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The fast-trimmed likelihood estimate is a robust method to estimate the parameters 
of a mixture regression model. However, this method is vulnerable to the presence 
of bad leverage points, which are outliers in the direction of independent variables. 
To address this issue, we propose the weighted fast-trimmed likelihood estimate to 
mitigate the impact of leverage points. The proposed method applies the weights of 
the minimum covariance determinant to the rows suspected of containing leverage 
points. Notably, both real data and simulation studies were considered to determine 
the efficiency of the proposed method compared to the previous methods. The 
results reveal that the weighted fast-trimmed estimate method is more robust and 
reliable than the fast-trimmed likelihood estimate and the expectation–maximization 
(EM) methods, particularly in cases with small sample sizes.
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Introduction

The mixture regression model has been widely used in various scientific fields, such as 
econometrics, engineering, biology, and others, due to its ability to capture the relationship 
between independent and dependent variables. As noted by Quandt (1) and Quandt and 
Ramsay (2), datasets may exhibit multiple data patterns, and variables often cluster according 
to these patterns. These patterns can be represented by unknown groups of latent variables, 
leading to the use of mixture regression models. In other words, the regression probabilistic 
model, in terms of the latent class variable Z, where Z = k, can be expressed as follows:

  
' , 1,2, , ,k kY x e k gβ= + = …

 (1)

where x is the design matrix of ( )1p +  independent variables with constant, and kβ is the 
regression parameters of ,g  which is the number of homogeneous sub-populations (groups). 
Moreover, ke  is the error term that has to be independent of x with density ( ). ,kf  which is 
distributed ( )20, ,kN σ  and Y  is the dependent variable, which has the same distribution of ke  
with different parameters.

The maximum likelihood estimation (MLE) method, widely regarded as one of the best 
methods to estimate regression model parameters when the distribution of errors is normal, 
becomes challenging when this assumption is violated. Moreover, MLE lacks robustness in the 
presence of outliers. Alternative methods should prioritize both ease of computation and 
robustness, such as the M-estimate (3) and the least trimmed squares method (4). These robust 
approaches address contaminated error distributions through two key procedures: first, fitting a 
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parametric model to the majority distribution and removing errors 
following a different distribution; second, assigning reduced weights to 
outliers so they approximate a normal distribution. In some cases, the 
random errors are highly heterogeneous, with at least 50% of the errors 
lacking homogeneity (5).

Dempster et al. (6) introduced the expectation–maximization 
(EM) algorithm, which simplifies the problem by transforming it into 
a relatively straightforward single-component MLE. The EM 
algorithm is robust against outliers and easy to calculate. This issue 
of robustness in mixture regression models has garnered significant 
attention in statistical research. Initial efforts to address the problem 
of outliers in mixture models, particularly within the location-scale 
family of distributions, were made by Peel and McLachlan (7) and 
Hennig (8). In a different approach, Markatou (9), Neykov et al. (5), 
and Shen et al. (10) sought to mitigate the influence of outliers in 
mixture regression models by assigning reduced weights to individual 
data points.

Alternatively, Hadi and Luceño (11) and Vandev and Neykov (12) 
defined the weighted trimmed likelihood estimator (WTLE):

 
( ) ( )( ) ( )

1 1
min ; min min log ; ,

P P
h

h h
i iv i v i

I Ii i
w f y w y

β β
β ϕ β

∈Θ ∈ ∈Θ= =
= −  ∑ ∑

 
(2)

where ( )( ) ( )( ) ( )( )1 2; ; ;v v v nf y f y f yβ β β≤ ≤ ≤  for fixed 
, n

h hI Cβ =  is the all-possible subsets of size h that can be fitted by MLE 
and randomly selected from n  observations, ( );iyϕ β  is the 
probability density function. ˆWTLEβ  is given the subset with the 
minimal negative log-likelihood. However, Equation 2 accommodates 
for the number of estimators, MLE when n h= , TLE when 

