
TYPE Original Research

PUBLISHED 30 August 2024

DOI 10.3389/fams.2024.1466965

OPEN ACCESS

EDITED BY

Kateryna Buryachenko,

Humboldt University of Berlin, Germany

REVIEWED BY

Rostyslav Hryniv,

Ukrainian Catholic University, Ukraine

Ranses Alfonso Rodriguez,

Florida Polytechnic University, United States

*CORRESPONDENCE

Dmitry Shepelsky

shepelsky@yahoo.com

RECEIVED 18 July 2024

ACCEPTED 13 August 2024

PUBLISHED 30 August 2024

CITATION

Barkov R and Shepelsky D (2024) A

Riemann–Hilbert approach to solution of the

modified focusing complex short pulse

equation. Front. Appl. Math. Stat. 10:1466965.

doi: 10.3389/fams.2024.1466965

COPYRIGHT

© 2024 Barkov and Shepelsky. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

A Riemann–Hilbert approach to
solution of the modified focusing
complex short pulse equation
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1School of Mathematics and Computer Sciences, V. N. Karazin Kharkiv National University, Kharkiv,

Ukraine, 2Mathematical Division, B. Verkin Institute for Low Temperature Physics and Engineering,

Kharkiv, Ukraine

We develop a Riemann–Hilbert approach to the modified focusing complex

short pulse (mfcSP) equation

uxt = u+ 1
2
ū(u2)xx

with zero boundary conditions (as |x| → ∞). We obtain a parametric

representation of the solution of the initial value problem for the mfcSP equation

in terms of the solution of the associated Riemann–Hilbert problem. This

representation is then used for retrieving one-soliton solutions.
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short pulse equation, short wave equation, Camassa-Holm-type equation, inverse
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1 Introduction

The short pulse equation (SP equation, or SPE)

uxt = u+ 1

6
(u3)xx (1)

was derived by Schäfer and Wayne [19] as a model equation for the propagation of ultra-

short optical pulses in non-linear media. In this equation, u = u(x, t) is a real-valued

function that represents the magnitude of the electric field. The short pulse equation is

an alternative model to the non-linear Schrödinger (NLS) equation, the latter being used

for describing the slow modulation of the amplitude of a weakly non-linear wave packet in

a moving medium. NLS is used in non-linear optics with great success to describe slowly

varying wave trains whose spectra are narrowly localized around the carrier frequency or

to describe the propagation of sufficiently broad pulses. In the regime of ultra-short pulses

where the width of optical pulse is in order of femtosecond, the SP equation is supposed to

provide better approximation to the corresponding solution of the Maxwell equation while

the NLS equation becomes less accurate. In [10], with the help of numerical simulations, it

was shown that the SP equation can indeed be used to describe pulses with broad spectrum.

In [17, 18], it was shown that the SP equation is completely integrable, in the sense

that it is the compatibility condition of a pair of linear, matrix-valued ordinary differential

equations involving an external (spectral) parameter; such pair of equations is called the

Lax pair. In the case of the SP equation, the associated Lax pair is as follows:

8x = U8, (2)

8t = V8, (3)
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where U and V are 2 × 2 matrices dependent on the spectral

parameter λ:

U =
(

λ λux
λux −λ

)
, (4)

V =




λ
2u

2 + 1
4λ

λ
2u

2ux − 1
2u

λ
2u

2ux + 1
2u − λ

2u
2 − 1

4λ


 . (5)

The Riemann–Hilbert approach to the study of solutions of the

SP equation was presented in [8].

The modified short pulse (mSP) equation

uxt = u+ 1
2u(u

2)xx, (6)

was proposed by Sakovich [16], who studied integrable non-linear

equations having the form

uxt = u+ au2uxx + buu2x. (7)

When a
b
= 1

2 , Equation 7 reduces to Equation 1 whereas the

case a
b
= 1 reduces to Equation 6, both cases being integrable. The

mSP equation (6) was studied by Guo and Liu, who constructed

soliton solutions by the Riemann–Hilbert method [14]. Matsuno

[15] proposed the N- component generalization of Equation 6,

which in the case N = 2 reads

uxt = u+ 1
2v(u

2)xx, vxt = v+ 1
2u(v

2)xx. (8)

Matsuno constructed the soliton solutions by solving the

associated bilinear equations and constructed the local and non-

local conservation laws of Equation 8.

