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Sensitivity analysis of a
mathematical model for malaria
transmission accounting for
infected ignorant humans and
relapse dynamics

Getahun Tadesse Haile*, Purnachandra Rao Koya and

Fekadu Mosisa Legesse

Department of Mathematics, Wollega University, Nekemte, Ethiopia

This article presents and analyzes a deterministic model for malaria transmission

that incorporates infected individuals who are unaware of their infectious

status (ignorant infected humans) and accounts for relapse dynamics. We

explore the invariant region and positivity of the model and calculate the

e�ective reproduction number using the next-generation matrix method. We

demonstrate the local and global stability of disease-free equilibriumpoints using

the Routh-Hurwitz criterion and Lyapunov function, respectively. The proposed

model shows that a disease-free equilibrium point is globally asymptotically

stable when the basic reproduction number Re < 1. We conducted a sensitivity

analysis on the e�ective reproduction number to identify which basic parameter

most significantly influences the increase or decrease of malaria cases. This

study focuses on individuals who have been treated and cured but continue to

carry dormant Plasmodium parasites in their blood, which can potentially cause

relapse or reinfection. Additionally, we introduce a protected compartment to

carefully evaluate how preventivemeasures influence the spread and persistence

of malaria within the population.
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sensitivity analysis, e�ective reproduction number, relapse, infected ignorant, local

stability, global stability

1 Introduction

Malaria is a serious infectious disease with significant clinical and economic impacts,

particularly in developing countries and regions where it greatly affects socioeconomic

development. This disease is caused by single-celled protozoan parasites from the

Plasmodium genus, which can infect a variety of hosts, including humans, birds, mammals,

and reptiles [1]. Among the different Plasmodium species that cause malaria in humans,

five are especially important, namely Plasmodium falciparum, Plasmodium malariae,

Plasmodium ovale, Plasmodium vivax, and Plasmodium knowlesi. Plasmodium falciparum

is widespread in Africa and is the primary cause of infections in that region and Southeast

Asia. In Ethiopia, the predominant Plasmodium species causing malaria are Plasmodium

vivax and Plasmodium falciparum [2].

Malaria is transmitted to humans by female Anopheles mosquitoes that carry the

parasite. These mosquitoes spread the infection by biting and feeding on blood, which

is necessary for them to lay their eggs. The parasite relies on both the female Anopheles
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mosquito and a human host to complete its life cycle. Transmission

occurs when an infected mosquito bites a human [3]. Furthermore,

if an Anopheles mosquito bites a person already infected with the

malaria parasite, it becomes a carrier of the disease. Malaria can

also be transmitted through blood transfusions and from mother

to child during pregnancy [4]. The main vectors responsible for

malaria transmission in tropical Africa include Anopheles funestus,

Anopheles gambiae, and Anopheles arabiensis [5].

Mathematical modeling provides researchers and public health

officials with tools to understand the spread of infectious diseases,

predict future trends, evaluate the effectiveness of interventions,

and devise strategies for disease control and prevention. By

applying mathematical models, experts can better understand the

dynamics of disease transmission, identify key factors influencing

the spread of infections, and make informed decisions to mitigate

the impact of outbreaks. Numerous studies have developed

various mathematical models to illustrate disease control and its

dynamics. The first mathematical model for malaria transmission

was developed by Ronald Ross, who won the Nobel Prize in

1902 for his work on the malaria parasite’s life cycle [6]. Ross’s

model was based on an SIS (Susceptible-Infected-Susceptible)

framework, which categorized the population into susceptible,

infected, and susceptible groups, assuming that the total population

could be divided into specific compartments at any given time.

He used this model to demonstrate that reducing the mosquito

population below a certain threshold could eradicate malaria,

with this threshold being influenced by biological factors such

as the mosquito biting rate and vectorial capacity [7]. A new

non-linear mathematical model for malaria has been developed,

dividing infected individuals into two categories: those who are

aware of their infection and those who are unaware. The model

assumes that awareness campaigns help decrease the number of

unaware infected individuals, while those who are aware take

precautions to avoid mosquito contact. The solutions derived

from the model were verified to be positive and bounded

using differential equations. Stability analysis, based on the

basic reproductive number R0, showed that the system remains

stable when R0 is <1. The model also identified conditions

for the existence of a unique endemic equilibrium. Solutions

were obtained using the Runge-Kutta method, and simulations

were carried out for different populations of humans and

Anopheles mosquitoes in each category. The results revealed

an increase in susceptible humans and a decrease in infected

mosquitoes [8].

The global fight against malaria faces significant challenges.

While efforts to control malaria have successfully reduced the

incidence of Plasmodium falciparum, the reduction in cases of

Plasmodium ovale and Plasmodium vivax has been less pronounced

[9, 10]. As a result, the proportion of malaria cases caused

by P. ovale and P. vivax is rising. Research indicates that

ongoing transmission of P. vivax is prevalent in many regions

south of the Sahara Desert [11]. The difficulty in substantially

reducing the prevalence of P. vivax and P. ovale is partly due

to the relapsing nature of these parasites [12, 13]. Dormant

forms of the parasites in the liver can cause the disease to

recur, leading to symptoms weeks or even years after initial

treatment. Any remaining Plasmodium in the bloodstream

FIGURE 1

A flowchart of the malaria model.

can trigger a relapse [14]. This study focuses on individuals

who have been treated and cured but still harbor dormant

Plasmodium parasites in their blood, which can lead to relapse

and reinfection.

2 Methods

2.1 Model formulation

Amathematical modeling approach will be utilized to construct

the model using deterministic ordinary differential equations.

