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(In)stability of de Sitter
quasinormal mode spectra
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We consider how the quasinormal spectrum for the conformal wave operator

on the static patch of de Sitter changes in response to the addition of a

small potential. Since the quasinormal modes and co-modes are explicitly

known, we are able to give explicit formulae for the instantaneous rate of

change of each frequency in terms of the perturbing potential. We verify these

exact computations numerically using a novel technique extending the spectral

hyperboloidal approach of Jaramillo et al. (2021). We propose a definition for a

family of pseudospectra that we show capture the instability properties of the

quasinormal frequencies.
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1 Introduction

For asymptotically de Sitter and anti-de Sitter black hole spacetimes, the problem of

defining the quasinormal frequencies has been satisfactorily resolved based on making

use of a hyperboloidal foliation of the spacetime [1, 2].1 For asymptotically flat black

hole spacetimes, the situation is not as fully developed, but nevertheless in many cases

a suitably robust mathematical definition exists either through casting the problem in

terms of scattering resonances and making use of the method of complex scaling [3, 5]

or through using a hyperboloidal slicing [4, 6, 7]. In all cases, the quasinormal frequencies

can ultimately be understood as eigenvalues of some operator which is not self-adjoint.

A feature of operators which are not self-adjoint is that their spectra can be unstable to

“small” perturbations. For a simple example in finite dimensions, consider the matrices

A =

(

0 ǫ−3

0 0

)

, A′ =

(

0 ǫ−3

ǫ 0

)

.

Clearly for 0 < ǫ≪1,A′−A is “small” by any reasonable notion of smallness; however,

A has a repeated eigenvalue at 0, while A′ has eigenvalues ±ǫ−1, so the spectra diverge as

ǫ → 0.

In the context of black hole quasinormal spectra, it was noticed already by

Aguirregabiria–Vishveshwara Nollert–Price in the 90’s [8–11] that seemingly innocuous

changes to the operators used in defining quasinormal modes could have dramatic effects

on the spectrum. Motivated in part by mathematical [2, 4, 6, 12] and numerical [13–15]

studies which cast the problem of finding the quasinormal spectrum as an eigenvalue

problem for the time evolution operator on a hyperboloidal foliation, there has been a

resurgence of interest in the problem of quasinormal spectral stability, see [16, 17] in the

1 see [3, 4] and references therein for a historical overview of this problem
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specific context of instability arising from non-self-adjoint

operators as well as [18–23] and references therein for many

other studies.

In this short article, we shall consider the problem of the

conformal wave equation on the static patch of de Sitter space.

The high degree of symmetry enjoyed by the de Sitter spacetime

means that the problem of determining the quasinormal spectrum

is completely solvable, and the various objects involved can

be computed explicitly. This makes this a helpful test-bed for

understanding the effects on the spectrum of small perturbations.

The perturbations we consider consist of stationary modifications

to the potential. In a more physically motivated situation, we

should consider the linearized gravitational field (rather than a

conformal scalar field) and permit perturbations to the geometry

of the background rather than just a potential. Our methods can, in

principle, be applied in this situation, but for simplicity, we focus

on the toy model.2

We are able to compute exactly the first order correction to

each quasinormal frequency in terms of the perturbing potential.

We find that the answer to the question of whether an individual

quasinormal frequency is stable to “small” perturbations depends

sensitively on what is meant by “small” [cf [25, footnote 18]].

In particular, the relevant notion of smallness varies depending

on which modes we are considering, and those representing

more rapidly decaying modes require a more stringent notion

of smallness. One may alternatively view this by first fixing the

notion of smallness considered and then one observes that themore

rapidly decaying modes are more unstable to small perturbations,

consistent with expectations going back to [9].3

To confirm the analytic computations, we also perform some

numerics. For this, we make use of a spectral method on a

hyperboloidal (or null) slicing, similar to that used in [16], but

applied to an enlarged system obtained by differentiating the

equation by hand k-times motivated by the analysis of [2]. This

has a doubly beneficial effect—First, it stabilizes the numerical

computation of quasinormal frequencies; second, it permits us to

stably compute a family of pseudospectra that we define, associated

with the problem, which allow the stability properties to be directly

visualized. In this context, we should also mention the forthcoming

study [26] which also provides a numerically stable computation of

pseudospectra.

2 Set-up and defining the
quasinormal spectrum

We consider the static patch of the de Sitter spacetime, written

in coordinates that are regular at the future horizon. This is a metric

on R
4 = {(t, x) : t ∈ R, x ∈ R

3}

g = −
(

1− κ2δijx
ixj
)

dt2 − 2κδijx
idxjdt + δijdx

idxj (1)

2 A further complication can arise where the perturbations are presumed

to have a time dependence with a typical timescale much shorter than the

quasinormal frequencies, in which case one may hope to attempt some

averaging procedure (see [24, §3.5 d]).

