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We investigate the qualitative properties of weak solutions to the boundary value

problems for fourth-order linear hyperbolic equations with constant coe�cients

in a plane bounded domain convex with respect to characteristics. Our main

scope is to prove some analog of the maximum principle, solvability, uniqueness

and regularity results for weak solutions of initial and boundary value problems

in the space L2. The main novelty of this paper is to establish some analog of

the maximum principle for fourth-order hyperbolic equations. This question is

very important due to natural physical interpretation and helps to establish the

qualitative properties for solutions (uniqueness and existence results for weak

solutions). The challenge to prove the maximum principle for weak solutions

remains more complicated and at that time becomes more interesting in the

case of fourth-order hyperbolic equations, especially, in the case of non-classical

boundary value problems with data of weak regularity. Unlike second-order

equations, qualitative analysis of solutions to fourth-order equations is not

a trivial problem, since not only a solution is involved in boundary or initial

conditions, but also its high- order derivatives. Other di�culty concerns the

concept of weak solution of the boundary value problems with L2 – data. Such

solutions do not have usual traces, thus, we have to use a special notion for traces

to poss correctly the boundary value problems. This notion is traces associated

with operator L or L-traces. We also derive an interesting interpretation (as

periodicity of characteristic billiard or the John’s mapping) of the Fredholm’s

property violation. Finally, we discuss some potential challenges in applying the

results and proposed methods.

KEYWORDS

Cauchy problem, Goursat problem, Dirichlet problem, maximum principle, hyperbolic

fourth-order PDEs, weak solutions, duality equation-domain, L-traces

1 Introduction

This study is devoted to the problem of proving some analog of maximum principle

and its further application to the questions of uniqueness, existence, and regularity for weak

solutions of the Goursat, the Cauchy, and the Dirichlet problems for fourth-order linear

hyperbolic equations with the constant coefficients and homogeneous non-degenerate

symbol in a plane bounded domain� ∈ R2 convex with respect to characteristics:

L(Dx)u = a0
∂4u

∂x41
+ a1

∂4u

∂x31∂x2
+ a2

∂4u

∂x21∂x
2
2

+ a3
∂4u

∂x1∂x
3
2

+ a4
∂4u

∂x42
= f (x). (1)

Here, coefficients aj, j = 0, 1, ..., 4 are constant, f (x) ∈ L2(�), ∂x =
(
∂
∂x1

, ∂
∂x2

)
. We

consider hyperbolic equations that means all roots of the characteristic equation

L(1, λ) = a0λ
4 + a1λ

3 + a2λ
2 + a3λ+ a4 = 0
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are prime and real and are not equal to ±i or the symbol of

Equation 1 is non-degenerate (Equation 1 is a equation of principal

type). If roots of characteristics equation of which are multiple and

can take the values ±i we will call the equation with degenerate

symbol (see Buryachenko [7]).

The main novelty of this study is to establish some analog of

themaximumprinciple for fourth-order hyperbolic equations. This

question is very important due to natural physical interpretation

and helps to establish the qualitative properties for solutions

(uniqueness and existence results for weak solutions). It is well

known that even for the simple case of hyperbolic equation (one

dimensional wave equation [23]), [1] the maximum principle is

quite different from those for elliptic and parabolic cases, for which

it is a natural fact. Such a way a role of characteristics curves and

surfaces becomes evident for hyperbolic equations.

We call the angle of characteristics slope solution to the

equation − tanϕj = λj, and the angle between j− and k−

characteristics: ϕk − ϕj 6= π l, l ∈ Z, where λj 6= ±i are real and

prime roots of the characteristics equation, j, k = 1, 2, 3, 4.

Most of these equations serve as mathematical models of many

physical processes and attract interest of researchers. The most

famous of them are elasticity beam equations (Timoshenko beam

equations with and without internal damping) [9], short laser pulse

equation [12], equations which describe the structures are subjected

to moving loads, and equation of Euler-Bernoulli beam resting on

two-parameter Pasternak foundation and subjected to a moving

load or mass [11, 24].

Due to evident practice application, these models require

more precise tools for study, and as a result, attract fundamental

knowledge. As usual, most of these models are studied by

analytical-numerical methods (Galerkin’s methods).

The range of problems studied in this study belongs to a class

of quite actual problems of well-posedness of so-called general

boundary value problems for higher-order differential equations.

These problems originated from the studies of L. Hormander

and M. Vishik, who used the theory of extensions to prove

the existence of well-posed boundary value problems for linear

differential equations of arbitrary order with constant complex

coefficients in a bounded domain with smooth boundary. This

theory got its present-day development in the studies of G. Grubb

[13], Hörmander [14], and Posilicano [22] (see also [16]). Later,

the problem of well-posedness of boundary value problems for

various types of second-order differential equations was studied by

Burskii [2], Burskii and Zhedanov [3], who developed a method

of traces associated with a differential operator and applied this

method for study the Poncelet, the Abel, and the Goursat problems.

In the previous studies of Burskii and Buryachenko [6], there have

been developed the qualitative methods for studying the Cauchy

problem and non-standard for hyperbolic equations the Dirichlet

and the Neumann problems. Moreover, for equation of any even

order 2m, m ≥ 2, using operator methods (L-traces, theory of

extension, moment problem, method of duality equation domain,

and others), the existence and uniqueness results were proved,

and the criteria of non-trivial solvability of the Dirichlet and the

Neumann problems in a disk for the principal type equations

and equations with degenerate symbol were obtained [4, 8]. In

particular, the interrelations between multiplicity of roots of the

characteristic equation were established, and the existence of a

non-trivial solution of the corresponding problems was proved.

As a consequence, the Fredholm property for the problems under

consideration was established.

As the concern maximum principle, at the present time there

are not any results for fourth-order equations even in linear case. As

it was mentioned above, maximum principle even for the simplest

case of one dimensional wave equation [23] and for second-order

telegraph equation [18–21] is quite different from those for elliptic

and parabolic cases. In the monograph of Protter and Weinberger

[23], there was shown that solutions of hyperbolic equations and

inequalities do not exhibit the classical formulation of maximum

principle. Even in the simplest case of the wave equation utt−uxx =

0, a maximum of a non-constant solution u = sin x sin t in a

rectangle domain {(x, t) : x ∈ [0,π], t ∈ [0,π]} occurs at the

interior point
(
π
2 ,

π
2

)
. In Chapter 4 [23], maximum principle for

linear second hyperbolic equations of general type with variable

coefficients has also been obtained for the Cauchy problems and

boundary value problems on characteristics (the Goursat problem).

Following Ortega and Robles-Perez [21], we introduce the

definition of the maximum principle for hyperbolic equations.