The model divides the total human population at time t,

denoted asNH(t), into several sub-populations: susceptible humans

SH(t) (healthy individuals not infected with malaria), protected

humans PH(t) (individuals employing mosquito prevention

measures to avoid contact with vectors), infected humans IH(t)

(those infected with malaria who can transmit the disease), infected

ignorant humans LH(t) (individuals who still carry the Plasmodium

parasites in their blood after a certain period of treatment), and

recovered individuals with temporary immunity RH(t) (those who

have recovered from the disease and possess temporary immunity

at time t).

Infected ignorant individuals may become infectious again if

their immune system weakens. A compromised immune response

can lead to the reactivation (relapse) of the Plasmodium parasites,

causing re-infection without requiring a mosquito bite. The total

human population is represented as follows:

NH (t) = SH (t) + PH (t) + IH (t) + LH (t) + RH (t) .

The mosquito (vector) population is categorized into

susceptible and infected populations at time t (see Figure 1). The

model consists of seven ordinary differential equations.
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2.2 Model equations















































dSH
dt

= (1− 5) �H + θPH + αηRH − βhSHIV − (µH + υ)SH
dPH
dt

= 5�H + (1− α) ηRH + υSH − (µH + θ)PH
dIH
dt

= βHSHIV + σLH − (γ + µH + δ) IH
dLH
dt

= γ (1− τ) IH − (µH+σ )LH
dRH
dt

= γτ IH − (µH + η)RH
dSV
dt

= 9 − βVSV IH − µVSV
dIV
dt

= βVSV IH − µV IV

(1)

With initial conditions:

SH (0) = SH0 , PH (0) = PH0 , IH (0) = IH0, L (0) = LH0,

RH (0) = RH0 , SV (0) = SV0 , IV (0) = IV0 (2)

The description of the state variables and parameters used in the

model (Equation 1) is provided in the table below (Table 1). This

table offers a comprehensive breakdown of each state variable and

parameter outlining their definitions, roles within the model and

the relationships they represent.

2.3 Feasible region

The following outlines a biologically plausible region where

model system (Equation 1) will be examined. Given that model

system (Equation 1) split into two components, 1 = 1H× 1V .

Lemma 1. For model system (Equation 1), the feasible region

1 contains the solution set {SH , PH , IH , LH , RH , SV , IV } ∈ R7+.

Proof: Assume that for any t > 0,

{SH , PH , IH , LH , RH , SV , IV } ∈ R7+. To analyze the dynamics of

model system (Equation 1), we demonstrate that the region 1 is

positively invariant. This region is determined by considering the

entire human population.

NH (t) = SH (t) + PH + IH (t) + LH (t) + RH (t) and

differentiating both sides with respect to time. Adding the system’s

first four equations, we get the following:

d
dt (SH + PH + IH + LH + RH)= �H − µHNH − δIH (3)

H⇒ d
dt (SH + PH + IH + LH + RH)≤ �H − µHNH

dNH
dt

≤ �H − µHNH (4)

Integrating and simplifying both sides of Equation 4, we get

the following:

�H − µHNH ≥ Ae−µH t , (5)

where A is a constant value. Using the initial conditions and

rearranging Equation 5, we get the following equation:

NH ≤
�H

µH
−

NH0e
−µH t

µH
(6)

TABLE 1 Description of the system’s state variables and parameters.

State
variables and
parameters

Description

SH Susceptible human populations

PH The size of the protected human compartment

IH The number of infectious human compartments

LH The size of infected ignorant human compartment

RH Recovered human populations

SV Susceptible mosquito populations

IV The size of infectious mosquito populations

µH Natural death rate of humans

µV Natural death rate of mosquitoes

δ Disease-induced death rate of humans

βH Transmission rate from infected humans to

mosquitoes

βV Transmission rate from infected mosquitoes to

humans

�H Recruitment rate of humans

5 Proportion of recruited humans that move to

protected humans

1− 5 Proportion of recruited humans that move to

susceptible humans

υ Rate of movement from susceptible to protected

humans

θ Rate of movement from protected to susceptible

humans

η Rate at which humans lose immunity

α Proportion of people who lose immunity and join

susceptible humans

1− α Proportion of people who lose immunity and join

protected humans

9 Recruitment rate of mosquito

γ Recovery rate of infected humans

τ Proportion of infected individuals who recover

1− τ Proportion of people who still carry mosquito in

their bodies move to infected ignorant

compartment

σ Relapse rate

In Equation 6, as t −→ ∞ the total human populationNH −→
�H
µH

, which indicates that 0 ≤ NH ≤
�H
µH

. Thus, for the human

population, the invariant region of system (Equation 1) is given by

1H=
{

(SH , PH , IH , LH ,RH) ǫ R5+ : 0 ≤ SH + PH + IH + LH

+RH ≤
�H

µH

}

(7)

is positively invariant.

Similarly, the total mosquito population of the system

(Equation 1) is as follows:

NV (t) = SV (t) + IV (t). (8)
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Differentiating both sides of Equation 8 with respect to time, we

get the following equation:

d

dt
(SV + IV ) = 9 − µVNV (9)

dNV

dt
= 9 − µVNV (10)

By solving Equation 10, we obtain 0 ≤ NV ≤ 9
µV

. Hence, the

invariant region of system (Equation 1) for mosquito population is

given by

1V=

{

(SV , IV ) ǫ R2+ : 0 ≤ SV + IV ≤
9

µV

}

(11)

Therefore, the invariant region of the whole system for human

and mosquito populations of system (Equation 1) is given by

1 = 1H × 1V = {(SH , PH , IH , LH ,RH , SV , IV )

ǫ R7+ :NH ≤
�H

µH
, NV ≤

9

µV

}

(12)

is positively invariant. Thus, all the solution set of system

(Equation 1) is bounded in 1.