3 “...we find that the fundamental mode is, in general, insensitive to small

changes in the potential, whereas the higher modes could alter drastically.”

with δij the usual Kronecker delta and κ > 0 a constant. The static

patch is the region R = Rt × B where B = {x ∈ R
3
: |x| < κ−1}

is the ball of radius κ−1, and the future cosmological horizon is

H+ = Rt × ∂B. This metric is Einstein with cosmological constant

3 = 3κ2. We will keep track of κ for later discussion, but nothing

is lost by setting κ = 1 throughout.

The wave operator in these coordinates takes the form

2gψ = −

(

∂

∂t
+ κxi

∂

∂xi

)2

ψ−3κ

(

∂

∂t
+ κxi

∂

∂xi

)

ψ+δij
∂2ψ

∂xi∂xj
.

We shall consider the following family of equations on this

background

L(h)ψ : = 2gψ − κ2Vhψ = 0. (2)

Here, Vh is a time-independent potential depending on some

small parameter |h| < ǫ, and we assume that the map (h, x) 7→

Vh(x) is smooth on (−ǫ, ǫ)×R
3. We are interested in particular in

the quasinormal ring-down behavior of solutions to this equation.

To discuss this, we introduce the Laplace transformed operator

which acts on functions u :B → C

L̂(s, h)u : = e−stL(h)(estu). (3)

We define the quasinormal frequencies through the solvability

properties of this operator. More precisely, for k = 0, 1, 2, . . . we

define an inner product and norm on functions u,w :B → C by

(u,w)k : =

k
∑

l=0

∫

B

(

∇(l)u · ∇(l)w
)

d3x, ||u||k : = (u, u)
1
2

k
.

(4)

Here, ∇(l)u is the rank l-tensor ∇i1 · · · ∇ilu, and · means

contraction on all indices.4 Notice that (u,w)0 is the usual L
2−inner

product. We define Hk, the Sobolev space of order k, to consist of

those functions u :B → C with ||u||k < ∞. This is a Hilbert space

with the corresponding inner product. We define the domain of Ls
to be

Dk = {u ∈ Hk
: L̂(1, 0)u ∈ Hk}.

It can be shown that Hk+2 ⊂ Dk ⊂ Hk+1, so that u ∈ Dk H⇒

L̂(s, h)u ∈ Hk for all s, h.

With this definition in hand, we can state the basic theorem we

shall require, which follows straightforwardly from Vasy, Warnick,

and Hintz and Xie [1, 2, 27, 28]:

Theorem 1. Fix |h| < ǫ, k ∈ N and let Uk = {z ∈ C :ℜ(z) >

−(k + 1
2 )κ}. Then, the operator L̂(s, h) :D

k → Hk is invertible for

s ∈ Uk, except at a discrete set 3k(h) ⊂ Uk. Moreover, for each

σ ∈ 3k(h) there is an integer d > 0 such that:

1. There exists a d-dimensional space of smooth functions w :B →

C which extend smoothly to ∂B and satisfy L̂(σ , h)w = 0.

2. There exists a d-dimensional space of distributions X ∈ D
′(R3)

which satisfy

X[L̂(σ , h)φ] = 0, |X[φ]| 6 c ||φ|B||k , (5)

for some c > 0 and all test functions φ ∈ C∞
c (R3).

4 Derivatives should be understood in the distributional sense.
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3. As s varies, the meromorphic family of operators

L̂(s, h)−1
:Hk → Dk has a pole at σ .

It follows from the characterization of points in 3k(h) that

3k+1(h) ∩ Uk = 3k(h). We call any σ ∈ 3k(h) for some k a

quasinormal frequency of L(h), with geometric multiplicity d. A

corresponding smooth solution to L̂(σ , h)w = 0 is a quasinormal

mode, and a distribution X satisfying ii) above we call a co-mode.

Notice that the condition on X implies that X is supported in B and

so can be uniquely extended to act on test functions in C∞(B).

The residue of L̂(s, h)−1 at s = σ is a finite rank operator, and

we identify the rank of this residue with the algebraic multiplicity

of σ . As in the familiar case of matrices, the algebraic multiplicity

is an upper bound for the geometric multiplicity. We say that a

quasinormal frequency σ ∈ 3k(h) is simple if it has algebraic

multiplicity one.

The result above holds for h fixed. The question we shall

consider in this study, that of quasinormal spectral instability,

amounts to trying to understand how the set 3k(h) changes as

h varies.

3 Stability of quasinormal frequencies

3.1 Simple quasinormal frequencies

Let us suppose that for the unperturbed operator, that is, at

h = 0, we can compute the quasinormal frequencies, modes,

and co-modes, and we consider some simple σ ∈ 3k(0) with

corresponding quasinormal mode w and co-mode X. It was shown

in Joykutty [29] that that as h varies, there is some smooth curve of

quasinormal frequencies σ (h) ∈ 3k(h), with σ (0) = σ , together

with an associated curve of quasinormal modes w(h) with w(0) =

w, depending smoothly on h such that

L̂(σ (h), h)w(h) = 0

holds for all |h| < ǫ. Moreover, in Joykutty [29] an explicit power

series expansion for σ (h) is given in terms of the trace of certain

operator valued contour integrals. We shall take a more elementary

approach to find a formula for σ ′(0).

