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Problems without initial conditions for evolution equations and variational inequalities appear in the modeling of different non-stationary processes within many fields of science, such as ecology, economics, physics, cybernetics, etc., if these processes started a long time ago and initial conditions do not affect them in the actual time moment. Thus, we can assume that the initial time is minus infinity. In the case of linear and weakly nonlinear evolution equations and variational inequalities, standard initial conditions should be replaced with the behavior of the solution as the time variable goes to minus infinity. However, for some strongly nonlinear evolution equations and variational inequalities, this problem has a unique solution in the class of functions without behavior restriction as the time variable goes to minus infinity. In this study, the correctness of the problem without initial conditions for such types of variational inequalities from a new class, or more precisely, for sub-differential inclusions with functionals, is investigated. Moreover, estimates of solutions are obtained. The results are new and mostly theoretical.
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1 Introduction

The aim of this study is to investigate problems without initial conditions for the evolution of functional-differential variational inequalities of a special form, so-called sub-differential inclusions with functionals. The partial case of this problem is a problem without initial conditions, or, in other words, the Fourier problem for integro-differential equations of the parabolic type.

Problem without initial conditions for evolution equations and variational inequalities (sub-differential inclusions) appear in the modeling of different non-stationary processes within many fields of science, such as ecology, economics, physics, cybernetics, etc., if these processes started a long time ago and initial conditions do not affect them in the actual time moment. Thus, we can assume that the initial time is minus infinity.

The research on the problem without initial conditions for the evolution equations and variational inequalities was conducted in the monographs [1–4], the papers [5–19], and others.

Note that the uniqueness of the solutions to the problem without initial conditions for linear and weak nonlinear evolution equations and variational inequalities is possible only under some restrictions on the behavior of solutions as the time variable changes to −∞. Moreover, in this case, to prove the existence of a solution, it is necessary to impose certain restrictions on the growth of the input data when the time variable goes to −∞. For the first time, it was strictly justified by Tychonoff [5] in the case of the heat equation. Later, similar results for various evolution equations and variational inequalities were obtained in monographs [1–4], papers [6–8, 12, 14, 16–19], and others.

However, as was shown by Bokalo [9], a problem without initial conditions for some strongly nonlinear parabolic equations has a unique solution in the class of functions without behavior restriction as the time variable changes to −∞. Furthermore, similar results were obtained in studies [10, 13, 15] (see also references therein) for strongly nonlinear evolution equations and in Bokalo [11] for evolution variational inequalities.

Note that the problem without initial conditions for weakly nonlinear functional-differential variational inequalities was investigated only in the study [17]. There, the existence and uniqueness of the solution to this problem were proved under certain restrictions on its behavior and the growth of the input data when the time variable is directed to −∞. As we know, the problem without initial conditions for strongly nonlinear functional-differential variational inequalities without restrictions on the behavior of the solution and the growth of the input data when the time variable is directed to −∞ has not been considered in the literature, and this serves as one of the motivations for the study of such problems.

The outline of this study is as follows: Section 2 comprises notations, definitions of needed function spaces, and auxiliary results. In Section 3, we set the problem statement and provide our key findings. The proof of the main results is kept in Section 4. Comments on the main results are given in Section 5. Section 6 provides conclusions.



2 Preliminaries

Let V be a separable reflexive real Banach space with norm ||·||, and H be a real Hilbert space with the scalar products (·, ·) and norms |·|, respectively. Suppose that V ⊂ H with dense, continuous, and compact injection, i.e., the closure of V in H coincides with H, and there exists a constant λ > 0 such that λ|v|2 ≤ ||v||2 for all v ∈ V, and for every sequence [image: image] bounded in V, there exists an element v ∈ V and a subsequence [image: image] such that [image: image] strongly in H.

Let V′ and H′ be the dual spaces of V and H, respectively. Suppose the space H′ (after appropriate identification of functionals) is a subspace of V′. Identifying the spaces H and H′ by the Riesz-Fréchet representation theorem, we obtain dense and continuous embeddings

[image: image]

Note that in this case 〈g, v〉 = (g, v) for every v ∈ V, g ∈ H ⊂ V′, where 〈g, v〉 is the means the action of an element g ∈ V′ on an element of v ∈ V, i.e., 〈·, ·〉 is canonical product for the duality pair [V′, V]. Therefore, we can use the notation (·, ·) instead of 〈·, ·〉, and we will do it in the future.

Let T > 0 be an arbitrary fixed real number, and let S: = (−∞, T], and intS: = (−∞, T).