Definition 1. [21] Let L be linear differential operator, acting

on functions u : D → R in some domain D. These functions will

belong to the certain family B, which includes boundary conditions

or other requirements. It is said that L satisfies the maximum

principle, if

L ≥ 0, u ∈ B,

implies u ≥ 0 in D.

In further studies of these authors (see Mawhin et al. [18–

20]), the maximum principle for weak bounded twice periodical

solutions from the space L∞ for the telegraph equation with

parameter λ in lower term, one-, two-, and -three dimensional

spaces was studied. The precise condition for λ under which the

maximum principle still valid was font. There was also introduced a

method of upper and lower solutions associated with the non-linear

equation, which allows to obtain the analogous results (uniqueness,

existence, and regularity theorems) for the telegraph equations with

external non-linear forcing.

Maximum principle for second-order quasilinear hyperbolic

systems with dissipation was proved by De-Xing [17]. There

were given two estimates for solution to the general quasilinear

hyperbolic system and introduced the concept of dissipation

(strong dissipation and weak dissipation); then, some maximum

principles for secound-order quasilinear hyperbolic systems with

dissipation were derived. As an application of maximum principle,

the existence and uniqueness theorems of the global smooth

solution to the Cauchy problem for considered quasilinear

hyperbolic systemwere proved. In recent study by Yi and Ying [10],

some analog of Equation 1 with lower order terms and non-linear

external force was considered. Qualitative properties of solution

of the Dirichlet problem with affine data for differential elasticity

inclusion were proved by Ruland et al. [25].

The challenge to prove the maximum principle for weak

solutions remains more complicated and at that time becomes

more interesting in the case of fourth-order hyperbolic equations,

especially, in the case of non-classical boundary value problems

with data of weak regularity. Unlike second-order equations,

qualitative analysis of solutions to fourth-order equations is not a

trivial problem, since not only a solution is involved in boundary
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or initial conditions but also its high- order derivatives. Other

difficulty concerns the concept of weak solution of the boundary

value problems with L2− data. Such solutions do not have usual

traces; thus, we have to use a special notion for traces to poss

correctly the boundary value problems. This notion is traces

associated with operator L or L− traces. We derive an example (see

Remark 1), which shows that for every L2- solution to the Dirichlet

problem for the wave equation, its value u|∂K on the boundary ∂K

does not exist, but its “improved” value−x1x2u|∂K on boundary ∂K

exists. It means that multiplying by some polynomial we “improve”

a solution. This polynomial depends on the equation. In the case of

the wave operator Lu = ∂2u
∂x1∂x2

, this polynomial equals x1x2, what

is the symbol L(x) = x1x2 of the wave operator. Therefore, such

“improved” traces are called the traces associated with operator L

or simply the L−traces.

At that moment, there are not any results on the maximum

principle even for the model case of linear two- dimensional

fourth-order hyperbolic equations with constant coefficients and

homogeneous symbol (without lower terms), which are under

consideration of the present study.

We also derive an interesting interpretation (as periodicity of

characteristic billiard or the John’s mapping) of the Fredholm’s

property violation. For second-order hyperbolic equations, the fact

that periodicity of the John’s algorithm is sufficient for violation

of the Fredholm property for the Dirichlet problem was proved

by John [15] (for the wave equation) and Burskii and Zhedanov

[3] (for general second-order hyperbolic equations with constant

complex coefficients). Analogous result is true for fourth-order

hyperbolic equations and will be proved in the present study.

Therefore, obtaining such results as the maximum principle,

uniqueness, existence and regularity, kernel dimension, the

Fredholm property for weak solutions to fourth-order hyperbolic

equations and boundary value problems for them is very important

for the reason of their further applications and is the main goal of

the study.

2 Statement of the problem and
auxiliary definitions

Let us start to establish the maximum principle for weak

solutions to the Cauchy problem for Equation 1 in some admissible

planar domain. It is expected that in the hyperbolic case,

characteristics of the equations play a crucial role.

Let Cj, j = 1, 2, 3, 4 be characteristics, Ŵ0 :={x1 ∈ [a, b], x2 =

0} is initial line, and define � as a domain which is restricted by

the characteristics Cj, j = 1, 2, 3, 4 and Ŵ0 by the following way.

We choose some arbitrary point C and draw through this point two

characteristics, C1 and C2, for instance. Another two characteristics

(C3 and C4) we draw through the ends a and b of initial line Ŵ0. We

determine a pointsO1 andO2 as intersections of C1, C3 and C2, C4

correspondingly:O1 = C1∩C3, O2 = C2∩C4. Such a way, domain

� is a pentagon aO1CO2b. Consider also the Cauchy problem for

Equation 1 on Ŵ0:

u|Ŵ0 = ϕ(x), u′ν |Ŵ0 = ψ(x), u′′νν |Ŵ0 = σ (x), u′′′ννν |Ŵ0 = χ(x), (2)

where ϕ, ψ , σ , and χ are given weak regular functions on Ŵ0, in

general case ϕ, ψ , σ , χ ∈ L2(Ŵ0), ν− is outer normal of Ŵ0.

Definition 2. We call a domain D :={(x1, x2) : x1 ∈

(−∞, +∞), x2 > 0} in the half-plane x2 > 0 an admissible

domain if it has the property that for each point C ∈ D

the corresponding characteristic domain � is also in D. More

generally, D is a admissible if it is the finite or countable union

of characteristics 5 angles (in the case of fourth-order equations

with constant coefficients, there exist four different and real

characteristics lines).

Establishment of the maximum principle allows us to obtain a

local properties of solution to the Cauchy problem (Equations 1, 2)

on a arbitrary interior point C ∈ D.

We will consider a weak solution to the problem

(Equations 1, 2) from the domain of definition D(L) of maximal

operator associated with the differential operation L in Equation

1. Following Burskii and Buryachenko [6], Grubb [13], and

Hörmander [14], we remind the corresponding definitions.

In a bounded domain �, we consider linear differential

operation L ofm−th order,m ≥ 2, and formally adjoint L+:

L(Dx) =
∑

|α|≤m

aαD
α , L+(Dx) =

∑

|α|≤m

Dα(aα), (3)

where α = (α1, α2, ...αn), |α| = α1 + α2 + ... + αn is multi-index.

Note, that for Equation 1 n = 2, m = 4.

Definition 3. Minimum operator. [6]. Let us consider differential

operation L (Equation 3) on functions from the space C∞
0 (�). The

minimum operator L0 is called extension of operation L from

C∞
0 (�) to the set D(L0) :=C∞

0 (�). The closure is realized in the

norm of graph of operator L: ||u||2L := ||u||2
L2(�)

+ ||Lu||2
L2(�)

.