Since L̂ depends smoothly on its arguments, we can differentiate

with respect to h at h = 0 to find:

σ ′(0)
∂ L̂

∂s
(σ , 0)w+

∂ L̂

∂h
(σ , 0)w+ L̂(σ , 0)w′(0) = 0. (6)

By assumption, we know ∂ L̂
∂s (σ , 0),

∂ L̂
∂h
(σ , 0) and w, but we do not

know anything about w′(0). If, however, we act on Equation 6 with

the co-mode X, the term involving w′(0) will be annihilated. We

find then:

σ ′(0)X

[

∂ L̂

∂s
(σ , 0)w

]

+ X

[

∂ L̂

∂h
(σ , 0)w

]

= 0

or, rearranging

σ ′(0) = −
X
[

∂ L̂
∂h
(σ , 0)w

]

X
[

∂ L̂
∂s (σ , 0)w

] . (7)

This formula gives us an exact expression for the velocity of the

curve of quasinormal frequencies σ (h) as it passes through σ .

We observe that only the numerator of Equation 7 depends

on the perturbation—the denominator can be computed from the

unperturbed operator alone. Recalling that the operator norm of a

linear map A :V → W between normed spaces is given by

‖A‖V→W = sup
u∈V ,‖u‖V=1

‖Au‖W ,

we can estimate σ ′(0) in terms of an operator norm of the linearized

perturbation as

|σ ′(0)| 6 γσ

∥

∥

∥

∥

∥

∂ L̂

∂h
(σ , 0)

∥

∥

∥

∥

∥

Hk→Hk

. (8)

Here, the sensitivity, or condition number, γσ depends only on the

unperturbed operator and is given by

γσ =
‖w‖k‖X‖k∗

∣

∣

∣
X
[

∂ L̂
∂s (σ , 0)w

]
∣

∣

∣

where ‖X‖k∗ : = ‖X‖Hk→C
. We can think of the expression for

γ as a generalization of the formula for the sensitivity of a matrix

eigenvalue.

At this stage, it is worth commenting on the role of k in the

discussion. Increasing k increases the region of the complex plane

in which we can study the quasinormal frequencies; however, the

price we pay for this in Equation 8 is an increase in the control

that we require on the perturbation. We can mitigate this by

choosing k to be as small as possible, consistent with σ ∈ 3k(0).

Even doing this we see that to bound the rate of change of a

quasinormal frequency σ , we (roughly speaking) need control of

more than−κ−1(Re σ ) derivatives of the perturbation.We shall see

this more explicitly later on. We should note that ‘control of higher

derivatives’ may appear to be an unphysical condition, but one can

also view this condition as asking that the perturbations should not

have too much of their energy at high wavenumbers.5

The arguments above do not rely strongly on the particular

form of the metric, or the family of operators we consider. As long

as a result broadly analogous to the conclusions of Theorem 1 holds,

we can expect to be able to repeat this argument.

3.2 Non-simple quasinormal frequencies

In the discussion above, we made the assumption that the

quasinormal frequency σ was simple, which was needed to establish

that σ sits on a smooth curve of quasinormal frequencies. If σ is not

simple, then this need not be the case in general—see Figure 3 for

a situation where this arises in our numerics. It does follow from

[29] that the number of QNFs, counted with suitable multiplicity,

inside a small circle around σ is independent of h for small h, so

that QNFs in particular cannot be locally “created” or “destroyed”

5 Roughly speaking, for a perturbation inHk, the fraction of the total energy

carried by wavenumbers greater than µ is bounded by a constant multiple of

µ−2k for large µ.
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by small perturbations of the type we consider—QNFs can only

appear from infinity or by splitting off from a QNF with algebraic

multiplicity greater than one.

In general, it does not appear to be a straightforward question to

determine whether a particular non-simple quasinormal frequency

lies on a smooth curve. In some cases, however, it may be that

evolution under L(h) leaves invariant some subspace (such as an

angular momentum eigenspace) so we can consider the problem of

finding quasinormal frequencies restricted to this subspace. If σ is

a simple quasinormal frequency of the restricted problem, then the

results of the previous section will apply.