We introduce some spaces for functions and distributions. Let X be an arbitrary Banach space with the norm ||·||X. By C(S; X) we mean the linear space of continuous functions defined on S with values in X. We say that [image: image] in C(S; X) if for each t1, t2 ∈ S, t1 < t2, sequence [image: image] converges to w|[t1, t2] in C([t1, t2];X) (hereafter [image: image] is restriction of a function [image: image] to segment [t1, t2] ⊂ S).

Let r ∈ [1, ∞], r′ is dual to r, i.e., 1/r + 1/r′ = 1. Denote by [image: image] the linear space of classes of equivalent measurable functions w: S → X such that [image: image] for each t1, t2 ∈ S, t1 < t2. We say that a sequence {wm} is bounded (strongly, weakly, or *-weakly convergent, respectively, to w) in [image: image] if, for each t1, t2 ∈ S, t1 < t2, the sequence {wm|[t1, t2]} is bounded (strongly, weakly, or *-weakly convergent, respectively, to w|[t1, t2]) in [image: image]

By [image: image], we mean the space of continuous linear functionals on D(intS) with values in [image: image] (hereafter, D(intS) is the space of test functions, i.e., the space of infinitely differentiable on intS functions with compact supports, equipped with the corresponding topology, and [image: image] is the linear space V′ equipped with weak topology). It is easy to see (using (1)) that spaces [image: image], [image: image], and [image: image] can be identified with the corresponding subspaces of [image: image] by rule [image: image], where 〈·, ·〉D is the means the action of an element of [image: image] on an element of D(intS), f is an element of one of spaces [image: image], [image: image], [image: image]. In particular, this allows us to talk about derivatives w′ of functions w from [image: image] or [image: image] in the perception of distributions [image: image] and the belonging of such derivatives to [image: image] or [image: image].

Let us define the spaces

[image: image]

[image: image]

From known results [see, e.g., Gajewski et al. [20]] it follows that [image: image] and [image: image], and for every w in [image: image] or [image: image] the function t → |w(t)|2 is continuous on any segment of the interval S, and the following equality holds:

[image: image]

In this study, we use the following well-known facts:

PROPOSITION 2.1 [Corollaries from Young's inequality, Gajewski et al. [20]]. Let r > 1, ε > 0 be arbitrary, and r′ such that 1/r + 1/r′ = 1. Then, for all a, b ∈ ℝ, following inequality holds:

[image: image]

In particular,

[image: image]

Proof. Inequality (3) is a corollary from standard Young's inequality: a b ≤ |a|r/r + |b|r′/r′, if we note that r > 1 and r′ > 1. Inequality (4) we get from inequality (3) with r = 2.     □

PROPOSITION 2.2 [Cauchy-Bunyakovsky-Schwarz inequality, Gajewski et al. [20]]. Let t1, t2 ∈ ℝ, and t1 < t2. Then, for [image: image], we have [image: image] and

[image: image]

PROPOSITION 2.3 [Hölder's inequality, Gajewski et al. [20]]. Let r ∈ [1, ∞], r′ be a conjugated to r (i.e., 1/r + 1/r′ = 1), t1, t2 ∈ ℝ, t1 < t2. Suppose that X is a Banach space and X′ is a dual of X, 〈·, ·〉X is the action of an element of X′ on an element of X. Then, for [image: image] and [image: image], we have [image: image] and

[image: image]

PROPOSITION 2.4 [Lemma 1.1 [9]]. Let z: S → ℝ be a nonnegative and absolutely continuous on each interval of S function that satisfies differential inequality

[image: image]

where [image: image], β(t) ≥ 0 for a.e. t ∈ S, [image: image]; χ ∈ C([0, +∞)), χ(0) = 0, χ(s) > 0 if s > 0 and [image: image]. Then z ≡ 0 on S.

PROPOSITION 2.5 [25]. Let Y be a Banach space with the norm ||·||Y, and [image: image] be a sequence of elements of Y that is weakly or *-weakly convergent to v in Y. Then [image: image] ||vk||Y ≥ ||v||Y.

PROPOSITION 2.6 [Aubin theorem, Aubin [21]]. Let r > 1 and q > 1 be given numbers. Suppose that B0, B1, and B2 are Banach spaces such that [image: image] (symbol ⊂ means continuous embedding and symbol ⊂c means compact embedding). Then

[image: image]

Note that we understand embedding (5) as follows: if a sequence [image: image] is bounded in the space [image: image], and the sequence [image: image] is bounded in the space [image: image], then there exists a function [image: image] and the subsequence [image: image] of the sequence [image: image] such that [image: image] in C([0, T];B2) and strongly in [image: image].