Definition 4. Maximum operator. [6]. The maximum operator

L is defined as the restriction of differential operation L(Dx) to the

set D(L) :={u ∈ L2(�) : Lu ∈ L2(�)}.

Definition 5. [6]. The operator L̃ is defined as the extension of

minimum operator L0, to the set D(L̃) :=C∞(�̄).

Definition 6. Regular operator. [6]. The maximum operator is

called regular if D(L) = D(L̃).

It is easy to see thatD(L̃) = H4(�),D(L0) =
0

H4 (�), the Hilbert

Sobolev space of fourthly weak differentiable functions from L2(�).

Analogously, we introduce operators L+, L̃+, and L+0 associated

with the formally adjoint operation L
+.

Definition of a weak solution to problem (Equations 1, 2) from

the space D(L) is closely connected with the notion of L−traces,

traces associated with the differential operator L.

Definition 7. L-traces. [5]. Assume, that for a function u ∈

D(L̃), there exist linear continuous functionals L(p)u over the space

Hm−p−1/2(∂�), p = 0, 1, 2...,m−1, such that the following equality

is satisfied:

(Lu, v)L2(�) − (u, L+v)L2(�) =

m−1∑

j=0

(L(m−1−j)u, ∂
(j)
ν v). (4)

Functionals L(p)u are called L(p)− traces of function u ∈ D(L̃).

Here, (·, ·)L2(�) is a scalar product in the Hilbert space L2(�).

For L2− solutions, the notion of L(p)− traces can be realized by

the following way.

Definition 8. Distributions L(p)u ∈ H−p− 1
1 (∂�), p = 0, ..., m−

1 are called the p−th L−traces of a function u ∈ D(L) on ∂�, if the
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following identity is true

∫

�

(
Lu · v− u · L+v

)
dx =

m−1∑

j=0

< L(m−1−j)u, ∂
(j)
ν v >∂� . (5)

for any functions v ∈ Hm(�).

For example, for some solution u ∈ D(L), L−traces have the

form:

3∑

j=0

< L(3−j)u, ∂
(j)
ν v >∂�=

∫

�

f · v dx,

for all v ∈ Ker L+ ∩Hm(�).

Finally, we present the definition of a weak solution to problem

(Equations 1, 2):

Definition 9.Wewill call a function u ∈ D(L) a weak solution to

the Cauchy problem (Equations 1, 2), if it satisfies to the following

integral identity

(f , v)L2(�) − (u, L+v)L2(�) =

3∑

j=0

< L(3−j)u, ∂
(j)
ν v >∂�, (6)

for any functions v ∈ C∞
0 (�). The functionals L(p)u are called L(p)−

traces of function u, p = 0, 1, 2, 3, and completely determined by

the initial data ϕ, ψ , σ , χ by the following way:

L(0)u = −L(x)u|∂� = −L(ν)ϕ;

L(1)u = L(ν)ψ + α1ϕ
′
τ + α2ϕ;

L(2)u = −L(ν)σ + β1ψ
′
τ + β2ψ + β3ϕ

′′
ττ + β4ϕ

′
τ + β5ϕ; (7)

L(3)u = L(ν)χ + δ1ϕ
′′′
τττ + δ2σ

+ δ3ψ
′′
ττ + δ4ψ

′
τ + δ5ψ + δ6ϕ

′′
ττ + δ7ϕ

′
τ + δ8ϕ.

Here, αi, i = 1, 2, βj, j = 1, 2, ..., 5, and δk, k = 1, ..., 9 are

smooth functions, completely determined by coefficients ai, i =

0, 1, ..., 4.

We can use a general form of operators γj in left-hand side of

identity (Equation 6) instead of operators of differentiation ∂
(j)
ν v.

Indeed, we define γj = pjγ , where

γ : u ∈ Hm(�) → (u|∂�, ..., u
(m−1)
ν |∂�) ∈ H(m)

= Hm−1/2(∂�)×Hm−3/2(∂�)× ...×H1/2(∂�),

and pj : H
(m) → Hm−j−1/2(∂�)− projection.

Remark 1. As it has been mentioned above, some examples

show (see Burskii [2]) that for solutions u ∈ D(L) ordinary traces

do not exist even in the sense of distributions. Indeed, let Lu =
∂2u
∂x1∂x2

= 0 in the unit disk K : |x| = 1, the solution u(x) =

(1 − x21)
− 5

2 belongs to L2(K), but < u|∂K , 1 >∂K= ∞, that means

limr→1−0

∫
|x|=r

u(x)dsx = ∞. The trace u|∂K does not exist even as

a distribution. However, for every solution u ∈ L2(K) L(0)−trace

L(0)u := − L(x)u(x)||x|=1 = −x1x2u(x)||x|=1 ∈ L2(∂K). Likewise,

L(1)− trace, L(1)u, exists for every u ∈ L2(K):

L(1)u =

(
L(x)u′ν + L′τu

′
τ +

1

2
L′′ττu

)
|∂K ∈ H− 3

2 (∂K).

Here, τ is the angular coordinate and u′τ is the tangential

derivative, and L(x) = x1x2− symbol of the wave operator L =
∂2

∂x1∂x2
.

3 Maximum principle for weak
solutions of the Cauchy problem.
Existence, uniqueness, and regularity
of solution

We prove the maximum principle for weak solutions of the

Cauchy problem (Equations 1, 2) in an admissible plane domain

� restricted by different and non-congruent characteristics Cj, j =

1, 2, ..., 4 and initial line Ŵ0.

Theorem 1. Maximum principle. Let u ∈ D(L) satisfies the

following inequalities:

Lu = f ≤ 0, x ∈ D, (8)

and

L(0)u |Ŵ0≥ 0, L(1)u|Ŵ0 ≥ 0, L(2)u|Ŵ0 ≥ 0, L(3)u|Ŵ0 ≥ 0, (9)

then, u ≤ 0 in D.

Proof. 1. First of all, we prove the statement for smooth

solutions u ∈ C∞(�̄).

Due to the homogeneity of the symbol in Equation 1, L(ξ ) =

a0ξ
4
1 + a1ξ

3
1 ξ2 + a2ξ

2
1 ξ

2
2 + a3ξ1ξ

3
2 + a4ξ

4
2 =

(ξ , a1)(ξ , a2)(ξ , a3)(ξ , a4), ξ = (ξ1, ξ2) ∈ R2, we can rewrite this

equation in the following form:

(∇ , a1)(∇ , a2)(∇ , a3)(∇ , a4)u = f (x). (10)

The vectors aj = (a
j
1, a

j
2), j = 1, 2, 3, 4 are determined by

the coefficients ai, i = 0, 1, 2, 3, 4, and (a, b) = a1b̄1 + a2b̄2 is

a scalar product in C2. It is easy to see that vector aj is the tangent

vector of the j−th characteristic, slope ϕj of which is determined by

− tanϕj = λj, j = 1, 2, 3, 4. In what follows, we also consider the

vectors ãj = (−ā
j
2, ā

j
1), j = 1, 2, 3, 4. It is obvious that (ãj, aj) = 0,

so ãj is a normal vector of the j−th characteristic.