Obviously, if v = u, then Equation 8 reduces to Equation 6. On

the other hand, if v = ū, where the bar stands for the complex

conjugation, the system (8) reduces [20] to

uxt = u+ 1
2 ū(u

2)xx, (9)

which will be called in what follows the modified focusing complex

short pulse equation (mfcSP equation or mfcSPE). Notice that the

reduction v = −ū gives rise to a defocusing version of Equation 9,

having theminus sign at the place of the plus. In [20], somemultiple

smooth soliton, cuspon soliton, loop soliton, breather, and rogue

wave solutions are constructed by N-fold Darboux transformation.

From the point of view of possible applications in optics, the

mfcSP equation, being formulated for a complex-valued function,

appears to be more informative: Similarly to the NLS equation,

a complex-valued function can contain not only the information

about the amplitude but also about the phase of the associated

electromagnetic wave. On the other hand, the mfcSP equation is

integrable: Its Lax pair is Equation 2, where [20]

U = λ

(
1− uxūx 2ux

2ūx −1+ uxūx

)
, (10)

V =




1
4λ + λ(1− uxūx)|u|2 −u+ 2λ|u|2ux

ū+ 2λ|u|2ūx − 1
4λ − λ(1− uxūx)|u|2


 . (11)

Motivated by the above, in the present study, we develop

a Riemann–Hilbert (RH) problem formalism for the inverse

scattering transform to the initial value problem for the mfcSPE:

uxt = u+ 1
2 ū(u

2)xx, t > 0, −∞ < x < +∞, (12)

u(x, 0) = u0(x), −∞ < x < +∞. (13)

We assume that u0(x) decays sufficiently fast at±∞:

u0(x) → 0, x → ±∞,

and we seek a solution u(x, t) that decays as x → ±∞ for all t > 0:

u(x, t) → 0, x → ±∞.

Notice that the RH approach for solving initial value problems

for integrable non-linear PDE can be viewed as a version of the

inverse scattering transform (IST) method for such problems, the

more traditional realization of which is based on deriving and

solving the Marchenko integral equation for the corresponding

inverse problems, see, for example, [1] and references therein. Since

the latter approach requires the representation of special solutions

of the x-equation of the corresponding Lax pair in terms of so-

called transformation operators, its application to cases where the

dependence of the Lax equations on the spectral parameter is more

involved (comparing, for example, with the case of the Korteweg-

de Vries equation and its modified versions) is not straightforward

because the very existence of the corresponding transformation

operators is questionable. On the other hand, as we will show in the

next section, the formalism of the RH problem allows us to establish

an algorithmic procedure providing special solutions of the Lax pair

equations with the necessary analytic properties.

In Section 2, we present a version of the Lax pair associated

with the mfcSP equation, which is more convenient for controlling

analytical properties of its special solutions, also known as the Jost

solutions. They are then used in Section 3 to formulate a matrix

Riemann–Hilbert problem suitable for solving the Cauchy problem

(12). In this way, we give a representation of the solution u(x, t) of

the problem (12) in terms of the solution of this RH problem. Then,

in Section 4, we show that a solution of the RH problem with any

appropriate jumpmatrix (ensuring the unique solvability of the RH

problem) gives rise to a solution of the mfcSPE. In Section 5, we

discuss the construction of soliton solutions using the formalism of

the RH problem, which is illustrated numerically in Section 6.

2 Lax pairs and eigenfunctions

The RH formalism for integrable non-linear equations utilizes

the possibility of constructing special solutions of linear equations

from the associated Lax pair, which are well controlled as functions

of the spectral parameter, in the whole extended complex plane.

For this purpose, it is useful to have the Lax pair equations in the

form suitable for establishing analytic properties of solutions near

the singular points with respect to spectral parameter of the Lax

pair equations. For different domains in the complex plane, these

solutions are defined differently and are related to each other at the

boundaries between these domains.
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To construct such special solutions of the differential equations

from the Lax pair, it is convenient to pass to integral equations,

whose solutions are particular solutions to the Lax pair equation.