PROPOSITION 2.7. Let a sequence [image: image] be bounded in the space [image: image], where r > 1, and the sequence [image: image] be bounded in the space [image: image]. Then there exists a function [image: image], [image: image], and a subsequence [image: image] of the sequence [image: image] such that [image: image] in C(S; H) and weakly in [image: image], and [image: image] weakly in [image: image].

Proof. From Proposition 2.6 for q = 2, B0 = V, B1 = B2 = H, we have that, for every t1, t2 ∈ S, t1 < t2, from the sequence of restrictions of the elements [image: image] to the segment [t1, t2], one can choose a subsequence that is convergent in C([t1, t2];H) and weakly in [image: image], and the sequence of derivatives of the elements of this subsequence is weakly convergent in [image: image]. For each k ∈ ℕ, we choose a subsequence [image: image] of the given sequence that is convergent in C([T − k, T];H) and weakly in Lr(T − k, T; V) to some function [image: image] and the sequence [image: image] is weakly convergent to the derivative [image: image] in L2(T − k, T; H). Making this choice, we ensure that the sequence [image: image] was a subsequence of the sequence [image: image]. Now, according to the diagonal process, we select the desired subsequence as [image: image] and we define the function w as follows: for each k ∈ ℕ, we take [image: image] for t ∈ (T − k, T − k + 1).



3 Statement of the problem and formulation of main results

Let Φ:V → ℝ∞: = (−∞, +∞) be a proper functional, i.e., dom(Φ): = {v ∈ V:Φ(v) < +∞} ≠ ∅, which satisfies the conditions:

[image: image] Φ(αv + (1 − α)w) ≤ αΦ(v) + (1 − α)Φ(w) ∀v, w ∈ V, ∀α ∈ [0, 1],

i.e., the functional Φ is convex;

[image: image] [image: image]

i.e., the functional Φ is lower semicontinuous;

[image: image] there exist the constants p > 2 and K1 > 0 such that

[image: image]

moreover, Φ(0) = 0.

Recall [see, e.g., Showalter [4]] that for a functional Φ satisfying the conditions [image: image] and [image: image] its sub-differential is a mapping ∂Φ:V → 2V′, defined as follows:

[image: image]

and the domain of the sub-differential ∂Φ is the set D(∂Φ): = {v ∈ V|∂Φ(v) ≠ ∅}. We identify the subdifferential ∂Φ with its graph, assuming that [v, v*] ∈ ∂Φ if and only if v* ∈ ∂Φ(v), i.e., ∂Φ = {[v, v*] | v ∈ D(∂Φ), v* ∈ ∂Φ(v)}. R. Rockafellar in study [22, Theorem A] proves that the sub-differential ∂Φ is a maximal monotone operator, i.e.,

[image: image]

and for every element [image: image] we have the implication

[image: image]

Suppose that the following condition holds:

[image: image] there exist the constants q > 2 and K2 > 0, K3 > 0 such that

[image: image]

Assume that B(t, ·):H → H, t ∈ S, is a given family of operators that satisfy the condition:

[image: image] for any v ∈ H the mapping B(·, v):S → H is measurable, and there exists a constant L ≥ 0 such that following inequality holds:

[image: image]

for a.e. t ∈ S, and all v1, v2 ∈ H; in addition, B(t, 0) = 0 for a.e. t ∈ S.

Remark 3.1. From the condition ([image: image]) it follows that

[image: image]

for a.e. t ∈ S and for all v ∈ H.

Next, we will assume that the conditions [image: image]—[image: image] and ([image: image]) are fulfilled, and p′ and q′ are such that 1/p + 1/p′ = 1, 1/q + 1/q′ = 1.

Let us consider the evolution variational inequality, or, in other words, subdifferential inclusion

[image: image]

where [image: image] is given function.

Definition 3.1. The solution of variational inequality (7) is called a function u: S → V that satisfies the following conditions:

1) [image: image];

2) u(t) ∈ D(∂Φ) for a.e. t ∈ S;

3) there exists a function [image: image] such that, for a.e. t ∈ S, g(t) ∈ ∂Φ(u(t)) and

[image: image]

The problem of finding a solution to variational inequality (7) for given Φ, B, and f is called the problem P(Φ, B, f), and the function u is called its solution.

We consider the existence and uniqueness of the solution to the problem P(Φ, B, f). The main results of this study are the following two theorems:

THEOREM 3.1. Suppose that

[image: image]

Then the problem P(Φ, B, f) has at most one solution.

THEOREM 3.2. Let inequality (8) hold, and let [image: image]. Then the problem P(Φ, B, f) has a unique solution. In addition, this solution belongs to the space [image: image], and for arbitrary t1, t2 ∈ S, t1 < t2, δ > 0 satisfies the estimates:

[image: image]

[image: image]

where C1, C2 are positive constants depending on K1, K2, K3, and q only.