2.4 Positivity of the solutions

It must be shown that for all t ≥ 0, all solutions to system

(Equation 1) with positive initial conditions will remain positive.

Theorem 2.4.1. The solution of model system (Equation 1)

given by SH (t) , PH(t), IH (t) , LH (t) , RH (t) , SV (t)

and IV (t) with non-negative initial conditions

SH (0) , PH(0), IH (0) , LH (0) , RH (0) , SV (0) and IV (0)

remains non-negative for all time t ≥ 0.

Proof: We will demonstrate that all state variables in each

equation of system (Equation 1) are positive.

Starting with the first equation of system (Equation 1), where

we have

dSH
dt

= (1− 5)�H + θPH + αηRH − βHSHIV − (µH + υ)SH

dSH
dt

≥ −(βHIV + µH + υ)SH (13)

Integrating by applying the method of separation of variables

along with initial conditions, we obtain

SH(t) ≥ SH(0)e
−(βH IV+µH+υ)t ≥ 0 (14)

From the second equation in system (Equation 1), we obtain

dPH

dt
= 5�H + (1− α) ηRH + υSH − (µH + θ)PH

dPH

dt
≥ −(µH + θ)PH (15)

Integrating by applying the method of separation of variables

along with initial conditions, we obtain:

PH (t) ≥ PH (0) e−(µH+θ)t ≥ 0 (16)

From the third equation of system (Equation 1), we obtain

dIH

dt
= βHSHIV + σLH − (γ + µH + δ) IH

dIH

dt
≥ −(µH+δ + γ )IH ≥ 0 (17)

Integrating both sides by applying separation of variables,

we obtain

IH (t) ≥ IH (0) e−(γ+µH+δ)t ≥ 0 (18)

From the fourth equation of system (Equation 1), we obtain

dLH

dt
= γ (1− τ) IH − (µH + σ )LH (19)

dLH

dt
≥ −(µH+σ )LH ≥ 0

Integrating by applying the method of separation of variables

along with initial conditions, we obtain

LH (t) ≥ LH (0) e−(µH+σ )t ≥ 0 (20)

From the fifth equation of system (Equation 1), we have

dRH

dt
= γτ IH − (µH + η)RH (21)

dRH

dt
≥ − (µH + η )RH

Integrating by applying the method of separation of variables

along with initial conditions, we obtain

RH (t) ≥ RH (0) e−(µH+η)t ≥ 0 (22)

From the sixth equation of system (Equation 1), we have

dSV

dt
= 9 − βVSV IH − µVSV (23)

dSV

dt
≥ −(βV IH + µV )SV

Integrating using separation of variables along with initial

conditions, we obtain

H⇒ SV (t) ≥ SV (0)e
−(βV IH+µV )t (24)

From the seventh equation of system (Equation 1), we have

dIV

dt
= βVSV IH − µV IV (25)

H⇒
dIV

dt
≥ −µV IV

Integrating using separation of variables along with initial

conditions, we obtain

IV (t) ≥ IV (0)e
−µV t (26)
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3 Model analysis

3.1 Disease-free equilibrium point(s)

Disease-free equilibrium points (DFE) are steady-state

solutions where the disease (malaria) is absent, meaning

IH = LH = IV = 0. The disease-free equilibrium in the

model is determined by identifying

dSH

dt
=

dPH

dt
=

dIH

dt
=

dLH

dt
=

dRH

dt
=

dSV

dt
=

dIV

dt
= 0. (27)

From the fifth equation of system (Equation 1), we have

dRH

dt
= γτ IH − (µH + η)RH = 0

H⇒ γτ IH − (µH + η)RH = 0

R0H = 0 (28)

From the first equation of system (Equation 1), we obtain

dSH

dt
= (1− 5) �H + θPH + αηRH − βHSHIV

−(µH + υ)SH = 0

(1− 5)�H + θPH − (µH + υ)SH = 0

→ SH =
(1− 5) �H + θPH

(µH + υ)
(29)

From the second equation of system (Equation 1), we have

dPH

dt
= 5�H + (1− α) ηRH + υSH − (µH + θ) PH = 0

5�H + υSH − (µH + θ)PH = 0 → PH =
5�H + υSH

(µH + θ)
(30)

From Equations 29, 30, we obtain

S0H =
�H(µH (1− 5) + θ)

µH(µH + υ + θ)
(31)

NH (0) = S0H + P0H =
�H

µH
→

�H (µH (1− 5) + θ)

µH (µH + υ + θ)

+P0H =
�H

µH
→ P0H =

�H(υ + µH5)

µH(µH + υ + θ)

(32)

From the sixth equation of the model system (Equation 1),

we obtain

dSV

dt
= 9 − βVSV IH − µVSV = 0

H⇒ 9 − (βV (0)+ µV )SV = 0 H⇒ 9 − µVSV = 0

H⇒ S0V =
9

µV
(33)

From the seventh equation of the model system (Equation 1),

we obtain

dIV
dt

= βVSV IH − µV IV = 0 H⇒ I0V = 0 (34)

Therefore, the disease-free equilibrium point of system

(Equation 1) is given by

E0 =
(

S0H , P
0
H , I

0
H , L

0
H ,R

0
H , S

0
V , I

0
V

)