( ) 1, 1,2, , ,v iw i n= = …  the median likelihood estimator (MedLE) when 
( ) 1v hw =  and ( ) 0v iw =  for .i h≠  Both MedLE and trimmed likelihood 

estimator (TLE) can coincide with other estimators depending on the 
definition of the density function ( );iyϕ β ; when it is multivariate 
normal, the MedLE and TLE correspond with minimum volume 
ellipsoid (MVE) and minimum covariance determinant (MCD) 
estimators (4). When it is normal density, the MedLE and TLE 
correspond to the least median of squares (LMS) and least trimmed 
squares (LTS). Neykov et  al. (5) highlighted that WTLE is not a 
practical choice for large datasets and introduced the fast-trimmed 
likelihood estimate (FTLE) algorithm as a developed version of the 
approach originally proposed by Müller and Neykov (13). FTLE 
reduces Fast-LTS and Fast-MCD (14) in computing mixture regression 
coefficients in two steps, trial and refinement, respectively.

However, FTLE is not resistant in the presence of bad leverage 
points, which are outliers in the direction of independent variables. 
Garcia-Escudero et al. (15) proposed an adaptive procedure to identify 
the real cluster regressions without the influence of bad leverage points. 
Despite the increase in the second trimming in the breakdown point, it 
does not necessarily have high efficiency due to the high percentage of 
trimming, which reduces the degrees of freedom and, consequently, 
results in a loss of efficiency. Uraibi (16) employed the weights that are 
derived from re-weighted multivariate normal (RMVN), which is a 
robust location and scatter matrix proposed by Olive and Hawkins (17), 
instead of removing the outliers. This study suggests weighting the 
leverage points in the design matrix X using RMVN prior to using it 
with the TLE algorithm that deals with outliers in the y-direction.

Weighted fast-trimmed likelihood 
estimator

The FTLE method is not a feasible choice with moderate and 
small sizes due to the twice trimming for outliers and leverage 
points. This procedure leads to a loss of more information and 
consequently reduces the degrees of freedom. Thus, assigning 
down weights for leverage points instead of removing them might 
improve the performance of the TLE method. Moreover, 
identifying the percentage of outliers will contribute to the fast 
computation of TLE in the framework of the C-steps 
concentrated algorithm.

Uraibi (16) noted that the Fast MVE and MCD methods 
proposed by Rousseeuw and Driessen (14) are time-consuming 
and susceptible to masking and swamping phenomena when high 
leverage points are present. Consequently, using robust 
Mahalanobis distance based on MVE or MCD to identify leverage 
points may not be effective, as it can lead to inaccurate diagnostics 
regarding the exact number of leverage points. Uraibi (16) 
suggested using RMVN location and scale estimators (17) with 
Mahalanobis distance instead of MVE and MCD, as RMVN is a 
more concentrated algorithm and provides higher accuracy. 
Moreover, it is more resistant to high leverage points than other 
methods Uraibi and Haraj (18). Additionally, Uraibi (16) 
proposed an alternative weighting method that adjusts the 
chi-square distribution’s percentage point to address the masking 
and swamping problems caused by high leverage points. This 
approach is essential in the proposed algorithm for assigning 
high-accuracy weights to mitigate the issue of high 
leverage points.

Consider ( )F e  as a scale mixture normal distribution of random 
errors term of Equation 1, where ( ) ( ) ( )21 0,F e N G∈ σ ∈= − + . In 
this study, G  is another distribution different from ( )20,N σ  and 

0.25.∈≥  Assume that ( )n α×  leverage points are present in each 
independent variable, where α  is the percentage of leverage points. 
The WTLE algorithm combines the weights algorithm of Uraibi (16) 
but uses RMVN (17) and the FTLE method in one algorithmic frame 
that can be written as follows:

 1 Identifying leverage points and giving them down weights 
as follows:

For 1,2j =  Do {
 a) Compute ˆRMVNµ  and 

^

RMVN∑ , the location and scatter 
estimators of x, and consider that the critical value of the desired 
upper bound of Mahalanobis distance is ( )