Remark 3.2. If Φ is such that dom(Φ): = V and ∂Φ(v) = {A(v)}, v ∈ V, where A: V → V′ is some operator, then variational inequality (7) will be functional-differential equation

[image: image]

Note that condition [image: image] implies the coercivity of operator A, i.e.,

[image: image]

In addition, from condition [image: image] follows the strong monotonicity of the operator A, i.e.,

[image: image]



4 Proof of the main results

Proof. [Proof of the Theorem 3.1] Assume the contrary. Let u1 and u2 be two solutions to the problem P(Φ, B, f). Then for every i ∈ {1, 2} there exists function [image: image] such that, for a.e. t ∈ S, gi(t) ∈ ∂Φ(ui(t)) and

[image: image]

We put w: = u1 − u2. From equalities (12), for a.e. t ∈ S, we obtain

[image: image]

Multiplying equality (13) scalar by w(t), for a.e. t ∈ S, we obtain

[image: image]

By condition [image: image] and the fact that gi(t) ∈ ∂Φ(ui(t)), i = 1, 2, we have the inequality

[image: image]

By condition [image: image] for a.e. t ∈ S, we obtain

[image: image]

By Equations (2), (8), (15), and (16), from Equation (14) we get such differential inequality

[image: image]

From Equation (17), taking into account the condition q/2 > 1 and using Proposition 2.4 with [image: image] for all t ∈ S, and χ(s): = sq/2 for all s ∈ [0, +∞), we receive |w(t)|2 = 0 for all t ∈ S, i.e., u1 = u2 a.e. on S. The resulting contradiction completes the proof of the uniqueness of the solution to the problem P(Φ, B, f).

Proof. [Proof of the Theorem 3.2] We divide the proof into seven steps.

Step 1 (auxiliary statements). We define the functional ΦH:H → ℝ∞ by the rule: ΦH(v): = Φ(v) if v ∈ V, and ΦH(v): = +∞ otherwise. Note that conditions [image: image], [image: image], Lemma IV.5.2, and Proposition IV.5.2 of the monograph [4] imply that ΦH is a proper, convex, and lower semicontinuous functional on H, dom(ΦH) = dom(Φ) ⊂ V and ∂ΦH = ∂Φ ∩ (V × H), where [image: image] is the sub-differential of the functional ΦH. In addition, the condition [image: image] implies that 0 ∈ ∂ΦH(0).

The following statements will be used in the sequel:

LEMMA 4.1 [[4, Lemma IV.4.3]]. Let −∞ < a < b < +∞, and w ∈ H1(a, b; H), g ∈ L2(a, b; H) such that g(t) ∈ ∂ΦH(w(t)) for a.e. t ∈ (a, b). Then the function ΦH(w(·)) is absolutely continuous on the interval [a, b] and for any function h:[a, b] → H such that, for a.e. t ∈ (a, b), h(t) ∈ ∂ΦH(w(t)), and the following equality holds:

[image: image]

LEMMA 4.2 ([23, Proposition 3.12], [4, Proposition IV.5.2]). Let [image: image] and w0 ∈ dom(Φ). Then there exists a unique function w ∈ C([0, T];H) ∩ H1(0, T; H) such that w(0) = w0 and, for a.e., t ∈ (0, T], w(t) ∈ D(∂ΦH) and

[image: image]

LEMMA 4.3. Let [image: image] and w0 ∈ dom(Φ). Then there exists a unique function w ∈ C([0, T];H) ∩ H1(0, T; H) such that w(0) = w0 and, for a.e. t ∈ (0, T], w(t) ∈ D(∂ΦH) and

[image: image]

i.e., there exists [image: image] such that, for a.e. t ∈ (0, T], we have [image: image] and

[image: image]

Proof. [Proof of Lemma 4.3] Let α > 0 be an arbitrary fixed number, and set

[image: image]

Consider M with the metric

[image: image]

The metric space (M, ρ) is complete. Now let us consider an operator A: M → M defined as follows: for any given function [image: image], it defines a function [image: image] such that, for a.e. t ∈ (0, T], [image: image] and

[image: image]

Clearly, variational inequality (21) coincides with variational inequality (18) after replacing [image: image] by [image: image], and w(0) = w0 by [image: image]. Thus, using Lemma 4.2, we get that operator A is well-defined. Let us demonstrate that the operator A is a contraction for some α > 0. Indeed, let [image: image] be arbitrary functions from M, and [image: image], [image: image]. According to Equation (21) there exist functions [image: image] and [image: image] from L2(0, T; H) such that for every j ∈ {1, 2} and for a.e. t ∈ (0, T] we have [image: image] and

[image: image]

while [image: image].