= (
�H (µH (1− 5) + θ)

µH (µH + υ + θ)
,

�H (υ + µH5)

µH (µH + υ + θ)
, 0, 0, 0,

9

µV
, 0)

(35)

3.2 E�ective reproduction number

Given that Fi(x) represents the rate of appearance of new

infections in compartment (i), V+
i (x) represents the rate of

individual transfer into compartment (i), by all other ways, and

V−
i (x) represents the rate of individual transfer out of compartment

(i) [15]. Each function (Fi, V+
i , and V−

i ) is considered to be

continuously differentiable at least twice for each variable, and

Vi = V−
i − V+

i . To take the infected compartments and use the

next-generation technique to calculate the effective reproduction

number. ρ
(

FV−1
)

represents the dominant eigenvalue in

magnitude, or spectral radius of the matrix [ρ
(

FV−1
)

] where

F =
∂Fi(E0)

∂xj
and V =

∂Vi(E0)
∂xj

where i ≥ 1, denotes the number of

compartments and 1 ≤ j ≤ n denotes the infected compartments

only. Considering the model’s infected compartments to be IH , LH
and IV , we now obtain

F =







βHSHIV
0

βVSV IH






and V =







(µH+δ + γ )IH − σLH
(µH+σ )LH − γ (1− τ) IH

µV IV







Finding the Jacobian of Matrices F and V with respect to

IH , LH and IV , we have

F =







0 0 βHSH
0 0 0

βVSV 0 0






and V =







(µH + δ + γ ) −σ 0

−γ (1− τ) µH + σ 0

0 0 µV







Jacobian of F at disease-free equilibrium (ε∗ ) is given by

J(ε∗ ) =







0 0
βH�H (µH(1−5)+θ)

µH (µH+υ+θ)

0 0 0
βV9
µV

0 0






and

V =







(µH + δ + γ ) −σ 0

−γ (1− τ) µH + σ 0

0 0 µV







where

|V| = µV [µH (µH + σ + δ + γ ) + σ (δ + γτ )]

We need to find the inverse of Matrix V to find the effective

reproduction number (Re).
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Hence,

V−1 =







µV (µH+σ )
|V|

µVσ
|V| 0

µVγ (1−τ )
|V|

µV (µH+δ+γ )
|V| 0

0 0 µH(µH+δ+γ+σ)+σ (δ+γδ)
|V|







V−1 =







(µH+σ )
C

σ
C 0

γ (1−τ )
C

(µH+δ+γ )
C 0

0 0 1
µV






,

where C = µH (µH + σ + δ + γ ) + σ (δ + γτ )

FV−1 =







0 0
βH�H (µH(1−5)+θ)

µH (µH+υ+θ)

0 0 0
βV9
µV

0 0













(µh+σ )
C

σ
C 0

γ (1−τ )
C

(µh+δ+γ )
C 0

0 0 1
µv







FV−1 =







0 0
βH�H (µH(1−5)+θ)

µHµV (µH+υ+θ)

0 0 0
βV9(µH+σ )

µV (µH(µH+σ+δ+γ )+σ (δ+γτ ))
βvΨ σ

µV (µH(µH+σ+δ+γ )+σ (δ+γτ ))
0







Finding the eigenvalues of FV−1 at the disease-free

equilibrium point(s) is

∣

∣

∣

∣

∣

∣

∣

−λ 0
βH�H (µH (1−5)+θ)

µHµV (µH+υ+θ)

0 −λ 0
βV9(µH+σ )

µV (µH (µH+σ+δ+γ )+σ (δ+γτ ))
βVΨ σ

µV (µH (µH+σ+δ+γ )+σ (δ+γτ ))
−λ

∣

∣

∣

∣

∣

∣

∣

−λ
(

λ2
)

+
βH�H (µH (1−5)+θ)

µHµV (µH+υ+θ)
(

λ
βV9(µH+σ )

µV (µH (µH+σ+δ+γ )+σ (δ+γτ ))

)

= 0

The characteristic equation is as follows:

−λ3

+

(

λ
βHβV9(µH + σ )�H(µH (1− 5) + θ)

µHµV (µH + υ + θ)µV (µH (µH + σ + δ + γ ) + σ (δ + γτ ))

)

= 0

λ

(

βHβV9(µH + σ )�H(µH (1− 5) + θ)

µHµV (µH + υ + θ)µV (µH (µH + σ + δ + γ ) + σ (δ + γτ ))
− λ2

)

= 0

(36)

J (ε∗) =

























−(µH + υ) θ 0 0 αη 0 −
βH�H (µH(1−5)+θ)

µH (µH+υ+θ)

υ −(µH + θ) 0 0 (1− α) η 0 0

0 0 − (γ + µH + δ) σ 0 0
βH�H (µH(1−5)+θ)

µH (µH+υ+θ)

0 0 γ (1− τ) − (µH + σ) 0 0 0

0 0 γτ 0 − (µH + η) 0 0

0 0 −
βV9
µv

0 0 −µV 0

0 0 βV9
µV

0 0 0 −µV

























(37)

From Equation 36, the Eigen values of the characteristic

equation can be obtained as follows:

λ = 0 ,
βHβV9D4�H(µh (1− 5) + θ)

µHµ2
V (µH + υ + θ)(µH (µH + σ + δ + γ ) + σ (δ + γτ ))

−λ2 = 0,

(38)

where D4 = (µH + σ )

From Equation 37, we have

βHβVΨ ΩH (µH(1−5)+θ)(µH+σ)

µHµ2
V (µH+υ+θ)(µH(µH+σ+δ+γ )+σ (δ+γτ ))

−λ2 = 0

λ = ±

√

βHβVΨ ΩH (µH(1−5)+θ)(µH+σ)

µHµ2
V (µH+υ+θ)(µH(µH+σ+δ+γ )+σ (δ+γτ ))

Therefore, the effective reproduction number (Re) is the

maximum Eigen value or the spectral radius of FV− 1:

Re =

√

βHβVΨ ΩH(µH (1− 5) + θ) (µH + σ)

µHµ2
V (µH + υ + θ)(µH (µH + σ + δ + γ ) + σ (δ + γτ ))

(39)

Hence, the effective reproduction number is computed as

ρ
(

FV−1
)

, where ρ represents the spectral radius of FV−1, which

corresponds to its dominant eigenvalue.