Notice the coefficients U and V of the Lax pair are traceless

matrices. Consequently, the determinant of a matrix solution to

Equation 10 (composed of two vector solutions) is independent of

x and t.

To obtain a RH problem with the jump condition on the real

axis, as in the case of other Camassa–Holm-type equations [see

[3–9]], we redefine the spectral parameter introducing k: =iλ.

Notice that U and V have singularities (in the extended

complex k-plane) at k = 0 and at k = ∞. Namely, since U is

singular at k = ∞ only, for dealing with the problem on the whole

x-line it is important to control the behavior of special solutions of

the Lax pair equations for large k. Assume that u( · , t) ∈ W2,1(R)

and transform the Lax pair to the following form [cf. [2–4, 8]]:

8̂x + Qx8̂ = Û8̂, (14)

8̂t + Qt8̂ = V̂8̂, (15)

where the coefficients Q(x, t, k), Û(x, t, k), and V̂(x, t, k) have the

following properties:

1. Q is diagonal and is unbounded as k → ∞.

2. Û = O(1) and V̂ = O(1) as k → ∞.

3. The diagonal parts of Û and V̂ decay as k → ∞.

4. Û → 0 and V̂ → 0 as x → ±∞.

To transform the Lax pair, we introduce 8̂: =G8 with G =
G(x, t) to be defined. Then, the Lax pair (10) takes form

8̂x = GUG−18̂ + GxG
−18̂, (16)

8̂t = GVG−18̂ + GtG
−18̂. (17)

Since U is a product of the spectral parameter and a matrix

independent of it, we can define G so as Qx : = −GUG−1 is

a diagonal matrix function satisfying item (i). Then, the degree

of freedom in the determination of G (multiplication of G by a

diagonal matrix from the left) can be used to provide us with Û

satisfying (iii). Namely, introducing

q(x, t): =1+ |ux(x, t)|2 (18)

we have

G(x, t) = 1
√
q

(
e−m e−mux

−emūx em

)
(19)

with the inverse

G−1(x, t) = 1
√
q

(
em −e−mux
emūx e−m

)
, (20)

wherem is not specified for the moment. Then,

Qx(x, t, k) = −GUG−1 = ikq(x, t)

(
1 0

0 −1

)
= ikq(x, t)σ3, (21)

where σ3 is the Pauli matrix σ3 =
(
1 0

0 −1

)
.

To satisfy item (iii) for Û, we use the freedom of choice of m

to make the diagonal part of Û = GxG
−1 to be identically equal to

zero. Complemented by a norming condition m(+∞, t) = 0, this

leads to

m(x, t) : = 1

2

∫ ∞

x

uzūzz − uzzūz

1+ |uz|2
(z, t)dz, (22)

which finally gives

Û = Û(x, t) = 1

q

(
0 e−2muxx

−e2mūxx 0

)
. (23)

Notice that m is purely imaginary and thus m̄ = −m and

|em| = 1.

As for the t–equation (17), we have:

GVG−1 + GtG
−1 =(−ikq|u|2 − 1

4ikq
(1− uxux)−mt+

1

2q
(ux(−2u+ uxt)+ ux(2u− uxt)))σ3

+ 1

2ikq

(
0 e−2mux

e2mux 0

)

+1

q

(
0 −e−2m(uu2x + u− uxt)

e2m(uu2x + u− uxt) 0

)
.

(24)

Now, we can determine Q(x, t, k) by integrating Equation 21 w.r.t.

x and taking into account that we want V̂ in Equation 15 to vanish

at x = ±∞ for all t. This gives

Q(x, t, k) : =
(
ikx̂(x, t)+ t

4ik

)
σ3, (25)

where

x̂(x, t) : = x−
∫ ∞

x
(q(y, t)− 1)dy (26)

is normalized in such a way that x̂− x → 0 as x → +∞. Then, we

have

Qt(x, t, k) =
(
ikx̂t(x, t)+

1

4ik

)
σ3 =

(
ik|u|2q(x, t)+ 1

4ik

)
σ3,

where we have used the equality qt = (|u|2q)x which is actually the

mfcSPE (9) rewritten as a conservation law. Correspondingly,

V̂(x, t, k) =
( |ux|2
2ikq

−mt +
1

2q
(ux(−2u+ uxt)+ ux(2u− uxt))

)
σ3

+ 1

2ikq

(
0 e−2mux

e2mux 0

)

+1

q

(
0 −e−2m(uu2x + u− uxt)

e2m(uu2x + u− uxt) 0

)
.

