturally or go on indefinitely? We

study this by beginning with all nodes being susceptible except

for %5 which are chosen at random to be made infectious.

We generate networks using the generalized preferential preying

model [24]. This model has a parameter, T, which allows

one to set the trophic coherence of the network: T = 0

producesmaximally coherent structures, and incoherence increases

with positive T.

Not that in this scheme the only randomness is in the

generation of the network and the choice of initial conditions; the

dynamics thereafter are deterministic. Figure 1 top left shows the

stationary proportion of nodes which remain infectious indefinitely

against T. At low values of T the epidemic dies out, but for

higher values, there is a continuous transition to a regime in

which a significant proportion of the nodes remain infectious. This

can be understood by considering that the epidemic requires a

strongly connected component of nodes to sustain itself, which only

exists in sufficiently incoherent networks [22]. Or, more formally,

it is known that the critical rate of infection required for an

epidemic to survive is lower bounded by the inverse of the spectral

radius of the adjacency matrix [33], which depends on trophic

coherence [19].
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FIGURE 1

Top left: Stationary proportion of infected nodes against parameter T for networks generated with the generalized preferential preying model [24].

Number of nodes and edges: N = 100 and L = 500. Averages over 100 networks; error bars are standard deviations. Stationary values computed as

the average from t = 90 to t = 100. Inset: Time series of the proportion of infected nodes for three networks, generated with T = 1, 0.5, and 0.2. Top

right: Mean activity m(t) at t = 100 according to Equations 8, 9, where A is the adjacency matrix of the networks used in the top left panel. Initially, all

elements have x(0) = 0, except for a randomly chosen 5% which are set to x(0) = 1. The extent of activity is measured as ln[1+m(100)], for c = 0.5, 1,

and 2. Middle left: Trophic incoherence F against T for the same directed graphs as in the panels above. Middle right: Non-normality dF against T for

the same directed graphs. Bottom left: Spectral radius ρ against T for the same directed graphs. Bottom right: Size of the strongly connected

component 8 against T for the same directed graphs.

As we have seen, non-normality also varies with trophic

coherence. Hence, in the inset we see a “bump” in the time series

for lower values of T (which produces small F and high dF),

which corresponds to transient phenomena. In a future study, we

will consider the average difference between the pseudospectral

abscissa and the spectral radius at early times to establish

transient phenomena [16]. In our SIS model computations, we

see that as trophic coherence increases, the size of the strongly-

connected component increases. Unlike in undirected graphs,

the multiplicity of the λ = 0 eigenvalue of the Laplacian

L(A) does not equal the number of components, but rather the

number of reaches [34] (a reach is the maximal unilaterally

connected set). Whereas dynamical processes such as these have

been related to the existence and size of strongly connected

components, we have yet to investigate the effect of different

reach structures.

Consider now the following dynamical systemwithN elements.

Every element i is characterized by a continuous dynamical variable

xi(t) at discrete time t. The system evolves according to

x(t + 1) = cAx(t), (8)

where c is a constant parameter and A is a non-negative,N×N real

matrix. We might consider A as a linear operator or as a directed

graph on which the process is taking place. In particular, we can

take A to be infinite dimensional in which case we could be giving

a graphical interpretation to such linear operators. We begin with a

small number of randomly chosen agents in state x(0) = 1 and all

others x(0) = 0, and track the average value of the activity,

m(t) =
1

N

N
∑

i=1

xi(t). (9)
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This will either decay to zero or diverge according to the spectral

radius of A and the parameter c, as shown in Figure 1 top right.

However, for significantly non-normal networks (low T) there

may be transient behavior that eventually dies out, as in the SIS

case on a trophically coherent graph. This might correspond to

an epidemic, rumor or other spreading process, which reaches

most of the system but goes on to disappear, whereas in the more

normal or incoherent case, even a process that only reaches some

of the system might continue to fuel itself indefinitely thanks

to feedback.

Figure 1 middle left, middle right shows how the trophic

incoherence F and the non-normality dF also vary in this network

model with the parameter T. A comparison with Figure 1 top

left reveals that some nodes begin to sustain the epidemic once

F > 0 or dF < 1; and a similar effect is evident in the linear

operator case (Figure 1 top right). Figure 1 bottom left, bottom

right shows how the two topological features we can relate to both

the SIS dynamic and the linear operator – namely, the spectral

radius ρ and the size of the strongly connected component 8—

undergo a similar transition with increasing T as the stationary

proportion of infected nodes or the logarithm of m(t). Just as

degree heterogeneity can drastically reduce the size of epidemic

waves [35], trophic coherence can affect their extinction. Moreover,

whereas trophic coherence has to date been thought of only

as a property of directed graphs, this example suggests that it

can be studied in the case of operators and square matrices

more broadly.

4 Discussion

In this article, we have discussed the relationship between

trophic coherence and non-normality. We have mentioned some

existing connections in the literature and studied some small graphs

for illustration. We have also presented numerical experiments in

the form of an SIS model and a linear dynamics, which show

how trophic coherence and non-normality are related and have

significant effects on dynamical systems governed by matrices.

There are many relationships still to be discovered, particularly

regarding the connection between non-normality and trophic

coherence in matrices in general. Also of interest is the relationship

with strongly connected components, and how edge deletion and

edge addition may be considered in a way that is amenable to the

calculation of pseudospectra. In future work, we aim to explore

which kind of edge perturbations can create the largest change in

non-normality, trophic coherence, or even other measures such

as algebraic connectivity (which is non-trivial to compute in a

directed graph and is so far yet to profit from the advances in the

computations of non-self-adjoint problems). By studying how such

edge perturbations change the non-normality, trophic coherence,

and algebraic connectivity, we may improve our understanding of

how such magnitudes are related and their effects on dynamical

systems. This is the subject of upcoming study.
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23. Rodgers N, Tiňo P, Johnson S. Influence and influenceability: global
directionality in directed complex networks. R Soc Open Sci. (2023) 10:221380.
doi: 10.1098/rsos.221380

24. Klaise J, Johnson S. From neurons to epidemics: How trophic coherence affects
spreading processes. Chaos. (2016) 26:065310. doi: 10.1063/1.4953160

25. Pilgrim C, Guo W, Johnson S. Organisational social influence on
directed hierarchical graphs, from tyranny to anarchy. Sci Rep. (2020) 10:1–13.
doi: 10.1038/s41598-020-61196-8

26. Rodgers N, Tiňo P, Johnson S. Network hierarchy and pattern recovery
in directed sparse Hopfield networks. Phys Rev E. (2022) 105:064304.
doi: 10.1103/PhysRevE.105.064304

27. MacKay RS, Johnson S, Sansom B. How directed is a directed network? R Soc
Open Sci. (2020) 7:201138. doi: 10.1098/rsos.201138

28. De Bacco C, Larremore DB, Moore C. A physical model for efficient ranking in
networks. Sci Adv. (2018) 4:eaar8260. doi: 10.1126/sciadv.aar8260

29. Kichikawa Y, Iyetomi H, Iino T, Inoue H. Community structure based on
circular flow in a large-scale transaction network. Appl Netw Sci. (2019) 4:1–23.
doi: 10.1007/s41109-019-0202-8

30. Asllani M, Lambiotte R, Carletti T. Structure and dynamical behavior of non-
normal networks. Sci Adv. (2018) 4:eaau9403. doi: 10.1126/sciadv.aau9403
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