2
0.975,pχ .

 b) Calculate Robust Mahalanobis distance, which is denoted 
as ( )xiRD  based on ˆRMVNµ  and ^

RMVN∑ ,  

( ) ( ) ( )
1^

ˆ ˆx x xi i RMVN i RMVNRMVNRD µ µ
−

′= − −∑
.

 c) Let ( )x i

i

S Rd= ∑  where ( ) ( ) ( ) ( ){ }2

0.975,
x x : xi i i p

Rd RD RD χ= ≤ .

 d) Suppose that ( )0.975
2

n
S

δ
×

=
×

 and ( )min ,0.995 ,q δ=  and then

 ( ) ( )( ) ( )

^ ^
2

,x / .i pRM j RMVNMedian RD δχ = ×  ∑ ∑
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 e) Let ( )

^ ^

RMVN RM j=∑ ∑ .
 f) Next }.
 g) Finally, ( )

( )

2
,min 1,
x

q p
i

i
w

RD

χ 
 =  
  

 and then xw xi i iw= × , 

 Wi i iY Y w= × .

 2 Identifying the number of outliers in WY  using robust three-sigma 
rules to determine the percentage of outliers ( )α  that so-called the 
trimming value, the C-steps can be written as follows:

Random select h out of n such that ( )1h n α= − .

 a) Given ( ) ( ){ }1 1
old

W h W nH Y Y× ×= ⊂:  with corresponding 

( ) ( ){ }1 1xw xwh p n p× + × += ⊂:  and then compute ˆold
wβ using 

multiple runs of MLE for mixture regression based on oldH .
 b) Let ( )

1

ˆ,
h

old old
i w

i
Q f y β

=
=∑:  and then sort.

 c) ( )ˆ, old
i wf y β  in ascending order ( )( )ˆ, old

wif yπ β ≤ ( )( )1 , ˆold
wif yπ β+ .

 d) Get the permutation ( ) ( ) ( )( )1 , 2 , , tnπ π π π= … .

 e) Obtain ( ) ( ) ( ){ }1 2: , , ,new
hH y y yπ π π= … .

 f) ˆ :new
w MLEβ =  based on newH .

 g) ( )( )
1

: , ˆ
h

new new
wi

i
Q f yπ β

=
=∑ .

 h) If ,
old new

new

Q Q

Q
δ

−
<  stop; otherwise, repeat the steps (3–5) until 

convergence, where δ  is a very small value.

Simulation study

This section describes a simulation study prepared to examine the 
performance of the proposed algorithm WFTLE compared to EM and 
FTLE methods.

Consider the mixture linear regression model as follows:

 

0 1 1 2 2

0 1 1 2 2

, 1
,

2
X X e if Z

Y
X X e if Z

θ θ θ
θ θ θ
+ + + =

=  − − + =

where Z  is the latent variable and when ( )1P Z =  is construct 

1 0.25π =  of the components of Y  and ( )2P Z =  is constructed 
( )2 11π π= − . The 1X and 2X  are sampled independently and are 
identically distributed from standard normal distribution individually 
with { }25,50,75,100,200,500 .n =  The error terms e has been 
considered in the context of the following cases:

 I Let the initial values are ( )

( ){ }1 1

2 2

1,2,2 1 0.25

1, 2, 2 1 0.75
i

β σ π
θ

β σ π

= = =
=

= − − = =
, 

generate n data points from the standard normal distribution, 

( )~ 0,1e N and the computing Y .

 II Generate n  data points from a uniform distribution such 
that ( )

( )
0,1 if 0.90
5,1 if 0.90

N u
e

N u
 ≤ =  >  

, and then finding 

1 2

1 2

1 2 2 if
1 2 2 if

X X e u
Y

X X e u
π
π

+ + + ≤ 
=  − − + > 

, where 0.25π =  of the 

components of Y .
 III The same procedure as case II, with 10% of leverage points 

being in 1 2100, 100X X= = .
 IV Generate n data points from a uniform distribution such that 

( )

( )2

0,1 if 0.90

0,5 if 0.90

N u
e

N u

 ≤  =  
>  

 and calculate Y .