3.3 Local stability of disease-free
equilibrium

Theorem 3.3.1. If Re < 1, the disease-free equilibrium

point(s) of the system (Equation 1) is locally asymptotically stable

in 1.

Proof: To prove Theorem 3.3.1, we first calculate the Jacobian

matrix of system (Equation 1):

where: (Equation 39)

D1 = (µH + δ + γ ),D2 = σ ,D3 = γ (1− τ) ,

D4 = (µH + σ) and let D5 = (µH + υ),

D6 = (µH + θ) , D7 = (1− α) η, D8 = (µH + η) (40)

The eigenvalues of the Jacobian matrix are obtained by solving
the characteristic equation: |J (ε∗) − λI| = 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−D5 − λ θ 0 0 αη 0 −
βH�H (µH (1−5)+θ)

µH (µH+υ+θ)

υ −D6 − λ 0 0 D7 0 0

0 0 −D1 − λ D2 0 0
βH�H (µH (1−5)+θ)

µH (µH+υ+θ)

0 0 D3 −D4 − λ 0 0 0

0 0 γτ 0 −D8 − λ 0 0

0 0 −
βV9
µV

0 0 −µV − λ 0

0 0 βV9
µV

0 0 0 −µV − λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0

(41)
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We focus on the first and second columns of the 7 × 7 matrix.

When considering the fifth and the sixth columns, we the result is

a zero matrix due to the presence of zero-column matrices in the

reduction process. Thus, we have two eigenvalues: λ1 = −µV < 0

and λ2 = −D8 = − (µH + η) < 0. The remaining eigenvalues can

be derived from the rest of the matrix.

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−D5 − λ θ 0 0 −
βH�H (µH(1−5)+θ)

µH (µH+υ+θ)

υ −D6 − λ 0 0 0

0 0 −D1 − λ D2
βH�H (µH(1−5)+θ)

µH (µH+υ+θ)

0 0 D3 −D4 − λ 0

0 0 βV9
µV

0 −µV − λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0

Let B =
βH�H (µH(1−5)+θ)

µH (µH+υ+θ)
and A =

βV9
µV

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−D5 − λ θ 0 0 −B

υ −D6 − λ 0 0 0

0 0 −D1 − λ D2 B

0 0 D3 −D4 − λ 0

0 0 A 0 −µV − λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0

(−D5 − λ)(−D6 − λ)

∣

∣

∣

∣

∣

∣

∣

−D1 − λ D2 B

D3 −D4 − λ 0

A 0 −µv − λ

∣

∣

∣

∣

∣

∣

∣

−θυ

∣

∣

∣

∣

∣

∣

∣

−D1 − λ D2 B

D3 −D4 − λ 0

A 0 −µV − λ

∣

∣

∣

∣

∣

∣

∣

= 0

[(−D5 − λ)(−D6 − λ)− θυ]

∣

∣

∣

∣

∣

∣

∣

−D1 − λ D2 B

D3 −D4 − λ 0

A 0 −µV − λ

∣

∣

∣

∣

∣

∣

∣

= 0

(42)

The characteristic equation of the first sub-matrix

(Equation 42) is

(−D5 − λ)(−D6 − λ)− θυ = 0

λ2 +W1λ +W0 = 0, (43)

where

W1 = D5 + D6 = 2µH + θ + υ , W0 = D5D6

−θυ = µH( µH + θ + υ)

(µV + D1 + D4) > 0,
(µV + D1 + D4)

[

µv (D1 + D4) + D1D4 − D2D3 − AB
]

− (D1D4µv − D2D3µV − ABD4)

(µV + D1 + D4)
> 0,

(D1D4µv − D2D3µV − ABD4) > 0 (44)
We use the Routh Hurwitz matrix array to show that all

eigenvalues of Equation 43 have negative real parts.

λ2 1W0

λ1 W1

λ0 W0

According to Routh-Hurwitz stability criteria, all eigenvalues of

the characteristic Equation 43 have negative real parts if all terms of

the first column of the Routh array are positive. Therefore, from

the Routh array above, W1 = (2µH + θ + υ) > 0 and W0 =

µH(µH+θ+υ) > 0. Therefore, using the Routh-Hurwitz stability

criterion, the two eigenvalues λ3 and λ4 of the Jacobian matrix have

negative real parts.