4 The generalized pseudospectrum

In Jaramillo et al. [16] and subsequently [see Boyanov et al. [23]

and references therein], the instability of the quasinormal spectrum

has been investigated using the notion of pseudospectrum,

comparing the results from this approach to computations with

explicit perturbations. Recall that for a matrix A we can define the

ǫ−pseudospectrum to be6

3ǫ = {s ∈ C :

∣

∣

∣

∣(A− sι)−1
∣

∣

∣

∣

Rn→Rn > ǫ−1}.

where we define
∣

∣

∣

∣(A− sι)−1
∣

∣

∣

∣

Rn→Rn = ∞ whenever A− sι is not

invertible. It can be shown [30–32] that 3ǫ corresponds to the set

of points which can appear in the spectrum of A+ δA, where δA is

a perturbation satisfying ||δA||Rn→Rn < ǫ.

This notion generalizes to operators on infinite dimensional

spaces in the obvious way. However, this definition cannot

immediately be applied to our problem above because L̂(s, h) is not

of the form A − sI for some operator A. There are two possible

approaches to resolve this. The approach taken by Jaramillo et

al. [16] is to follow [2, 13, 14] and recast the problem of finding

the quasinormal frequencies as a genuine eigenvalue problem by

writing

L̂(s, h) = L2(h)+ sL1(h)+ s2

where Lj(h) is a differential operator of order j. Then, we can verify

that L̂(s, h)w = 0 has a solution if and only if

(

−s 1

−L2(h) −L1(h)− s

)(

w

v

)

= 0

has a smooth solution. Thus, the set 3k(h) can be identified with

the part of the spectrum of

L(h) =

(

0 1

−L2(h) −L1(h)

)

in Uk, where L(h) is thought of as a closed unbounded operator

on Hk
: = Hk+1 × Hk. This motivates one definition of the

6 The pseudospectrum is usually defined as a closed set, with > in place

of >; however, the open condition generalizes more straightforwardly to the

infinite dimensional case.

ǫ−pseudospectrum7 as

3̃ǫk = {s ∈ C :

∣

∣

∣

∣(L(0)− sι)−1
∣

∣

∣

∣

Hk→Hk > ǫ−1}.

This has the advantage of being the standard definition applied to

L, but the disadvantage that in numerical computations one has to

double the dimension of the approximation space to account for

the two functions w, v. Moreover, since L does not have compact

resolvent, approximation by matrices can be more challenging.

An alternative approach is to generalize the notion of

ǫ−pseudospectrum by declaring

3ǫk = {s ∈ Uk :

∣

∣

∣

∣

∣

∣
L̂(s, 0)−1

∣

∣

∣

∣

∣

∣

Hk→Hk
> ǫ−1}. (9)

This has the advantage that L̂(s, 0)−1
:Hk → Hk is compact,

but the disadvantage that since it is not the standard definition

of pseudospectrum, one cannot readily make use of existing

numerical libraries. We note as an aside that we could also consider

the Hk → Dk norm in place of the Hk → Hk norm in

Equation 9, but it will not make a significant difference for the type

of perturbations we consider.

We shall take Equation 9 as our definition of the

pseudospectrum for the rest of the study [see Besson et al. [26] for

an alternative approach]. Amodification of the usual arguments for

pseudospectra [31, 32] shows that 3ǫ
k
is precisely the set of points

in Uk which can occur as quasinormal frequencies of L(s, 0)+ E for

some operator E :Hk → Hk satisfying ||E||Hk→Hk < ǫ. One can

verify that the fact that s does not appear linearly in L(s, 0) does not

affect this argument. In particular, provided ||Vh||Ck < ǫ/κ2 we

have3k(h) ⊂ 3ǫ
k
.

We note that this definition agrees with that for the null slicing

in Cownden et al. and Boyanov et al. [22, 23]; however, we do not

assume that the slicing is everywhere null.

5 Explicit computations for
perturbations of the conformal wave
operator

To give a concrete demonstration of the ideas above, we will

work in a setting where the quasinormal frequencies, modes, and

co-modes of the operator are known explicitly at h = 0. In

particular, from now on we assume that we perturb about the

conformal wave operator on de Sitter, in our language:

V0(x) = 2.

Under this assumption, we have [27, 28]:

Lemma 2. Suppose V0(x) = 2. Then:

1. 3k(0) = {−κ ,−2κ ,−3κ , . . . ,−kκ}.

2. The quasinormal frequency σn : = −nκ ∈ 3k(0) has geometric

and algebraic multiplicity n2, and a basis for the corresponding

7 The pseudospectrum is a property of the unperturbed operator; hence,

we set h = 0.
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TABLE 1A Coe�cients Ai

n,l for the first six quasinormal frequencies with

in each of the angular sectors l = 0, 1, 2. (A) l = 0.

n

i
0 1 2 3 4 5

1 1

2 1 1

3 0 2 1

4 0 0 3 1

5 0 0 0 4 1

6 0 0 0 0 5 1

TABLE 1B l = 1.

n

i
0 1 2 3 4 5 6

2 2 1

3 0 3 1

4 0 0 4 1

5 0 0 0 5 1

6 0 0 0 0 6 1

7 0 0 0 0 0 7 1

space of quasinormal frequencies is given in terms of the

standard spherical polar coordinates (r, θ ,φ) on Bκ by

wn,l,m = (κr)lYl,m(θ ,φ)2F1

[

1+ l− n

2
,
2+ l− n

2
,
3+ 2l

2
; κ2r2

]

.