 V The same procedure as case IV, with 10% of leverage points 
being in:

 1 2100, 100.X X= =

The steps (I-V) are repeated 5,000 times, and the mean squares 
errors of the estimated component are computed as follows:

 
( ) ( )25000

1 , 1,2,
0 0

ˆ
5

ˆ

0

i ij
iMse i

θ θ
θ =

−
= =
∑

 
( )

5000
1

ˆ
, 1,2,ˆ

5000

i ij
iBias i

θ θ
θ =

−
= =
∑

 
( )

( )5000 2
1 1

, 1,2.
00

ˆ
ˆ

5 0

ij
iMse i

σ
σ =

−
= =
∑

The best method is the one that has the lowest values of the 
above criteria.

It is interesting to note regarding the results of case I of the 
simulation study reported in Table  1 when the distribution of 
random errors is standard normal. The values of ( )ˆjMse θ , ( )ˆjBias θ
, and (between two parentheses in the tables) ( )ˆiMse σ of the EM 
method, where 1,2,3j =  respectively, are lowest than their 
counterparts in FTLE and WFTLE methods when ( )25,50,75n = . 
Notably, the values of ( )ˆjMse θ  become smaller little by little when 
the size n  increases from 25 to 500. Moreover, the values of 

( )îBias θ  are very small and coincide with ( )îMse θ  values increase 
from 25 to 75, which is very close to each other where 500n → . 
The results of ( )ˆiMse σ  in Table  1 are reasonable, and the 
performance of EM is better than the others when dealing with a 
small sample size since the algorithm of EM does not include any 
trimming procedure.

Table  2 shows the simulation results of case II when the 
distribution of random errors is a mixture of normal; one is 
standard normal, and the other is shifted only by the mean. The 
results shown in this table suggest that the performance of FTLE 
and WFTLE methods is better than the EM method by having 
lower ( )ˆjMse θ . Similarly, the WFTLE method is more efficient 
than the FTLE method when { }25,50n = . Notably, both methods 
are very close when 75n ≥ . Regarding ( )îBias θ , FTLE and WFTLE 
methods produce the smallest bias than the EM method, but both 
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are unstable with small samples of { }25,50n =  and have 
approximately the same results when 75n ≥ . It is clear that ( )ˆiMse σ  
of FTLE and WFTLE are better than the EM method with different 
sample sizes. However, FTLE is the best only when 25n = . This 
outperforms FTLE with this sample size not appearing with 

( )1̂Bias θ  and ( )2̂ ,Bias θ  except ( )0Bias . It is notable that the 

( )1̂Bias θ  and ( )2̂Bias θ  are the same when 25n > .

Table 3 presents the results of three methods in the presence of 
leverage points for the data generated by case III of the simulation. 
Indeed, the performance of the WFTLE method is more efficient than 
others even when the sample size is { }25,50,75n = , as summarized in 
Table  3. When the sample size is 100,n ≥  both methods have 
approximately the same performance.

The market value of Iraq’s trade banks

To better demonstrate the robust performance of the WFTLE 
method compared to the FTLE and EM methods, we selected the 
market value data of Iraqi trade banks presented by Uraibi and Haraj 
(2022). From the original dataset, spanning 2011–2015, the Trading 
Rate and Earning Per Share (EPS) variables were selected out of nine 
financial ratios affecting market value. First, the regression model was 
fitted using the EM method, and the plotted residuals are shown in 
Figure 1.

It is clear that there is more than one pattern in the residuals, 
each potentially representing a random distribution. This 
indicates a heterogeneity problem, leading to a mixture in the 

random distribution of residuals. Figure 2 further illustrates that 
the normalized EPS and trading rate ratios contain outliers 
(leverage points), as some data points lie far from the main 
cluster, suggesting heterogeneity. The performance of the WFTLE 
method proved superior to both the EM and FTLE methods, as 
evidenced by the market value data from the Iraq stock market 
presented in Table 4. The mean squared errors (MSE) and mean 
absolute errors (MAE) for WFTLE were 0.053 and 0.865, 
respectively, both of which are lower than the MSE and MAE of 
the other methods.