Subtracting identity (22) for j = 2 from identity (22) for j = 1, and, for a.e. t ∈ (0, T], multiplying the obtained identity by [image: image], we get

[image: image]

for a.e.

[image: image]

[image: image]

We integrate equality (23) by t from 0 to σ ∈ (0, T], taking into account (24) and that [see Equation (2)] for a.e. t ∈ (0, T]. The following holds:

[image: image]

As a result, we get the equality

[image: image]

By condition [image: image], for a.e. t ∈ (0, T], we have the inequality

[image: image]

Taking into account condition [image: image] and inequality (4) for a.e. t ∈ (0, T], we obtain

[image: image]

where ε > 0 is an arbitrary.

From Equation (25), according to Equations (26) and (27), we have

[image: image]

Choosing ε = K2, from Equation (28) we obtain

[image: image]

where [image: image].

After multiplying inequality (30) by e−2ασ, we obtain

[image: image]

From Equation (30), it easily follows that

[image: image]

From this, choosing α > 0 such that inequality C3/(2α) < 1 holds, we obtain that operator A: M → M is a contraction. Hence, we may apply the Banach fixed-point theorem [24, Theorem 5.7] and deduce that there exists a unique function w ∈ M ∩ H1(0, T; H) such that Aw = w, i.e., we have proved over the statement, i.e., Lemma 4.3.

Step 2 (solution approximations). Let us consider the next problem: to find a function [image: image] such that, for a.e., t ∈ S, u(t) ∈ D(∂ΦH) and

[image: image]

We call this problem the problem P(ΦH, B, f). The solution of the problem P(ΦH, B, f) is the solution of the problem P(Φ, B, f). We prove the existence of a solution to the problem P(ΦH, B, f).

At first, we construct a sequence of functions, that, in some perception, approximates the solution of the problem P(ΦH, B, f). For each k ∈ ℕ we put [image: image] for t ∈ Sk: = (T − k, T] and let us consider the problem of finding a function [image: image] such that [image: image] and, for a.e. t ∈ Sk, we have [image: image] and

[image: image]

The existence of a unique solution to problem (32) implies Lemma 4.3. Note that sub-differential inclusion in (32) means that there exists a function [image: image] such that, for a.e., t ∈ Sk, we have [image: image] and

[image: image]

Note that D(∂ΦH) ⊂ dom(ΦH) = dom(Φ) ⊂ V, and thus [image: image] for a.e. t ∈ Sk. According to the definition of the subdifferential of a functional and the fact that [image: image], we have

[image: image]

From this and condition [image: image] we obtain

[image: image]

Since the left side of this chain of inequalities belongs to [image: image], then [image: image] belongs to [image: image].

For each k ∈ ℕ, we extend functions [image: image], and [image: image] by zero for the entire interval S and denote these extensions by fk, uk, and gk, respectively. From the above, it follows that, for each k ∈ ℕ, the function uk belongs to Lp(S; V), its derivative [image: image] belongs to L2(S; H), and, for a.e. t ∈ S, gk(t) ∈ ∂ΦH(uk(t)) and [see Equation (33)],

[image: image]

Step 3 (estimates of solution approximations). To demonstrate the convergence [image: image] to the solution of the problem P(ΦH, B, f), we need some estimates of the functions uk, k ∈ ℕ.

Let the function [image: image] such that θ*(t) = 0 if t ∈ (−∞, −1], [image: image] if t ∈ (−1, 0), θ*(t) = 1 if t ∈ [0, +∞) [see Bokalo [9]]. Obviously, [image: image] for arbitrary t ∈ ℝ, and for any 0 < ν < 1, we have

[image: image]

where C4 > 0 is a constant depending on ν only.

Let t1, t2, and δ be arbitrary real fixed numbers such that t1, t2 ∈ S, t1 < t2, δ > 0. We put

[image: image]

It is clear that θ(t) = 0 if t ∈ (−∞, t1 − δ], 0 < θ(t) < 1 if t ∈ (t1 − δ, t1), θ(t) = 1 if t ∈ [t1, +∞), and [image: image] for every t ∈ ℝ.

Let k ∈ ℕ. Obviously, [image: image]. For each t ∈ S, multiply the identity (35) scalar by θ(t)uk(t) and integrate from t1 − δ to τ ∈ [t1, t2]. As a result, we obtain

[image: image]

From this, taking into account (2) and using the integration-by-parts formula, we transform the first term on the left side of the equality (38) as follows:

[image: image]

Then from Equation (38), using Equation (39), we receive

[image: image]

Since (0, 0) ∈ ∂ΦH and (gk(t), uk(t)) ∈ ∂ΦH for a.e. t ∈ S, from condition [image: image] we get

[image: image]

According to the definition of uk and gk and using the inequality (34), we obtain

[image: image]

Let us estimate the second term on the left-hand side of equality (40), using inequalities (41) and (42), in this way:

[image: image]

where σ ∈ (0, 1) is arbitrary.