Using Definitions 7 and 9 (m = 4), we assume that domain �

is restricted by the characteristics Cj, j = 1, 2, 3, 4 and Ŵ0:

∫

�

{Lu · v̄− u · L+v}dx =

3∑

k=0

∫

∂�

L(3−k)u · ∂ (k)ν v ds =

=

3∑

k=0

∫

C1

L(3−k)u · ∂ (k)ν v ds+

3∑

k=0

∫

C2

L(3−k)u · ∂ (k)ν v ds+ (11)
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+
3∑

k=0

∫
C3

L(3−k)u · ∂
(k)
ν v ds

+
3∑

k=0

∫
C4

L(3−k)u · ∂
(k)
ν v ds+

3∑
k=0

∫
Ŵ0

L(3−k)u · ∂
(k)
ν v ds.

Using representation (Equation 10), we have

∫

�

Lu · v̄ dx =

∫

�

(∇ , a1)(∇ , a2)(∇ , a3)(∇ , a4)u · v̄ dx =

∫

∂�

(ν, a1) · (∇ , a2)(∇ , a3)(∇ , a4)u · v̄ ds

−

∫

�

(∇ , a2)(∇ , a3)(∇ , a4)u · (∇ , a1)v dx.

Integrating by parts, we obtain:

∫

�

Lu · v̄ dx =

∫

∂�

(ν, a1)(∇ , a2)(∇ , a3)(∇ , a4)u · v̄ ds−

∫

∂�

(ν, a2)(∇ , a3)(∇ , a4)u · (∇ , a1)v ds+

∫

∂�

(ν, a3)(∇ , a4)u · (∇ , a2)(∇ , a1)v ds−

∫

∂�

(ν, a4) · u · (∇ , a3)(∇ , a2)(∇ , a1)v ds+

∫

�

u · (∇ , a)(∇ , a3)(∇ , a2)(∇ , a1)v dx.

Since (∇ , a4)(∇ , a3)(∇ , a2)(∇ , a1)v = L+v and

L̃(0)u := (ν, a4)u, L̃(1)u := (ν, a3)(∇ , a4)u,

L̃(2)u := (ν, a2)(∇ , a3)(∇ , a4)u,

L̃(3)u = L(3)u = (ν, a1)(∇ , a2)(∇ , a3)(∇ , a4)u,

we have

∫

�

{Lu·v̄−u·L+v} dx =

∫

∂�

L(3)u·v̄ ds−

∫

∂�

L̃(2)u·(∇ , a1)v ds+ (12)

+

∫

∂�

L̃(1)u·(∇ , a2)(∇ , a1)v ds−

∫

∂�

L̃(0)u·(∇ , a3)(∇ , a2)(∇ , a1)v ds.

Difference between Equations 11, 12 is that natural traces

in Equation 11 L(3−k) are multiplied by the k−th derivative of

truncated function v : ∂
(k)
ν v by outer normal ν. On the other

hand, we determined by L̃(3−k) in Equation 12 some expressions

multiplied by differential operators L+
k
v, which can serve as

analogous of natural L(3−k) traces, k = 0, 1, 2, 3. So, in

Equation 12:

L+1 v := (∇ , a1)v, L+2 v := (∇ , a2)(∇ , a1)v,

L+0 v = v, L+3 v := (∇ , a3)(∇ , a2)(∇ , a1)v.

Let v ∈ KerL+ in Equation 12, and calculate L− traces on
∂� = C1 ∪ C2 ∪ C3 ∪ C4 ∪ Ŵ0. For instance, for L(3)u we

obtain: L(3)u = (ν, a1)(∇ , a2)(∇ , a3)(∇ , a4)u. We use (∇ , aj)u =

(ν, aj)u′ν + (τ , aj)u′τ , j = 1, 2, 3, 4, where ν− normal vector and
τ− tangent vector. It is easy to see that L(3)u = 0 (due to presence

the product (ν, a1)) on characteristic C1, normal vector ã1 of which
is orthogonal to the vector a1. On the other parts of ∂�, there will

be vanish terms containing (ν, aj) on Cj. After that

∫

∂�

(ν, a1)(∇ , a2)(∇ , a3)(∇ , a4)u =

∫

Ŵ0

L(3)u ds+

(ã2 , a1)(a2 , a2)(ã2 , a3)(ã2 , a4)

∫

C2

uνντ ds+ (ã3 , a1)(ã3 , a2)(a3 , a3)(ã3 , a4)

∫

C3

uνντ ds+

(ã4 , a1)(ã4 , a2)(ã4 , a3)(a4 , a4)

∫

C4

uνντ ds+
{
(ã2 , a1)(a2 , a2)(ã2 , a3)(a2 , a4)+

(ã2 , a1)(a2 , a2)(a2 , a3)(ã2 , a4)
} ∫

C2

uττν ds+
{
(ã3 , a1)(ã3 , a2)(a3 , a3)(a3 , a4)+

(ã3 , a1)(a3 , a2)(a3 , a3)(ã3 , a4)
} ∫

C3

uττν ds+
{
(ã4 , a1)(ã4 , a2)(a4 , a3)(a4 , a4)+

(ã4 , a1)(a4 , a2)(ã4 , a3)(a4 , a4)
} ∫

C4

uττν ds+(ã2 , a1)(a2 , a2)(a2 , a3)(a2 , a4)

∫

C2

uτττ ds+

(ã3 , a1)(a3 , a2)(a3 , a3)(a3 , a4)

∫

C3

uτττ ds+ (ã4 , a1)(a4 , a2)(a4 , a3)(a4 , a4)

∫

C4

uτττ ds+

α4,1

∫

C2

uνν ds+α4,2

∫

C3

uνν ds+α4,3

∫

C4

uνν ds+α5,1

∫

C2

uντ ds+α5,2

∫

C3

uντ ds+α5,3

∫

C4

uντ ds+

α6,1

∫

C2

uττ ds+α6,2

∫

C3

uττ ds+α6,3

∫

C4

uττ ds+α7,1

∫

C2

uν ds+α7,2

∫

C3

uν ds+α7,3

∫

C4

uν ds+

α8,1

∫

C2

uτ ds+ α8,2

∫

C3

uτ ds+ α8,3

∫

C4

uτ ds.