Here,Yl,m are the spherical harmonics, 2F1 is the hypergeometric

function and the integersm, l satisfy |m| 6 l 6 n.

3. For each σn ∈ 3k(0), the corresponding quasinormal co-modes

are supported on ∂B. A basis for the space of co-modes is given

in terms of the action on a smooth test function by

Xn,l,m[ϕ] =

n−1
∑

i=0

Ai
n,l

1

κ i

diϕl,m

dri

∣

∣

∣

∣

r=κ−1

(10)

where |m| 6 l 6 n, Ai
n,l

are constants, and ϕl,m(r) is the

projection of ϕ onto the (l,m)−spherical mode.

While it is possible to specify the constants Ai
n,l

explicitly, see

Hintz and Xie; Joykutty [27, 28, 33], for the purposes of our results

below it is more computationally efficient to find Xn,l,m for any

particular choice of n, l,m by simply using Equation 10 as an ansatz

in Equation 5 and solving the resulting linear system forAi
n,l
. Doing

so using Mathematica to perform the computations, we find the

results in Table 1.

Since for σ 6= −κ the quasinormal frequencies are not simple,

to make use of Equation 7 to estimate the change in the QNF,

we shall make the additional assumption that the potential Vh

is spherically symmetric. Under this assumption, the QNFs are

simple once we restrict our attention to a single fixed angular

mode. If we fix l,m with |m| 6 l, then for k > l, the

TABLE 1C l = 2.

n

i
0 1 2 3 4 5 6 7

3 3 5 1

4 −3 3 6 1

5 6 −6 3 7 1

6 −18 18 −9 3 8 1

7 72 −72 36 −12 3 9 1

8 −360 360 −180 60 −15 3 10 1

unperturbed quasinormal spectrum restricted to the l,m angular

mode is 3l,m
k

(0) = {−lκ , . . . ,−kκ} and all the QNFs are simple.

We can compute the rate of change of the QNF at−κn by

σ ′
n,l,m(0) = −

Xn,l,m

[

∂ L̂
∂h
(σ , 0)wn,l,m

]

Xn,l,m

[

∂ L̂
∂s (σ , 0)wn,l,m

] .

To use this formula, we also need ∂ L̂
∂s and

∂ L̂
∂h
. For the particular

case of interest, with L(h) given by Equation 2, we have

L̂(s, h)u = −

(

s+ κxi
∂

∂xi

)2

u− 3κ

(

s+ κxi
∂

∂xi

)

u+ δij
∂2u

∂xi∂xj

− κ2Vhu

so that

∂ L̂

∂s
(σ , 0)u = −2κxi

∂u

∂xi
− (2s+ 3κ)u = −2κr

∂u

∂r
− (2s+ 3κ)u.

and

∂ L̂

∂h
(σ , 0)u = −κ2Wu,

where we introduce W =
∂Vh
∂h

∣

∣

∣

h=0
, the first order perturbation to

the potential.

We now have all that is required to compute σ ′
n,l,m

(0). In view

of the structure of the operator Xn,l,m, we can write

σ ′
n,l,m(0) = κ

n−1
∑

i=0

Bin,l
1

κ i
W(i)(κ−1)

for some constants Bi
n,l
. Note that this is independent of m due to

the spherical symmetry of the perturbing potential. We can again

useMathematica to compute these constants and present the results

for the first few modes in the l = 0, 1, 2 angular sectors in Table 2.

Picking two cases as examples, we can read off from the tables

that

σ ′
1,0,0(0) = −κW(κ−1)

σ ′
3,1,1(0) = κW(κ−1)+

5

3
W′(κ−1)+

1

3κ
W′′(κ−1).

We see very explicitly here and from Table 8 that the rate of change

of the quasinormal frequency depends on higher derivatives of
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TABLE 2A Coe�cients Bi

n,l for the first six quasinormal frequencies within

each of the angular sectors l = 0, 1, 2. (A) l = 0.

n

i
0 1 2 3 4 5

1 −1

2 1 1

3 −1 −2 − 2
3

4 1 3 2 1
3

5 −1 −4 −4 − 4
3

− 2
15

6 1 5 20
3

10
3

2
3

2
45

TABLE 2B l = 1.

n

i
0 1 2 3 4 5 6

2 −1 − 1
3

3 1 5
3

1
3

4 −1 − 41
15

− 8
5

− 1
5

5 1 19
5

53
15

16
15

4
45

6 −1 − 169
35

− 216
35

− 102
35

− 34
63

− 2
63

7 1 41
7

199
21

128
21

110
63

23
105

1
105

TABLE 2C l = 2.

n

i
0 1 2 3 4 5 6 7

3 −1 − 3
5

− 1
15

4 1 11
5

4
5

1
15

5 −1 − 117
35

− 93
35

− 64
105

− 4
105

6 1 157
35

544
105

227
105

1
3

1
63

7 −1 − 583
105

− 887
105

− 316
63

− 82
63

− 1
7

− 1
189

8 1 139
21

260
21

601
63

52
15

194
315

34
675

1
675

the perturbing potential, and the larger n, that is, the deeper into

the stable plane we go, the more derivatives that are required.