Using the inequality (34) (with r = q/2, r′ = q/(q − 2)), we estimate the first term on the right-hand side of Equation (40) as follows:

[image: image]

where ε1 > 0 is an arbitrary number.

Based on Equation (36), it is easy to demonstrate that

[image: image]

where C4 is constant from Equation (36) with ν = 2/q (note that C4 depends on q only).

So from Equation (44) using Equation (45), we obtained

[image: image]

where [image: image] depends on q only.

Let us estimate the second term on the right-hand side of equality (40). Using (6), we receive

[image: image]

Let us estimate the third term on the right-hand side of equality (40), using inequality (4):

[image: image]

where ε2 > 0 is an arbitrary constant.

From Equation (40), using Equations (43), and (46)–(48), we receive

[image: image]

In Equation (49), using condition (8), we choose σ ∈ (0, 1) such that the inequality σK2 − L > 0 holds, and then we take ε1 = σK3, ε2 = (σK2 − L)/2. As a result, we get

[image: image]

where C6, C7 are positive constants dependent on K1, K2, K3, L, and q only.

Since τ ∈ [t1, t2] is arbitrary, from Equation (50) and the definition of θ, we obtain

[image: image]

From Equation (50) and the definition of fk, since t1, t2 ∈ S and δ > 0 are all arbitrary, it follows that

[image: image]

[image: image]

Step 4 (estimates of derivatives of solution approximations). Now let us find estimates of [image: image], k ∈ ℕ. Let t1, t2, and δ be arbitrary real numbers such that t1, t2 ∈ S, t1 < t2, and δ > 0. θ is a function defined above. We multiply equality (35) for almost every t ∈ S scalar by [image: image] and integrate the resulting equality from t1 − δ to τ ∈ [t1, t2]:

[image: image]

Since [image: image] and gk(t) ∈ ∂ΦH(uk(t)) for a. e. t ∈ (t1 − δ, t2), Lemma 4.1 implies that the function ΦH(uk(·)) is continuous on [t1 − δ, t2] and

[image: image]

Taking into account Equation (55), we can estimate the second term on the left side of Equation (54) as follows:

[image: image]

By inequality (4) with ε = 4, taking into Equation (6), we receive

[image: image]

[image: image]

From Equation (54), using Equations (56)–(58) and

[image: image]

we have

[image: image]

Since τ ∈ [t1, t2] is arbitrary, from Equation (59) by the definition of ΦH and condition [image: image] (remind that uk(t) ∈ V for a.e. t ∈ S), we have

[image: image]

where C9 > 0 is a positive constant dependent on K1 and L only.

From Equation (60), taking into account (51), we obtain

[image: image]

where C10 > 0 is a positive constant dependent on K1, K2, K3, L, and q only.

From the estimate (4) and the definition of fk, since t1, t2 ∈ S and δ > 0 are arbitrary, it implies that

[image: image]

[image: image]

From Equations (6) and (51) we have

[image: image]

where C11, C12 are positive constants independent on k ∈ ℕ.

From Equations (35), (63), and (64) and the definition of fk, we get that

[image: image]

Step 5 (passing the limit). Since V is reflexive Banach space, H is Hilbert space, and V embeds in H by compact injection, from Equations (52), (62), (63), (65), and Proposition 2.7, we have the existence of functions [image: image], [image: image], and a subsequence of the sequence [image: image] (until denoted by [image: image]) such that

[image: image]

[image: image]

[image: image]

[image: image]

From Equation (68) and condition [image: image], for each t0 < T, we have

[image: image]

Thus, we obtain

[image: image]

Let v ∈ H, φ ∈ C(S) be arbitrary while suppφ is compact. For a.e. t ∈ S, we multiply equality (35) by v and φ(t), and then integrate in t on S. As a result, we obtain equality

[image: image]

We pass to the limit in Equation (71) as k → ∞, taking into account (67), (69), (70), and the convergence of [image: image] to f in [image: image]. As a result, since v, φ are arbitrary, for a.e. t ∈ S, we obtain the equality

[image: image]

Step 6 (proof that u(t) ∈ D(∂ΦH) and g(t) ∈ ∂ΦH(u(t)) for a. e. t ∈ S). Let k ∈ ℕ be an arbitrary number. Since uk(t) ∈ D(∂ΦH) and gk(t) ∈ ∂ΦH(uk(t)) for a.e. t ∈ S, applying the monotonicity of the sub-differential ∂ΦH, we obtain that for a.e. t ∈ S the following inequality holds:

[image: image]

Let τ ∈ S and h > 0 be arbitrary numbers. We integrate (72) in t from τ−h to τ:

[image: image]

Now we pass to the limit in Equation (73) as k → ∞, according to Equations (68) and (69). As a result, we obtain

[image: image]

The monograph [25, Theorem 2] and Equation (74) imply that for every [image: image] there exists a set of measure zero R[v,v*] ⊂ S such that for all [image: image] we have u(τ) ∈ V, g(τ) ∈ H

[image: image]

Let us demonstrate that there exists a set of measure zero R ⊂ S such that

[image: image]

Since V and H are separable spaces, there exists a countable set F⊂∂ΦH, which is dense in ∂ΦH. Denote [image: image]. Since the set F is countable and any countable union of sets of measure zero is a set of measure zero, then R is a set of measure zero.

Therefore, for any τ ∈ S\R inequality (76) holds for every [v, v*] ∈ F. Let [image: image] be an arbitrary element from ∂ΦH. Then from the density F in ∂ΦH we have the existence of a sequence [image: image] such that vl → v in V, [image: image] in H, and for every τ ∈ S\R

[image: image]

Thus, passing to the limit in inequality (77) as l → ∞, we obtain (g(τ)−v*, u(τ)−v) ≥ 0 for every τ ∈ S\R. Hence, we have Equation (76), i.e., for a.e. t ∈ S, the following holds:

[image: image]

From this, according to the maximal monotonicity of ∂ΦH, we obtain that [u(t), g(t)] ∈ ∂ΦH for a.e. t ∈ S, i.e., u(t) ∈ D(∂ΦH) and g(t) ∈ ∂ΦH(u(t)) for a.e. t ∈ S. Thus, function u is the solution of the problem P(Φ, B, f), and therefore P(ΦH, B, f).

Step 7 (completion of proof). Estimates (9) and (10) of the solution of the problem P(Φ, B, f) follow directly from estimates (51) (given that [image: image]) and (4), convergence (66)–(68) and Proposition 2.5.     □



5 Comments on the main results

Let us introduce an example of the problem that is studied here. Let n ∈ ℕ, Ω be a bounded domain in ℝn, ∂Ω be the boundary of Ω, and ∂Ω be the piecewise surface. We put Q: = Ω × S, Σ: = ∂Ω × S, and Ωt: = Ω × {t} ∀t ∈ S. For an arbitrary measurable set F⊂ℝk, where k = n or k = n + 1, and r ∈ [1, ∞], let Lr(F) be the standard Lebesgue space with norm [image: image]. Let [image: image] be the linear space of classes of equivalent functions defined on Q such that their restrictions on any bounded measurable set Q′⊂Q belong to Lr(Q′). For r ∈ (1, ∞), we denote by [image: image] the standard Sobolev space with norm [image: image], where ∇u: = (ux1, …, uxn) [see, e.g., Brezis [24]].

Let p > 2 and K be a nonempty convex closed set in W1, p(Ω), which contains 0. We consider the problem: find a function [image: image] such that [image: image], [image: image], [image: image], and, for a.e. t ∈ S, we have u(·, t) ∈ K and

[image: image]

where [image: image] a ∈ L∞(Ω), and S ∋ t → b(·, ·, t) ∈ L2(Ω × Ω) are given.

This problem is called problem (78), and a function u is its solution.

Note that in cases K = W1, p(Ω), this problem is equivalent to the problem of finding a weak solution to a problem without initial conditions for a nonlinear integro-differential parabolic equation:

[image: image]

We remark that problem (78) can be written more abstractly. Indeed, after appropriate identification of functions and functionals, we have continuous and dense embedding

[image: image]

where (W1, p(Ω))′ is dual to W1, p(Ω) space. Clearly, for any h ∈ L2(Ω) and v ∈ W1, p(Ω), we have 〈h, v〉 = (h, v), where 〈·, ·〉 is the notation for action of element of (W1, p(Ω))′ on element of W1, p(Ω), and (·, ·) is a scalar product in L2(Ω). Thus, we can use the notation (·, ·) instead of 〈·, ·〉.

Now, we denote V: = W1, p(Ω), H: = L2(Ω) and define operators A: V → V′ and B(t, ·):H → H, t ∈ S, as follows:

[image: image]

[image: image]

Then problem (78) can be rewritten as follows: find a function [image: image] such that [image: image] and, for a.e. t ∈ S, we have u(t) ∈ K and

[image: image]

where [image: image] is given function.