From the second sub-matrix of the matrix (Equation 42),

we have

∣

∣

∣

∣

∣

∣

∣

−D1 − λ D2 B

D3 −D4 − λ 0

A 0 −µV − λ

∣

∣

∣

∣

∣

∣

∣

= 0

(−D1 − λ)

∣

∣

∣

∣

∣

−D4 − λ 0

0 −µV − λ

∣

∣

∣

∣

∣

− D2

∣

∣

∣

∣

∣

D3 0

A −µV − λ

∣

∣

∣

∣

∣

+ B

∣

∣

∣

∣

∣

D3 −D4 − λ

A 0

∣

∣

∣

∣

∣

= 0 (45)

−λ3 − (µV + D1 + D4) λ2 − (µV (D1 + D4) + D1D4) λ

−D1D4µV + D2D3µV + D2D3λ + ABD4 + ABλ = 0 (46)

Rearranging the like terms in Equation 45 andmultiplying both

sides by−1 results in:

λ3 + (µV + D1 + D4) λ2 + (µV (D1 + D4) + D1D4

−D2D3 − AB) λ + (D1D4µV − D2D3µV − ABD4) = 0 (47)

The characteristic polynomial is given by

λ3 + N2λ
2+N1λ + N0 = 0, (48)

where

N2 = (µV + D1 + D4) ,

N1 = µv (D1 + D4) + D1D4 − D2D3 − AB

and N0 = (D1D4µv − D2D3µV − ABD4) (49)

Now, we use Routh-Hurwitz stability criteria to show that the

condition of the characteristic Equation 47 all have eigenvalues with

negative real parts:

λ3 1 µv (D1 + D4) + D1D4 − D2D3 − AB

λ2 (µV + D1 + D4) (D1D4µv − D2D3µV − ABD4)

λ1
(µV+D1+D4)[µv(D1+D4)+D1D4−D2D3−AB]−(D1D4µv−D2D3µV−ABD4)

(µV+D1+D4)

λ0 (D1D4µv − D2D3µV − ABD4)

From the above Routh Hurwitz all eigenvalues of the

characteristic Equation 47 have negative real parts if the first

column of the Routh array is non-negative, as shown below:

From Equation 49

(µV + D1 + D4)
[

µv (D1 + D4) + D1D4 − D2D3 − AB
]

− (D1D4µv − D2D3µV − ABD4)

(µV + D1 + D4)

=
(µV + D1 + D4)

[

µv (D1 + D4) + D1D4

]

+ D2D3µV + ABD4 − [(µV + D1 + D4) (D2D3 + AB)]

(µV + D1 + D4)

> 0 (50)

is true if

[

(µV + D1 + D4)
[

µv (D1 + D4) + D1D4

]

+ D2D3µV + ABD4

]

> [(µV + D1 + D4) (D2D3 + AB)] (51)
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and

(D1D4µv − D2D3µV − ABD4) > 0 (52)

divide Equation 52 both sides by D1D4µV − D2D3µV yields.

1−
ABD4

µV (D1D4 − D2D3)
→ 1

−
βHβVΨ ΩH(µH (1− 5) + θ) (µH + σ)

µV
2µH(µH + υ + θ)(µH (µH + σ + δ + γ ) + σ (δ + γτ ))

H⇒ 1− Re > 0. This is true if Re < 1.

Therefore, if all the above conditions are satisfied, including

Re < 1, all the first columns of the Routh Hurwitz array are

positive. Consequently, the remaining eigenvalues λ5, λ6 and λ7 of

the Jacobian at the disease-free equilibrium have a negative real

part. This indicates that the disease-free equilibrium point 0 is

locally asymptotically stable if Re < 1 and unstable if Re > 1.

3.4 Global stability of disease-free
equilibrium point

Theorem 3.4.1 (Global stability of the disease-free

equilibrium point): For system (Equation 1), the disease-free

equilibrium is globally asymptotically stable in the feasible region

ifRe < 1.

Proof: To demonstrate the global asymptotic stability of the

equilibrium point 0, we employ the Lyapunov function method.

We establish an appropriate Lyapunov function V(t) using the

approach outlined in [16].

V = E1IH + E2LH + E3IV , where E1, E2, and E3 are positive

constants, and IH , LH and IV are positive state variables.

dV

dt
= E1

dIH

dt
+ E2

dLH

dt
+ E3

dIV

dt
(53)

By substituting expressions for dIH
dt

, dLH
dt

, and dIV
dt

from the

system (Equation 1) to Equation 53 and simplifying it by collecting

like terms of the equation we obtain the following:

dV

dt
= E1βHSHIV + E1σLH − E1 (γ + µH + δ) IH

+E2γ (1− τ) IH − E2 (µH + σ) LH + E3βVSV IH − E3µV IV

dV

dt
= (E3βVSv + E2γ (1− τ)

−E1 (γ + µH + δ)) IH

+ (E1σ − E2 (µH + σ)) LH + (E1βHSH − E3µV )IV

Taking the coefficients of IH and LH equal with zero, we obtain

dV

dt
= (E1βHSH − E3µV )IV (54)

From the coefficient of LH , we have E1σ − E2 (µH + σ) =

0 H⇒ E1 =
(µH+σ )

σ
E2

From the coefficient of IH , we have

E3βVSV + E2γ (1− τ) − E1 (γ + µH + δ) = 0

but E1 =
(µH + σ )

σ
E2

E3βVSV =
(µH + σ) (γ + µH + δ)

σ
E2−E2γ (1− τ)

E3βvSV =
[(µH + σ) (γ + µH + δ) − σγ (1− τ)]E2

σ

H⇒ E3 =
[(µH + σ) (γ + µH + δ) − σγ (1− τ)]E2

βVSVσ
(55)

Substituting E1 =
(µH+σ)

σ
E2 and Equation 55 in Equation 54,

we obtain

dV

dt
=

(

βHSH (µH + σ)

σ
E2

−
µV [(µH + σ) (γ + µH + δ) − σγ (1− τ)]E2

βVSVσ

)

IV

Multiplying the right-side terms by
βVSVσ

µV [(µH+σ)(γ+µH+δ)−σγ(1−τ)]E2
, we obtain

dV

dt
= (

βHSHβVSV (µH + σ)

µV [(µH + σ) (γ + µH + δ) − σγ (1− τ)]
− 1)Iv,

where SV =
9

µV
and SH =

�H (µH (1− 5) + θ)

µH (µH + υ + θ )

Hence,

dV
dt

=

(

βHβV�H9(µH(1−5)+θ)(µH+σ)

µ2
VµH(µH+υ+θ)[µH(µH+σ+δ+γ )+σ (δ+γτ )]

− 1
)

Iv = [R2
e − 1] IV .