Here, the coefficients αi,j are numerated as
follows: the first index i indicates the derivative of u:
1) uνντ , 2) uνττ , 3) uτττ , 4) uνν , 5) uντ , 6) uττ , 7) uν 8) uτ , the
second index j indicates the j + 1−th characteristic, j = 1, 2, 3.
Such a way, Equation 11 has the form:

∫

�

Lu dx =

∫

Ŵ0

L(3)u ds+ α1,1

∫

C2

uνντ ds+ α1,2

∫

C3

uνντ ds+ α1,3

∫

C4

uνντ ds+

α2,1

∫

C2

uττν ds+ α2,2

∫

C3

uττν ds+ α2,3

∫

C4

uττν ds+ α3,1

∫

C2

uτττ ds+ α3,2

∫

C3

uτττ ds+

α3,3

∫

C4

uτττ ds+ α4,1

∫

C2

uνν ds+ α4,2

∫

C3

uνν ds+ α4,3

∫

C4

uνν ds+

α5,1

∫

C2

uντ ds+α5,2

∫

C3

uντ ds+α5,3

∫

C4

uντ ds+α6,1

∫

C2

uττ ds+α6,2

∫

C3

uττ ds+α6,3

∫

C4

uττ ds+

α7,1

∫

C2

uν ds+α7,2

∫

C3

uν ds+α7,3

∫

C4

uν ds+α8,1

∫

C2

uτ ds+α8,2

∫

C3

uτ ds+α8,3

∫

C4

uτ ds.

Coefficients αi,j are constant and depend on only coefficients

a0, a1, a2, a3, a4. By analogous way, we calculate others L− traces:

L(0)u, L(1)u and L(2)u.

To obtain the statement of Theorem 1, we choose some

arbitrary point C ∈ D in admissible plane domain D and draw

through this point two arbitrary characteristics,C1 andC2. Another

two characteristics (C3 and C4) we draw through the ends a and

b of initial line Ŵ0. We determine some points O1 and O2 as

intersections of C1, C3 and C2, C4 correspondingly: O1 = C1 ∩

C3, O2 = C2 ∩ C4. Such a way, domain � is a pentagon aO1CO2b.

The value of a function u at the pointC ∈ D, u(C) we estimate from

the last equality, integrating by the characteristics C1 and C2 and

using conditions (Equations 2, 7–9). Since a chosen point C ∈ D is

arbitrary, we arrive at u ≤ 0 in D.
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2. For solutions u ∈ D(L), the statement of the theorem follows

from the conditions:

C∞(�) = D(L),

and

C∞(�) = D(L+).

These conditions hold true for operators with constant

coefficients in domains convex with respect to characteristics (see

Hörmander [14]).

Theorem 1 is proved.

Remark 2. The weak form of the maximum principle for

u ∈ L2(�) can be derived not only for solutions of the Cauchy

problem (Equation 2) but also for all linear problems with constant

coefficients Lu = F ∈ L2(�) under condition Im L+ = L2(�).

Indeed, using conditions (Equations 8, 9) and definition 9, we

obtain
∫

�

u · L+v dx ≤ 0,

for all v ∈ Hm(�). If Im L+ = L2(�), then

∫

�

u · w̄ dx ≤ 0,

for any w ∈ L2(�). The last inequality serves as a weak maximum

principle for L2− solutions.

Remark 3. In the case of classical solutions of the Cauchy

problem for second-order hyperbolic equations of general form

with constant coefficients, the statement of Theorem 1 coincides

with the result of Protter and Weinberger [23]. In this case,

conditions (Equation 9) have usual form without using the notion

of L−traces (see Protter and Weinberger [23]):

u|Ŵ0 ≤ 0, u′ν |Ŵ0 ≤ 0.

4 Method of equation-domain duality
and its application to the Goursat
problem

We develop the method of equation-domain duality (see also

Burskii and Buryachenko [6] and Burskii [2]) for study of the

Goursat problem. This method allows us to reduce the Cauchy

problem (Equation 1, 2) in bounded domain � to the equivalent

Goursat boundary value problem. We will show that the method

of equation-domain duality can be applied also to boundary value

problems in the generalized statement. First of all, we consider

the method of equation-domain duality for the case of classical

(smooth) solutions.

4.1 Method of equation-domain duality for
the case of classical (smooth) solutions

Let � ∈ Rn be a bounded domain defined by the inequality

P(x) > 0, where P(x) is some real polynomial. The equation

P(x) = 0 denotes the boundary ∂�. It is assumed that the boundary

is non-degenerate for P, that is, |∇P| 6= 0 on ∂�. Consider general

boundary value problem with γ conditions on ∂� for m− order

differential operator L (Equation 13), γ ≤ m:

L(Dx)u = f (x), u|∂� = 0, u′ν |∂� = 0, ..., u(γ−1)
ν |∂� = 0. (13)

By the equation-domain duality, we mean (see Burskii and

Buryachenko [6]) a correspondence (in the sense of Fourier

transform) between problem (Equation 13) and equation

Pm−γ (−Dξ ){L(ξ )w(ξ )} = f̂ (ξ ). (14)

This correspondence is described by the following lemma.

Lemma 1. For any non-trivial solution of problem

(Equation 13) in the space of smooth functions Cm(�̄), there

exists a non-trivial analytic solution w of Equation 14 from

the space Cn in a class Zm
� of entire functions. The class Zm

� is

defined as the space of Fourier transforms of functions θ�η,

where η ∈ Cm(Rn), θ� is the characteristic function of domain �,

w(ξ ) = θ̂�u. The function f (x) is assumed to be extended by zero

beyond the boundary.