Equivalently, the deeper into the stable plane, the more control we

require on the high wavenumber component of our perturbation.

The increasing order of the operator norm that appears on the

right-hand side of Equation 8 as we probe deeper into the plane is

not simply an artifact of our framework but is necessary.

To see why it is necessary to use higher order norms to

constrain the perturbations, let us consider the case κ = 1 and

consider a family of perturbationsW(r) = ǫ3 exp(− r2

ǫ2
). We clearly

have that

|W(r)| + |W′(r)| . ǫ

so in particular as ǫ → 0, we see that in the ‘energy norm’,

that is, the operator norm associated to the H1 norm we have

that the perturbation tends to zero. However, W′′(1) = (4ǫ−1 −

2ǫ) exp(−1/ǫ2) ∼ ǫ−1 as ǫ → 0, so that using the expression above

we see that the l = m = 1, n = 3 mode is displaced (to first order)

by a term proportional to ǫ−1. Hence, smallness of the perturbation

in the energy norm is no guarantee of stability of the quasinormal

modes lying sufficiently deep in the stable half-plane.

For the choice of potential Vh(r) = 2 + h exp(−r2), with

κ = 1, which we study numerically below, we have computed
∣

∣

∣
σ ′
n,l,m

(0)
∣

∣

∣
for n 6 20, l 6 2 and presented the results graphically in

Figure 1. Noting the logarithmic scale on the y−axis, we see that

for this choice of perturbing potential
∣

∣

∣
σ ′
n,l,m

(0)
∣

∣

∣
grows roughly

exponentially in n, consistent with our expectation that modes

deeper in the stable plane become more and more unstable.

6 Numerical calculation of QNFs and
comparison to analytic results

To test numerically the computations above, we have computed

the quasinormal frequencies for the choiceVh(r) = 2+h exp(−r2).

We first present the results and then comment on the methods

used below.

6.1 Results

Since the equation is real, as is the quasinormal spectrum of

L̂(s, 0), frequencies can only move off the real axis in complex

conjugate pairs. Restricted to each angular sector the QNFs are

simple, so each QNF must remain real for a range of h values near

0. Accordingly, in Figure 2 we show the directly computed real part

of the quasinormal frequencies as a function of h. Superposed on

this, we also plot the linear approximation to the QNFs given by

σn,l,m(h) ≈ σn,l,m(0)+ hσ ′
n,l,m(0),

with σ ′
n,l,m

(0) computed using the exact methods of §5 and we see

very good agreement with the full numerical computation.We have

experimented and this result is robust to changes to the potential,

provided it remains smooth. We have thus verified the results of

§5. We note that this is a non-trivial test of our numerical scheme

(described below) as it correctly predicts the values of the QNFs for

h = 0 and agrees with the analytical computations for the gradient

of the blue curves at these points.

Figure 2 shows that pairs of QNFs do eventually meet and

move off the real axis. In Figure 3, we show an example of one

such interaction in the complex plane, which occurs when the

quasinormal frequencies with l = 0, σ (0) = −2,−3 coalesce and

move into the complex plane at h ≈ 0.4645. We note that (within

the accuracy of the numerics) it appears that we cannot identify a

smooth curve σ (h) of QNFs passing through the point at which

the QNFs meet (and hence cease to be simple). Whichever branch

we pick, the curve will have to turn through an angle of π/2 as h

passes the critical value. The choices of h to plot were determined by

setting hi = 0.4645+ ǫi |ǫi|, and taking ǫi to be spaced uniformly in

[−1, 1]. This figure was computed with a depth k = 3 and N = 25

gridpoints, see §6.2.
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FIGURE 1

Magnitude of σ ′
n,l,m(0) for n 6 20, l 6 2 for the potential Vh(r) = 2+ h exp(−r2), with κ = 1.

6.2 The numerical scheme

The numerics in this section are performed using a null slicing,

rather than the spacelike slicing introduced above, but the scheme

can be readily adapted for a spacelike slicing. For convenience, we

will take κ = 1 from now on. Setting

τ = t − log(1+ r)

the metric takes the form

g = −
(

1− r2
)

dτ 2 − 2drdτ + r2(dθ2 + sin2 θdφ2). (11)

To find the quasinormal frequencies, we seek solutions to

L̂(s, h)u = 0 of the form

u(r, θ ,φ) =
R(r)

r
Yl,m(θ ,φ)

If we define

LR : =
d

dr

(

(1− r2)
dR

dr

)

−
l(l+ 1)

r2
R+ VhR

then

rL̂(s, h)u = LR− 2s
dR

dr

so that to find quasinormal frequencies, we are led to consider the

solvability of

LR− 2s
dR

dr
= f (12)

for given f , with f (0) = R(0) = 0 and R regular r = 1.