Therefore, if Re ≤ 1, then [R2
e − 1]IV ≤ 0. Accordingly,

we obtain dV
dt

≤ 0. Furthermore, dV
dt

= 0 if and only if

IV = 0. This shows that the disease-free equilibrium point

E0 = (�H(µH(1−5)+θ)
µH(µH+υ+θ)

, �H(υ+µH5)
µH(µH+υ+θ)

, 0, 0, 0, 9
µV

, 0) is globally

asymptotically stable.

Remarks on stability analysis based on the effective

reproduction number

i. If Re < 1, the disease-free equilibrium is stable, and the endemic

equilibrium does not exist.

ii. If Re > 1, the disease-free equilibrium is unstable, and an

endemic equilibrium may exist and be stable.

4 Sensitivity analysis of model
parameters

The parameters within the model system (Equation 1) have

their own influence on the value of the effective reproduction

number. Sensitivity analysis is used to determine which parameters

have a significant impact on the effective reproduction number Re,

applying the method outlined in references [17, 18] to conduct

the analysis.

Definition 4.1. The normalized forward sensitivity index of Re,

differentiable with respect to a given basic parameter k is defined as
Re
κ =

∂Re
∂κ

x κ
Re

[17, 18]:
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FIGURE 2

Graph of sensitivity indices of the e�ective reproduction number.

We establish the sensitivity of every basic parameter in Re
as follows:

Re =

√

βHβVΨ ΩH(µH (1− 5) + θ) (µH + σ)

µHµ2
V (µH + υ + θ)(µH (µH + σ + δ + γ ) + σ (δ + γ τ ))
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=
∂Re
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×
βH
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= + 1
2

T
Re
βV

=
∂Re
∂βV

×
βV
Re

= + 1
2

T
Re
9 =

∂Re
∂9

× 9
Re

= + 1
2

T
Re
�h

=
∂Re
∂�h

×
�h
Re

= + 1
2

T
Re
θ =

∂Re
∂θ

× θ
Re

=
θ[(µH+υ+θ)−(µH(1−5)+θ)]
2[(µH(1−5)+θ)(µH+υ+θ)]

T
Re
σ =

∂Re
∂σ

× σ
Re

=
σ [µH(µH+σ+δ+γ )+σ(δ+γτ)−(µH+σ)(µH+δ+γτ)]

2[(µH(µH+σ+δ+γ )+σ(δ+γτ))(µH+σ)]

T
Re
µV =

∂Re
∂µV

×
µV
Re

= −1

S
Re
µH =

∂Re
∂µH

×
µH
Re

T
Re
δ =

∂Re
∂δ

× δ
Re

= − 1
2

(µH+σ)δ
µH(µH+δ+γ+σ)+σ(γ τ+δ)

T
Re
γ =

∂Re
∂γ

×
γ
Re

= − 1
2

γ (τσ+µH)
µH(µH+δ+γ+σ)+σ(γ τ+δ)

T
Re
τ =

∂Re
∂τ

× τ
Re

= − 1
2

γστ
µH(µH+δ+γ+σ)+σ(γ τ+δ)

T
Re
υ =

∂Re
∂υ

× υ
Re

= − 1
2

υ
µH+υ+θ

T
Re
5 =

∂Re
∂5

× 5
Re

= − 1
2

µH5
µH (1−5)+θ

Figure 2 presents a sensitivity analysis of the effective

reproductive number Re with respect to 13 basic parameters,

based on the values of the parameters provided in Table 2. From

this analysis, we conclude that the parameters βH , βV ,9 ,�h,

and θ , which have positive sensitivity indices, contribute to an

increase Re as their values rise, provided other parameters remain

constant. Conversely, the basic parameters µV , µH , δ, υ, γ , and

τ have negative sensitivity indices, potentially mitigating malaria

transmission while other parameters are held constant.

5 Numerical simulations

Presented here are the numerical simulations for the system

described in Equation 1. The solutions obtained using MATLAB,

TABLE 2 Parameters and their sensitivity indices for model (1) (units:

day−1).

Parameters Parameter
value

Source Sensitivity
index

βH 0.001 [19] 0.5

βV 0.0001645 Assumed 0.5

9 0.041 [18] 0.5

�h 220 Assumed 0.5

θ 0.00652 Assumed 0.43934123

σ 0.02 Assumed 0.00101024

µV 0.042 [20] −1

µH 0.00004 [21] −0.49832608

υ 0.05 Assumed −0.44200849

δ 0.068 [21] −0.42757054

γ 0.071 [14] −0.07217794

τ 0.16 Assumed −0.07128686

5 0.0075 Assumed −0.00002287

TABLE 3 Parameters and their corresponding values for model (1) (units:

day−1).