Proof. Let m = 4, γ = 2, and consider the following Dirichlet

problem for fourth-order operator in Equation 1:

L(Dx)u = f , u|P(x)=0 = f , u′ν |P(x)=0 = 0. (15)

Let also u ∈ C4(�̄) be a classical solution to problem

(Equation 15). Denote by ũ ∈ C4(R2) the extension of u, and apply

fourth-order operator L(Dx) in Equation 1 to the product ũθ�,

where θ� is a characteristic function of domain �: θ� = 1 in �,

θ� = 0 out of�. We have:

L(Dx)(ũθ�) = θ�L(Dx)ũ+ ũL(Dx)θ�+

L
(1)
3 (Dx)ũ(∇ , a1)θ� + L

(2)
3 (Dx)ũ(∇ , a2)θ� + L

(3)
3 (Dx)ũ(∇ , a3)θ�

+ L
(4)
3 (Dx)ũ(∇ , a4)θ�+

L
(1)
3 (Dx)θ�(∇ , a1)ũ+ L

(2)
3 (Dx)θ�(∇ , a2)ũ+ L

(3)
3 (Dx)θ�(∇ , a3)ũ

+ L
(4)
3 (Dx)θ�(∇ , a4)ũ+

L
(1,2)
2 (Dx)ũ(∇ , a1)(∇ , a2)θ� + L

(1,3)
2 (Dx)ũ(∇ , a1)(∇ , a3)θ�+

L
(1,4)
2 (Dx)ũ(∇ , a1)(∇ , a4)θ� + L

(2,3)
2 (Dx)ũ(∇ , a2)(∇ , a3)θ�+

L
(2,4)
2 (Dx)ũ(∇ , a2)(∇ , a4)θ� + L

(3,4)
2 (Dx)ũ(∇ , a3)(∇ , a4)θ�+

L
(1,2)
2 (Dx)θ�(∇ , a1)(∇ , a2)ũ+ L

(1,3)
2 (Dx)θ�(∇ , a1)(∇ , a)ũ+

L
(1,4)
2 (Dx)θ�(∇ , a1)(∇ , a4)ũ+ L

(2,3)
2 (Dx)θ�(∇ , a2)(∇ , a3)ũ+

L
(2,4)
2 (Dx)θ�(∇ , a2)(∇ , a4)ũ+ L

(3,4)
2 (Dx)θ�(∇ , a3)(∇ , a4)ũ.

Here, L
(j)
3 (Dx), L

(j,k)
2 (Dx), j, k = 1, 2, 3, 4 are some differential

operations of third and second order correspondingly, defined by

fourth-order differential operator L(Dx) in Equation 1:

L
(j)
3 (Dx) =

L(Dx)

(∇ , aj)
, j = 1, ..., 4,

L
(j,k)
2 (Dx) =

L(Dx)

(∇ , aj)(∇ , ak)
, j 6= k, j, k = 1, .. 4.
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Since ũ is a solution of Equation 1, we obtain

L(Dx)(ũθ�) = θ�f + ũL(Dx)θ�

+A(1)(x)(δ∂�)
′′
νν + A(2)(x)(δ∂�)

′
ν + A(3)(x)δ∂�, (16)

where A(j)(x) are some smooth functions depending on coefficients

ak, k = 1, ..., 4 and j− derivatives of function u by outer normal ν:

u
(j)
ν and tangent direction τ : u

(j)
τ , j = 1, 2, 3. Taking into account

conditions (Equation 15), < (δ∂�)
′
ν ,φ >= − < δ∂�,φ

′
ν >=

−
∫
∂�

φ̄′ν(s) ds, ∀ψ ∈ D(R2), we have ũL(Dx)θ�+A(1)(x)(δ∂�)
′′
νν =

0, and A(2)(x)(δ∂�)
′
ν = −

∫
∂�

(A(2)(s))′ν ds = Ã(3)(x)δ∂�. From

Equation 16, we obtain

L(Dx)(ũθ�) = θ�f + B(3)(x)δ∂�, (17)

where B(3)(x) = Ã(3)(x) + A(3)(x) is some smooth function

depending on coefficients ak, k = 1, ..., 4 and third derivatives of

function u by outer normal ν: u′′′ν , and tangent direction τ : u′′′τ .

Let us multiply (Equation 17) by P2(x): P2(x)B(3)(x)δ∂� = 0,

due to P(x) = 0 on ∂�. We apply the Fourier transform:

P2(−Dξ )(v(ξ )) = f̂ .

Here, v(ξ ) = L(ξ )w(ξ ), w(ξ ) = ̂̃uθ� is the Fourier transform of

function ũθ�. Such a way we have the dual problem (Equation 14).

Functionw(ξ ) ∈ Z4
�, the space of entire functions (see, for instance,

the Paley-Wiener theorem in Hörmander [14]). Lemma is proved.

As an application of Lemma 1, let us consider the Dirichlet

problem for fourth-order hyperbolic Equation 1 in the unit disk

K = {x ∈ R2
: |x| < 1}:

u||x|=1 = 0, u′ν ||x|=1 = 0. (18)

For casem = 4, γ = 2, m− γ = 2 we have the following dual

problem:

12v = f̂ (ξ ), v|L(ξ )=0 = 0, (19)

v = L(ξ )w(ξ ). Taking into account representation (Equation 10),

condition w|L(ξ )=0 = 0 is equivalent to the following

four conditions:

w|(ξ , a1)=0 = 0, w|(ξ , a2)=0 = 0, w|(ξ , a3)=0 = 0, w|(ξ , a4)=0 = 0.

(20)

Since (ξ , aj) = 0 is a characteristic, j = 1, 2, ..., 4 we conclude

that problem (Equation 19) is the Goursat problem. The method

of equation-domain duality allows us to reduce the problem of

solvability of a boundary value problem for high-order equations

(particularly, hyperbolic type) to the equivalent problem for some

equation of less complicated structure and of lower order (in

particular, for elliptic type equation, see Equation 19). Thus, the

Dirichlet problem for fourth-order hyperbolic equation in a unit

disk described by second-order curve P(x) = x21 + x22 − 1

is equivalent to the Goursat problem for second-order equation

P(Dx)u = 0. Because the curve P(x) = 0 is elliptic, we reduced

the Dirichlet problem for fourth-order hyperbolic equation to the

Goursat problem for second-order elliptic equations P(Dx)u = 0,

which are well studied.

4.2 Method of equation-domain duality for
the case of weak solutions and solutions
from D(L)

We prove the analog of Lemma 1 for solutions u ∈ D(L). For

any function u ∈ Hm(�), m ≥ 4, L(p)u− traces can be expressed

by the following way (it follows from Definition 8 and Equation 7):

L(p)u =
p∑

k=0

αp,k∂
k
νu|∂�, p = 0, 1, 2, 3. For p = 0, L(0)− trace,

L(0)u = u|∂� coincides with usual trace.

For u ∈ D(L), we consider the following boundary value

problem

L(Dx)u = f (x), L(0)u = 0, L(1)u = 0, ..., L(γ−1)u = 0, γ ≤ m.

(21)

For the Dirichlet problem (Equation 15) and u ∈ D(L), we have

L(Dx)u = f (x), L(0)u = 0, L(1)u = 0, γ = 2 < m = 4. (22)

The principle of equation-domain duality for solutions u ∈

D(L) is assumed as the correspondence (in the sense of Fourier

transform) between problem (Equations 21) and Equation 14,

which is realized by the following statement. This statement

(Lemma 2) is analog of Lemma 1 for u ∈ D(L).