Rather than directly discretize Equation 12, we first expand to a

system of equations by differentiating the equation. We have the

commutation relation

[

r
d

dr
,L

]

= −2L− 2

(

r
d

dr

)2

− 2r
d

dr
+ 2Vh + r

dVh

dr
.

LetRp =
(

r d
dr

)p
R,V

p

h
=
(

r d
dr

)p
Vh, and f

i =
(

r d
dr

)i
f . Then using

the commutation relation, we can show that Equation 12 implies

LRp +

p+1
∑

i=1

α
p
i R

i +

p
∑

i,j=0

β
p
i,jV

i
hR

j − s

p
∑

i=0

γ
p
i

dRi

dr
=

p
∑

i=0

µ
p
i f

i

where α
p
i ,β

p
i,j, γ

p
i are numerical (indeed integer) constants

determined recursively by

α
p+1
i = α

p
i−1 + 2α

p
i (1 6 i 6 p), α

p+1
p+1 = α

p
p + 2α

p
p+1 − 2,

α
p+1
p+2 = α

p+1
p − 2

with α0i = 0 for all i. Next, we set β
p
i,j = 0 for all i, j and recursively

define

β
p+1
0,p = β

p
0,p−1+2β

p
0,p+2, β

p+1
1,p = β

p
0,p−1+β

p
1,p−1+2β

p
1,p+1.

with

β
p+1
i,j = β

p
i−1,j + β

p
i,j−1 + 2βi,j

otherwise. Finally, set γ 0
0 = 1 = µ0

0, γ
0
i = 0 = µ0

i for all i 6= 0 and

γ
p+1
i = γ

p
i+1 + γ

p
i , µ

p+1
i = µ

p
i−1 + 2µ

p
i .

We can verify that α
p
p+1 = −2p, which we expect as a

consequence of the enhanced redshift effect (see Warnick and

Dafermos–Rodninski [2, 34]).

To construct our numerical scheme, we fix an integer k > 0,

which we call the depth of the scheme. If Equation 12 holds, then

the system of equations:

[

L− 2kr d
dr

]

Rp + 2kRp+1 +
∑p+1

i=1 α
p
i R

i +
∑p

i,j=0 β
p
i,jV

i
h
Rj

−s
∑p

i=0 γ
p
i
dRi

dr
=
∑p

i=1 µ
p
i f

i (0 6 p < k)
[

L− 2kr d
dr

]

Rk +
∑k

i=1 α
k
i R

i +
∑k

i,j=0 β
k
i,jV

i
h
Rj − s

∑k
i=0 γ

k
i
dRi

dr

=
∑k

i=1 µ
k
i f

i (13)
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A B

C D

FIGURE 2

Re(σ (h)) plotted against h for numerically computed QNFs for Vh = h exp(−r2) (blue lines) together with the linear approximations (red lines) in the

l = 0, 1, 2 sector. The black dots mark the location of the analytically known QNFs for h = 0. (A) l = 0. (B) l = 1. (C) l = 2. (D) Logarithmic error against

N for k = 2, . . . , 9.

will also hold. Here, we have used the fact that

r d
dr
Rp = Rp+1 to arrange that we have the operator

[

L− 2kr d
dr

]

acting as the principle differential operator

on all components. This is the approach taken to

increase the working regularity in the analysis of

Warnick [2].

We now treat R0, . . . ,Rk as independent functions, and

we discretize on the interval [0, 1] using a pseudospectral

method, following Trefethen [35]. The constants α,β , γ

are found recursively, and the derivatives V i
h

are computed

exactly using Matlab’s Symbolic Math Toolbox before

discretization. We note that Rp(0) = 0 which gives a

Dirichlet boundary condition at one end of our interval,

and we do not need a boundary condition at r = 1 as

the pseudospectral discretization will impose smoothness

there automatically.

After discretizing on N points, Equation 13 becomes

(A− sB)V = CF (14)

for (kN) × (kN)-matrices A,B,C and column vectors V , F

which represent the discretization of (R0, . . . ,Rk), (f 0, . . . , f k),

respectively. We work throughout at standard machine precision.