We remark that, for a.e. t ∈ S, variational inequality (81) can be written as

[image: image]

where

[image: image]

We can write inequality (82) as follows:

[image: image]

The functional IK from V to ℝ∞ is proper, convex and lower semicontinuous. By the definition of the subdifferential [image: image] inequality (84) is equivalent to inclusion

[image: image]

i.e.,

[image: image]

We define

[image: image]

and

[image: image]

The functionals Ψ and Φ from V to ℝ∞ are proper, convex and lower semicontinuous. As easy to demonstrate, we have ∂Ψ(v) = {A(v)}⊂V′ for each v ∈ V, and

[image: image]

From the above [see, in particular, Equations (85) and (88)], it follows that the problem (79) can be written as such a sub-differential inclusion: find a function [image: image] such that [image: image] and, for a.e. t ∈ S, u(t) ∈ D(∂Φ) and

[image: image]

So problem (78) is a partial case of the problem P(Φ, B, f). Based on this, let's illustrate the main results of this study (see Theorems 1, 2).

COROLLARY 5.1. Let the following condition hold:

[image: image]

Then problem (78) has a unique solution. In addition, it belongs to the space [image: image] and for arbitrary t1, t2 ∈ S, t1 < t2, δ > 0 satisfies the estimates:

[image: image]

[image: image]

[image: image]

where C15, C16 are positive constants depending on [image: image], ess infx ∈ Ωa(x), and p only.

Proof. [Proof of Corollary 5.1] We need to demonstrate that functional Φ, defined in Equations (83)—(87), and family of operators B(t, ·), t ∈ S, defined in Equation 80, satisfy the conditions of Theorems 1, 2.

Writing the functional Ψ defined in Equation (86) in the form

[image: image]

we obtain that the functional Ψ is proper and dom(Ψ) = W1, p(Ω).

Note that for arbitrary r ≥ 2, function [image: image], ξ ∈ ℝn, is convex. Indeed, for all α ∈ [0, 1], we have

[image: image]

Here we used the convex function [image: image], s ∈ [0, +∞), since [image: image] for all s ∈ (0, +∞).

From Equation (95), with r = p and r = 2, it is easy to see that functional Ψ is convex, hence functional Φ satisfies the condition ([image: image]).

Let [image: image] in W1, p(Ω). Then [image: image] and [image: image] in L2(Ω). From this, it follows:

[image: image]

[image: image]

From Equations (94), (96), and (97), it follows that the functional Ψ is lower semicontinuous, hence functional Φ satisfies the condition ([image: image]).

Since a > 0 a.e. on Ω, then [see Equation (94)]

[image: image]

Hence, given that IK(v) ≥ 0, v ∈ V, condition ([image: image]) holds with [image: image].

It is easy to show that

[image: image]

where A(·) is defined in Equation (79).

Then for any [image: image] we have

[image: image]

[image: image]

Since the function [image: image], ξ ∈ ℝn, is convex, from the convexity criterion we have

[image: image]

Since [image: image] then from Equation (99) it follows:

[image: image]

By Bokalo [9], for arbitrary s1, s2 ∈ ℝ, the inequality

[image: image]

holds. Hence, for all v1, v2 ∈ Lp(Ω), we have

[image: image]

Using Hölder's inequality (see Proposition 2.3) with r = p/2, we have this chain of inequalities:

[image: image]

From this, we obtain

[image: image]

From Equations (101), (102) it follows:

[image: image]

Also, we have

[image: image]

Hence, from Equation (98), using Equations (100), (103), and (104), we have

[image: image]

where K2: = ess infΩa, [image: image]

From Equation (94) and the monotonicity of IK(·) it follows condition ([image: image]) with q = p.

Let us prove that condition ([image: image]) holds. Since Equation (80), we have for almost all t ∈ S and for all [image: image]:

[image: image]

where [image: image], i.e., condition ([image: image]) holds.

From the above, it follows that in this case, condition (8) has form (90). Estimates (91) and (93) are derived directly from estimates (9) and (10).



6 Conclusion

We investigated the problem without initial conditions for some strictly nonlinear functional-differential variational inequalities in the form of sub-differential inclusions with functionals. The conditions for the existence of a unique solution to this problem in the absence of restrictions on the solution's behavior and the growth of input data when the time variable is directed to −∞ have been obtained. There are also estimates of the solution to the researched problem provided.

The results obtained here can be used to study mathematical models in many fields of science, such as ecology, economics, physics, cybernetics, etc.

In the future, it would be worthwhile to obtain similar results for functional-differential variational inequalities that do not have the form of subdifferential inclusions with functionals.
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