Lemma 2. For any non-trivial solution of problem

(Equation 21) in the space D(L), there exists a non-trivial analytic

solution w of Equation 14 from the space Cn in a class Z� of entire

functions. The class Z� is defined as the space of Fourier transforms

of functions from the set V = {v : there exists some function u ∈

D(L), such that : v = u in�, v = 0, out of �̄}, w(ξ ) = v̂.

The function f (x) is assumed to be extended by zero beyond

the boundary.

The proof follows from Definition 9. Let us substitute the

function v(x) = Pm−γ (x)ei(x,ã
j) ∈ ker(L+), j = 1, ..., 4, into

equality (Equation 6). Function w(ξ ) = v̂ ∈ Z�, the space of

entire functions (see, for instance, the Paley-Wiener theorem in

Hörmander [14]).

5 Connection between the Cauchy
and the Dirichlet problems. Existence
and uniqueness of solutions for
hyperbolic equations

The main result of this section is the following existence and

uniqueness theorem of the Cauchy problem (Equations 1, 2).

Theorem 2. Let us assume that there exist four functions

L3, L2, L1, L0 ∈ L2(∂�), satisfying the conditions

∫

∂�

{L3(x)Q(−ãj · x)+ L2(x)Q
′(−ãj · x)+ L1(x)Q

′′(−ãj · x)+ (23)

+L0(x)Q
′′′(−ãj · x)}dSx =

∫

�

f (x)Q(−ãj · x)dx,

for any polynomial Q ∈ C[z] ∈ KerL+, Q(−ãj · x), j = 1, 2, 3, 4.
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Then, there exists a unique solution u ∈ D(L) to the Cauchy

problem (Equations 1, 2), whose L− traces are the given functions

L3, L2, L1, L0: Lj = L(j)− trace, j = 0, 1, 2, 3, which are

determined by Equation 7.

Proof. At first, we prove existence of solution u ∈ D(L) to the

Cauchy problem (Equations 1, 2).

Let us consider the auxiliary Dirichlet problem for the properly

elliptic eight-order operator14 with the given boundary conditions

ϕ, ψ , σ , χ :

14ω = 0, ω|∂� = ϕ, ων |∂� = ψ , ωνν |∂� = σ , ωννν |∂� = χ .

(24)

It is well known that solution of problem (Equation 24) exists

and belongs to the space Hm(�), m ≥ 4. We find some solution u

to the Cauchy problem in the following form

u = ω + v, (25)

where v is a solution of the following problem with null boundary

data:

L(Dx)v = −L(Dx)ω + f (x), v|∂� = 0, vν |∂� = 0,

vνν |∂� = 0, vννν |∂� = 0. (26)

Since all L−traces of a function v are zero and operator L is

regular, we conclude that v ∈ D(L0) and prove resolvability of the

operator equation with minimum operator L0(Dx):

L0(Dx)v = −Lω + f (x) (27)

in the space D(L0).

For resolvability of operator Equation 27 with minimum

operator L0(Dx), it is necessary and sufficiently that right-hand part

satisfies the following Fredholm condition

∫

�

{−Lω + f (x)}Q(x)dx = 0, (28)

for any Q ∈ Ker L+.

We use Equation 4 for the case of function ω and fourth-order

operator ( m = 4), and taking into account boundary conditions

(Equation 24), which mean that the functions L0, L1, L2, L3 are

L− traces for a function ω, conditions (Equation 23), we arrive

at Equation 28 for any Q ∈ Ker L+. As consequences, we prove

resolvability of Equation 27 in D(L0). Such a way, taking into

account representation (Equation 25), we arrive at the conclusion

on existence for a solution u ∈ D(L).

Solution uniqueness follows from established above the

maximum principle for solutions of the Cauchy problem. Theorem

is proved.

Remark 4. For given boundary data (L3, L2, L1, L0) ∈

Hm−7/2(∂�)×Hm−5/2(∂�)×Hm−3/2(∂�)×Hm−1/2(∂�), m ≥ 4,

f ∈ Hm−4(�), m ≥ 4, and for elliptic Equation 1, solution u ∈

Hm(�), m ≥ 4 (see Buryachenko [5]). For hyperbolic equations,

it is not true because symbol L(ξ ) has four real roots. Using the

Fourier transform and Lemma 2, we arrive at regularity decreasing.

Remark 5. The problem of resolvability the Cauchy problem

(Equations 1, 2) is reduced to the integral moment problem

(Equation 23).

5.1 The Dirichlet problem

In some bounded domain � ∈ R2 with elliptic boundary

∂� = {x : P(x) = 0}, we consider the following Dirichlet problem

for fourth-order hyperbolic Equation 1:

L(0)u|P(x)=0 = ϕ, L(1)uν |P(x)=0 = ψ . (29)

Connection between the Dirichlet problem (Equations 1, 29)

and the corresponding Cauchy problem is assumed by the

following way. Let there exists some solution u∗ ∈ D(L) of

the Dirichlet problem (Equations 1, 29), then we can construct

L(j)u
∗−traces (functions L3, L2, L1, L0 from Theorem 2), which

are satisfied condition (Equation 23). From Theorem 2, it means

that the Cauchy problem is solvable in D(L). To prove solvability

of the Dirichlet problem (Equations 1, 29) in D(L), we have

to show that there exist functions L2, L3 ∈ L2(∂�), which

are uniquely determined by L(0), L(1)− traces of the Dirichlet

problem (Equation 29). Such a way we arrive at the following

inhomogeneous moment problem:

∫

∂�

{L3(x)Q(−ãj ·x)+L2(x)Q
′(−ãj ·x)}dSx =

∫

�

f (x)Q(−ãj · x)dx−

(30)

−

∫

∂�

{L(1)(x)Q
′′(−ãj · x)+ L(0)(x)Q

′′′(−ãj · x)}dSx

for any polynomial Q ∈ C[z] ∈ KerL+, Q(−ãj · x), j = 1, 2, 3, 4.

Thus, solvability of the Dirichlet problem (Equation 29) in D(L)

reduces to solvability of moment problem (Equation 30).

Theorem 3. For solvability of the Dirichlet problem

(Equations 1, 29) in D(L), it is necessary and sufficiently that

there exists some solution (L∗3(x), L
∗
2(x)) ∈ L2(∂�) × L2(∂�) of

moment problem (Equation 30). Then L∗3(x) = L(3)− trace, and

L∗2(x) = L(2)− trace.

Remark 6. The exact formulas for evaluation of a couple of

functions (L∗3(x), L
∗
2(x)) ∈ L2(∂�)× L2(∂�) via known L(0), L(1)−

traces can be found for particular cases of domain �. For example,

the case of unit disk was considered in Buryachenko [5].