6.2.1 The quasinormal spectrum
If σ is a quasinormal frequency, then we expect the generalized

eigenvalue problem

(A− sB)V = 0

to have an eigenvalue near σ . Thus, we can find the quasinormal

frequencies by applying Matlab’s generalized eigenvalue finder

to Equation 14. However, by enlarging the original problem to
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FIGURE 3

Numerically determined QNFs in a neighborhood of the transition point at h ≈ 0.4645, at which the two real QNFs with l = 0, σ (0) = −2,−3 meet and

branch into a conjugate pair of complex QNFs. Arrows indicate the direction of increasing h.

a system, we may have introduced spurious eigenvalues which

correspond to vectors V for which the condition

Rp+1 = r
dRp

dr
, 0 6 p < k (15)

does not hold. To enforce this condition, we select only those

eigenvalues of 14 for which (the discretized version of)

k−1
∑

p=0

∣

∣

∣

∣

∣

∣

∣

∣

Rp+1 − r
dRp

dr

∣

∣

∣

∣

∣

∣

∣

∣

2

< e

holds, where e is a sufficiently small threshold parameter, which we

take to be 10−1 for the computations in this study.

Plots 2a–c show the numerically computed quasinormal

spectrum in the l = 0, 1, 2 sector as h varies, computed using

k = 6,N = 25. Plot 2d shows the error in the scheme when

computing the eigenvalue at σ = −4 for various values of k. We

see (as has been observed in other situations [16]) that for a given

value of k, the pseudospectral method in fact can accurately find

quasinormal frequencies even outside the domain Uk in which we

expect the numerics to converge.

6.2.2 The pseudospectra
To compute pseudospectra for different k, we need to

numerically approximate
∣

∣

∣

∣

∣

∣
L̂(s, 0)−1

∣

∣

∣

∣

∣

∣

Hk→Hk
. We can approximate

this by computing

∣

∣

∣

∣

∣

∣
L̂(s, 0)−1

∣

∣

∣

∣

∣

∣

Hk→Hk
≈
∣

∣

∣

∣(A− sB)−1C5
∣

∣

∣

∣

ℓ2→ℓ2

where 5 is the L2−orthogonal projector onto the space of vectors

F of the form (f 0, . . . , f k), where f i =
(

r d
dr

)i
f . This projection

is necessary to account for the enlargement of our space by

considering the system of higher derivatives. Since for such an F

we have8 ||F||ℓ2 ≈
∣

∣

∣

∣f
∣

∣

∣

∣

Hk we can approximately compute the

Hk operator norm of L̂(s, 0)−1 by the ℓ2 operator norm of the

approximating matrix.

In Figure 4, we show the numerically computed pseudospectra

for k = 1, . . . , 6. We see that in all cases the pseudospectrum

is well-behaved in the region Uk, but that the contours open

out significantly once we leave this region. We expect that the

fact that the contour curves can leave Uk at all is a feature

of the finite truncation. We observe the phenomenon noted

above that the spectral method finds quasinormal frequencies

accurately, even in the region of the plane that we expect significant

numerical instability. For example, in Figure 4A we see the first

five frequencies accurately computed, even though only the first is

actually in U1.

To verify convergence of the numerical operator norm, in

Figure 5 we show the approximated values of
∣

∣

∣

∣

∣

∣
L̂(s, 0)−1

∣

∣

∣

∣

∣

∣

Hk→Hk

at s = −4 + i for k = 2 and k = 4 as N varies.

As expected, in the k = 2 case we see divergence, since

for this k our choice of s does not belong to Uk. For the

case k = 4, we are in the region Uk, and we see good

8 In fact this is the discretized version of a weighted Sobolev nor; however,

since the weights only degenerate near r = 0, this is adequate for our

purposes.
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A B

C D

E F

FIGURE 4

Numerically computed contour lines
∣

∣

∣

∣

∣

∣
L̂(s, 0)−1

∣

∣

∣

∣

∣

∣

Hk→Hk
= ǫ−1 for 1 6 k 6 6. The black dashed line indicates the boundary of Uk. Black dots are the

QNFs of L̂(s, 0)−1 computed by the numerical algorithm with N = 35. (A) k = 1. (B) k = 2. (C) k = 3. (D) k = 4. (E) k = 5. (F) k = 6.
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A B

FIGURE 5

Convergence of
∣

∣

∣

∣

∣

∣
L̂−1(s0, 0)

∣

∣

∣

∣

∣

∣

Hk→Hk
at s0 = −4+ i for k = 2 and k = 4. (A) k = 2. (B) k = 4.

convergence. This can be compared to Figure 7 of [23]. We should

mention that the pseudospectrum for this operator according

to the standard definition has been computed for k = 1

in [36], which appeared slightly before this study—see their

Figure 11.

7 Conclusion

We have investigated the stability of the quasinormal spectrum

of the conformal wave equation on the static patch of de

Sitter. We find that the quasinormal frequencies are stable,

provided the perturbing potential is small in a sufficiently high

regularity norm. Conversely, one could instead interpret this

as a spectral instability for perturbing potentials which are not

sufficiently regular at the cosmological horizon. We numerically

verify our computations using a spectral method and propose

a definition for a family of pseudospectra that demonstrate

good convergence properties and capture the (in)stability of the

quasinormal frequencies.
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