Conclusion

The primary focus of this study is to improve the performance 
of the FTLE method in the presence of leverage points in mixture 
regression data. From the results presented in Tables 2–4, it can 
be concluded that the EM method is the most suitable choice 
where there are no outliers or leverage points. However, the EM 
method is highly susceptible to outliers and leverage points, as 
demonstrated by the variation in its results between Tables 2, 3. 
In contrast, the WFTLE method, especially for small sample sizes 
without trimming, demonstrates superior performance, even 
when outliers are present, as shown in Table 2. It also outperforms 
other methods when applied to real data. Trimming leverage 
points in small samples is not advisable, as it reduces the degrees 
of freedom, thereby increasing the value of MSE. Instead of 
discarding rows with leverage points by assigning zero weight, 
the WFTLE method assigns lower weights to those rows, 
preserving the degrees of freedom. This approach explains why 

TABLE 1 ( )ˆMse iθ , ( )ˆBias iθ , and ( )ˆMse iσ  for case I of the simulation study.

n Method ( )0̂Mse θ ( )1̂Mse θ ( )2̂Mse θ ( )ˆMse iσ

25 EM 0.64 (0.01) 0.71 (0.04) 0.5 (0.00) 0.07

FTLE 0.65 (0.09) 1.68 (0.42) 1.34 (0.33) 0.18

WFTLE 0.75 (0.05) 2.35 (0.59) 1.91 (0.43) 0.21

50 EM 0.24 (0.02) 0.18 (0.02) 0.23 (0.05) 0.02

FTLE 0.26 (0.02) 0.59 (0.1) 0.83 (0.27) 0.1

WFTLE 0.32 (0.09) 0.66 (0.11) 0.91 (0.31) 0.1

75 EM 0.09 (0.02) 0.13 (0.01) 0.13 (0.04) 0.01

FTLE 0.15 (0.03) 0.69 (0.17) 0.76 (0.14) 0.08

WFTLE 0.2 (0.09) 0.6 (0.13) 0.78 (0.17) 0.07

100 EM 0.06 (0.02) 0.08 (0.01) 0.05 (0.01) 0.01

FTLE 0.11 (0.02) 0.08 (0.01) 0.08 (0.03) 0.07

WFTLE 0.11 (0.06) 0.08 (0.02) 0.11 (0.05) 0.07

200 EM 0.03 (0.02) 0.04 (0.01) 0.03 (0.01) 0.00

FTLE 0.05 (0.04) 0.06 (0.04) 0.04 (0.00) 0.06

WFTLE 0.06 (0.12) 0.06 (0.05) 0.04 (0.00) 0.05

500 EM 0.01 (0.00) 0.01 (0.01) 0.01 (0.01) 0.00

FTLE 0.02 (0.01) 0.03 (0.04) 0.03 (0.07) 0.05

WFTLE 0.03 (0.07) 0.02 (0.03) 0.03 (0.07) 0.05
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the WFTLE method outperforms others in small sample sizes. 
Additionally, it is resistant to both outliers and leverage points, 
with both methods performing similarly in large sample sizes. 

The WFTLE method excels in small samples, though its 
performance may converge with FTLE when the number of 
observations reaches 100.