6 Role of characteristic billiard for the
Fredholm property

In this section, we consider the case of Fredholm property

violation. In Burskii and Buryachenko [6], the Fredholm property

violation for the Dirichlet problem in Cm(�), m ≥ 4 was proved.

Taking into account Lemma 2, we arrive at the analogous result in

the L2(�).

Theorem 4. The homogeneous Dirichlet problem

(Equation 1)0, (Equation 29)0 has a non-trivial solution in

L2(�) if and only if

ϕj − ϕk =
πpjk

q
, (31)
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FIGURE 1

Characteristic billiard or the John’s mapping for the wave equation
∂2u
∂x∂y

= 0 on a disk. Period n = 2 [15].

with some pjk, q ∈ Z, j, k = 1, 2, 3, 4. Under conditions

(Equation 31), there exists a countable set of linearly independent

polynomial solutions in the form:

u(x) =

4∑

j=1

Cj

(
1

2q
Tq(−ãj · x)−

1

2(q− 2)
Tq−2(−ãj · x)

)
. (32)

Here, Tq(−ãj · x) are Chebyshev’s polynomials, and 1
2qTq(−ãj ·

x)− 1
2(q−2)

Tq−2(−ãj · x) ∈ KerL+, j = 1, 2, 3, 4.

The necessity of condition (Equation 31) follows from the

equation-domain duality (in the case of unit disk), see Lemma

2; sufficiency is proved by construction of non-trivial polynomial

solutions (Equation 32). It is remarkable by the fact that

Theorem 4 is true for all types of operator L. Here, we discuss

conditions (Equation 31) for hyperbolic equations, in which these

conditions mean the periodicity of characteristics billiard or the

John’s mapping.

6.1 Characteristic billiard

For domain �, which is convex with respect to the

characteristics, we construct the mappings Tj, j = 1, ..., 4 for

fourth-order hyperbolic equations by the following way.

Let Mj be some point on ∂�. Passing through a point Mj j−th

characteristic, we obtain a point Mj+1 ∈ ∂�. Such a way, Tj is a

mapping, which transforms Mj into Mj+1 on the j−characteristic

direction with angle of slope ϕj, j = 1, 2, 3, 4. We apply the

mapping T1 for a point M0 ∈ ∂� and obtain a point M1. After

that, we apply the mapping T2 for a point M1 and obtain a point

M2. We transform M2 into M3 on direction of characteristic, in

which angle of slope equals ϕ3, and, finally, we transform M3 into

FIGURE 2

Characteristic billiard for fourth-order equation on a disk with equal

angles between characteristics, ϕi − ϕj =
π
4
, i 6= j, which are

π−rational, and the result of Theorem 4 holds true. Period n = 2.

M4 on direction of the fourth characteristic (Figure 2). Denoted by

T = T4 ◦ T3 ◦ T2 ◦ T1 : M0 ∈ ∂� → M4 ∈ ∂�, T is called the

John’s mapping. Characteristic billiard is understood as a discrete

dynamical system on ∂�, that is, an action of group Z.

See Figures 1, 2 for second (wave equation) and fourth-order

equations correspondingly.

Some point M ∈ ∂� is called a periodic point, if there exists

some n ∈ N such that Tn(M) = M. Minimal n, for which condition

Tn(M) = M holds, is called the period of a point M. For second-

order hyperbolic equations, there was proved [3] that periodicity

of the John’s algorithm is sufficient for violation of the Fredholm

property of the Dirichlet problem. Analogous result is true for

fourth-order hyperbolic Equation 1. Let us consider domain � =

K− unit disk in R2.

Let us show that conditions (Equation 31) are necessary and

sufficient for periodicity of the John’s algorithm. It is clear that

Tj(M(τ )) = 2ϕj − τ , (33)

where τ is angular parameter of a pointM ∈ K. From Equation 33,

it follows

Tn(M) = 2n(ϕ4−ϕ3+ϕ2−ϕ1)+τ = 2n(ϕ4−ϕ3+ϕ2−ϕ1)+2πm+τ ,

for anym ∈ Z. Under conditions (Equation 31), any pointM ∈ K is

periodical; thus, the John’s algorithm is periodical. If now mapping

T is periodical for some n ∈ N, then ϕ4 − ϕ3 + ϕ2 − ϕ1 ∈ πQ,

which implies that conditions (Equation 31) are satisfied.

Such a way we arrive at the following statement.

Theorem 5. The periodicity of characteristic billiard on the

unit disk is necessary and sufficient for violation of the Fredholm

property of the Dirichlet problem (Equation 1)0, (Equation 29)0 in

L2(K). Its kernel consists of countable set of linearly independent

polynomial solutions (Equation 31).
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7 Discussion

In this section, we discuss some potential challenges in applying

the results and proposed methods.

The first challenge concerns the presence of some lower terms

in many hyperbolic models, for which our results can be applied.

For example, a model of Timoshenko

beam with and without internal damping has

the form

EI
∂4u

∂x4
−

(
ρI +

ρEI

kG

)
∂4u

∂x2∂t2
+
ρ2I

kG

∂4u

∂t4
+ ρA

∂2u

∂t2
= 0.

Here, u is a deflection of beam due to bending only, G is

a modulus of rigidity, A is a constant, cross-sectional area of

beam, ρ− mass density of a beam material, E− modulus of

elasticity, I- moment of inertia of a beam cross-section with

respect to the neutral axis of bending, k- constant, depends on

the shape of the cross-section of a beam. Qualitative analysis for

initial and boundary value problems is possible via application of

maximum principle. For this reason, we need to have an analog

of Theorem 1 for fourth-order equations, containing second-order

lower terms.

The same situation appears in the case of studying the

boundary value problems for fourth-order hyperbolic equation

which is connected with response of semi-space to a short laser

pulse and belongs to generalized thermoelasticity [12]. The model

equation of this process contains third -order lower term and has

the form:

∂4u

∂x4
−(1+t0+εt

0)
∂4u

∂x2∂t2
+t0

∂4u

∂t4
−(1+ε)

∂3u

∂x2∂t
+
∂3u

∂t3
= f (x, t),

where t0, t
0, and ε are constants, t0 ≥ t0 > 1, ε > 0, (1 + t0 +

εt0)2 > 4t0, f (x, t) is a given function.

Another application of obtained results concerns the cases

of non-linear external forces. A lot of models involve external

sources f depending on u : f (u), which make the equation

under consideration quasilinear. Due to similar principal

part, our methods are still applied because L− traces are

not changed:

L(Dx)u = f (u).

Here, the operator L is the same as in Equation 1.
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