Parameters Parameter value Source

α 0.00042 [22]

η 0.002 Assumed

FIGURE 3

The human population when Re = 5.5381.

within the time interval t ∈ [0, T] = [0, 100], along with the

parameter values provided in Tables 2, 3. The initial conditions for

each compartment are assumed as follows:
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FIGURE 4

The mosquito population when Re = 5.5381.

FIGURE 5

The human population when Re = 0.0586.

SH = 20, 000, PH = 100, IH = 50, LH = 50, RH = 100, SV =

1, 000, and IV = 100.

Figures 3, 4 illustrate the malaria transmission model when

Re > 1. From Figure 3, we observe that although the number

of infected humans decreases over time, the number of infected

ignorant humans increases initially, indicating that malaria persists

in the population. Additionally, the number of susceptible humans

decreases as the protected human population grows. In Figure 4, we

observe that the number of susceptible mosquitoes decreases, while

the number of infected mosquitoes increases. However, after some

time, the infected mosquito population also declines as humans

FIGURE 6

The mosquito population when Re = 0.0586.

FIGURE 7

Human and mosquito population.

become more aware and adopt mosquito-prevention measures,

reducing mosquitos’ access to essential resources for their survival.

Figure 5 shows a steady increase in the number of protected

humans. Initially, the susceptible human population drops sharply

as the number of protected and infected humans increases.

However, as the number of infected humans declines, the

susceptible population begins to rise again and eventually stabilizes.

The number of recovered humans also increases, while the infected

ignorant individuals show no significant growth. This trend

suggests that people adopt mosquito protective measures to avoid

contact with the vector, reducing the spread of malaria. In Figure 6,

we observe that the susceptible mosquito population decreases

from the beginning, alongside a decline in the overall mosquito

population, both susceptible and infected. This decrease occurs

because mosquitoes struggle to find human hosts for blood meals,
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FIGURE 8

Infected Humans at various τ values.

FIGURE 9

Infected ignorant humans at various τ values.

which are essential for their survival, as the human population

increasingly adopts protective measures. Figure 7 reinforces the

observation that as the protected human population grows, the

number of both susceptible and infected mosquitoes decreases.

This supports the overall pattern shown in the previous figures,

highlighting the impact of human preventive behavior on reducing

the mosquito population and, consequently, malaria transmission.

The data in Figures 8, 9 clearly show that as the proportion

of infected individuals receiving treatment increases, the number

of both infected and infected ignorant individuals decreases. This

trend occurs because, as more infected individuals receive effective

treatment, the probability of recovery from the disease rises, leading

them to move into the recovered category. Consequently, increased

access to treatment not only reduces the total number of infected

individuals but also diminishes the pool of those who are infected

and ignorant of their infection status.

Figures 10, 11 indicate that, initially, the number of recovered

individuals increases as both the proportion and rate of infectious

FIGURE 10

Recovered humans at various τ values.

FIGURE 11

Recovered humans at various γ values.

humans receiving treatment rise. However, this upward trend

gradually reverses, leading to a decline in the number of recovered

individuals as more people adopt mosquito protective measures.

This shift suggests that while treatment initially supports recovery

rates, the increased use of preventive actions impacts the spread and

recovery dynamics, ultimately reducing the number of new cases

requiring recovery.

Figures 12, 13 reveal that as the rate of transition from

the susceptible class to the protected class increases, there is

a corresponding decrease in the number of both infected and

infected ignorant individuals. This trend occurs because a larger

portion of the population becomes aware of mosquito protection

measures and actively uses them, thereby reducing interactions

between humans and mosquitoes. As a result, the likelihood of

transmission decreases, leading to a lowered infection risk across

human populations. These findings underscore the effectiveness
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FIGURE 12

Infected humans at various υ values.

FIGURE 13

Infected ignorant humans at various υ values.

of protective behaviors in mitigating the spread of mosquito-

borne diseases.

6 Conclusion

In this article, we developed a mathematical model of malaria

transmission that incorporates infected individuals unaware of

their infection (ignorant infected humans) and accounts for relapse.

The positivity and well-posedness of the model equations were

analyzed. Numerical simulations, based on the data from the

literature and parameter assumptions, indicate that increasing

the treatment proportion among infected individuals reduces the

number of humans carrying the Plasmodium parasites without

displaying symptoms for a period of time. Additionally, raising

awareness of mosquito protection measures not only reduces

the number of infected and infected ignorant humans but also

decreases the susceptible human population.

The sensitivity analysis of the model reveals that the

most positively sensitive factors are the human-to-mosquito

transmission rate (βH), the mosquito-to-human transmission

rate (βV ), the mosquito recruitment rate (9), and the rate of

transfer from protected to susceptible humans (θ). Conversely,

the parameters sensitive to negative values include the natural

death rate of humans (µH), the natural death rate of mosquitoes

(µV ), the disease-induced death rate of humans (δ), the rate of

transfer from susceptible to protected humans (υ), the recovered

rate (γ ) , and the proportion of infected individuals who recover

(τ ). Therefore, these negatively sensitive parameters reduces the

number of infected and ignorant infected individuals, thereby

decreasing disease transmission.

The results of the model reveal that mosquito protection

measures are more effective than treatment alone in reducing

disease transmission. While providing treatment to infected

individuals helps reduce the number of infected humans and

prevent relapses, mosquito protection measures directly limit

human–mosquito interactions, addressing the root cause of

transmission. By reducing contact between mosquitoes and

humans, these preventive measures effectively lower the overall

spread of infection across the population. This finding highlights

the importance of prioritizing preventive strategies, such as the use

of insecticide-treated bed nets and repellents, alongside treatment

efforts, to achieve comprehensive malaria control.
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