TABLE 2 ( )ˆMse iθ , ( )ˆBias iθ , and ( )ˆMse iσ  for case II of the simulation study.

n Method ( )0̂Mse θ ( )1̂Mse θ ( )2̂Mse θ ( )ˆMse iσ

25 EM 3.86 (0.88) 2.56 (0.36) 3.15 (0.30) 0.26

FTLE 1.03 (0.07) 2.32 (0.25) 2.03 (0.19) 0.1

WFTLE 0.6 (0.14) 1.86 (0.16) 1.29 (0.16) 0.12

50 EM 1.49 (0.68) 1.31 (0.16) 1.24 (0.05) 0.31

FTLE 0.46 (0.07) 0.37 (0.05) 0.39 (0.00) 0.04

WFTLE 0.37 (0.03) 0.37 (0.05) 0.38 (0.00) 0.04

75 EM 1.06 (0.69) 0.57 (0.03) 0.48 (0.02) 0.41

FTLE 0.21 (0.11) 0.23 (0.04) 0.17 (0.00) 0.03

WFTLE 0.2 (0.06) 0.23 (0.04) 0.17 (0.00) 0.03

100 EM 0.87 (0.71) 0.64 (0.13) 0.4 (0.09) 0.46

FTLE 0.13 (0.08) 0.09 (0.00) 0.11 (0.04) 0.02

WFTLE 0.12 (0.02) 0.08 (0.00) 0.10 (0.04) 0.02

200 EM 0.51 (0.59) 0.15 (0.00) 0.13 (0.01) 0.49

FTLE 0.05 (0.04) 0.05 (0.01) 0.05 (0.02) 0.01

WFTLE 0.05 (0.02) 0.05 (0.01) 0.05 (0.02) 0.01

500 EM 0.37 (0.56) 0.04 (0.02) 0.04 (0.01) 0.52

FTLE 0.02 (0.02) 0.02 (0.02) 0.02 (0.02) 0.01

WFTLE 0.02 (0.02) 0.02 (0.02) 0.02 (0.02) 0.01

TABLE 3 ( )ˆMse iθ , ( )ˆBias iθ , and ( )ˆMse iσ  for case III of the simulation study.

n Method ( )0̂Mse θ ( )1̂Mse θ ( )2̂Mse θ ( )ˆMse iσ

25 EM 11.1 (1.00) 8.28 (2.12) 7.35 (1.89) 1.29

FTLE 1.37 (0.18) 2.24 (0.23) 2.57 (0.26) 0.11

WFTLE 0.76 (0.21) 2.06 (0.13) 2.27 (0.20) 0.10

50 EM 11.47 (1.44) 7.04 (1.99) 7.13 (2.02) 2.23

FTLE 0.35 (0.09) 0.44 (0.08) 0.47 (0.11) 0.05

WFTLE 0.32 (0.02) 0.40 (0.06) 0.42 (0.11) 0.05

75 EM 12.13 (1.82) 6.07 ((2.06) 5.69 (1.97) 2.72

FTLE 0.18 (0.07) 0.22 (0.07) 0.17 (0.04) 0.03

WFTLE 0.15 (0.01) 0.20 (0.07) 0.16 (0.05) 0.03

100 EM 10.81 (1.75) 6.1 (2.06) 5.78 (1.96) 3.19

FTLE 0.11 (0.03) 0.1 (0.02) 0.1 (0.02) 0.02

WFTLE 0.11 (0.03) 0.1 (0.02) 0.1 (0.02) 0.02

200 EM 9.78 (1.93) 5.76 (2.15) 5.85 (2.15) 3.48

FTLE 0.05 (0.04) 0.05 (0.02) 0.05 (0.02) 0.01

WFTLE 0.04 (0.02) 0.05 (0.02) 0.05 (0.02) 0.01

500 EM 0.74 (0.64) 9.88 (2.69) 9.91 (2.97) 1.98

FTLE 0.02 (0.02) 0.02 (0.03) 0.02 (0.02) 0.01

WFTLE 0.02 (0.02) 0.02 (0.03) 0.02 (0.02) 0.01
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FIGURE 2

Scatter plot of trading rate and EPS.

TABLE 4 The mean squared of errors (MSE) and mean absolute errors 
(MAE) of market value data.

Method EM FTLE WFTLE

MSE 169.38 132.086 0.053

MAE 2.006 1.976 0.865

FIGURE 1

Residual plot of the regression model.
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