(27)

Remark 2.1. The dependence of the diagonal matrix Q on variables

x̂ and t, see Equation 25, is the same as in the case of the SP equation

[see [8]]. This justifies the name of the mfcSPE as the modified SP

equation: The same property holds for the pair consisting of the

famous Korteweg–de Vries equation ut + 6uux + uxxx = 0 and the

modified Korteweg–de Vries equation ut + 6u2ux + uxxx = 0.
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Introducing

8̃ = 8̂eQ, (28)

Equations 14 can be rewritten as

8̃x + [Qx, 8̃] = Û8̃, (29)

8̃t + [Qt , 8̃] = V̂8̃, (30)

where [ · , · ] denotes the matrix commutator. Now, we
determine the special (Jost) solutions 8̃±(x, t, k) of Equation 29 as
the 2×2 matrix-valued solutions of the associated Volterra integral
equations:

8̃±(x, t, k) = I +
∫ x

±∞
eQ(y,t,k)−Q(x,t,k)Û(y, t)8̃±(y, t, k)e

Q(x,t,k)−Q(y,t,k)dy, (31)

where I is the identity matrix. Taking into account the definition of
Q (25) and (26), we get

8̃+(x, t, k) = I −
∫ ∞

x

eik
∫ y
x q(ξ ,t)dξ σ3 Û(y, t)8̃+(y, t, k)e

−ik
∫ y
x q(ξ ,t)dξ σ3dy, (32)

8̃−(x, t, k) = I +
∫ x

−∞
e
−ik

∫ x
y q(ξ ,t)dξ σ3 Û(y, t)8̃−(y, t, k)e

ik
∫ x
y q(ξ ,t)dξ σ3dy. (33)

Respectively, 8̂± : = 8̃±e−Q are the Jost solutions of the Lax

pair equations (14).

In what follows, the columns of a 2×2 matrixµ =
(
µ(1) µ(2)

)

are denoted by µ(1) and µ(2). Since q is positive, the exponentials

in Equation 32 as functions of y either decay to 0 or grow to

∞ as y goes to +∞ or to −∞, depending on the sign of the

imaginary part of k (for real k, all exponentials are oscillating

functions). Moreover, if we consider Equation 32 columnwise, the

corresponding integral equation involves the exponentials of only

one sign: either eik
∫ y
x q(ξ ,t)dξ or e−ik

∫ y
x q(ξ ,t)dξ . Consequently, we can

determine the columns of Equation 32 via Neumann series for the

corresponding integral equation, which converge if k belongs to the

corresponding half–plane: the upper half–plane {k| Im k ≥ 0} or
the lower half–plane {k| Im k ≤ 0}. The obtained Jost solutions

satisfy the following properties [cf. [8]] for all (x, t):

1. det 8̃± ≡ 1 (the consequence of the traceless of the coefficient

matrices in Equation 14.

2. 8̃
(1)
− and 8̃

(2)
+ are analytic in {k | Im k > 0} and continuous in

{k | Im k ≥ 0, k 6= 0}.
3. 8̃

(1)
+ and 8̃

(2)
− are analytic in {k | Im k < 0} and continuous in

{k | Im k ≤ 0, k 6= 0}.
4.
(
8̃

(1)
− 8̃

(2)
+

)
→ I as k → ∞ in {k | Im k ≥ 0}.

5.
(
8̃

(1)
+ 8̃

(2)
−

)
→ I as k → ∞ in {k | Im k ≤ 0}.

6. Symmetry property:

8̃±( · , · , k̄) =
(

0 1

−1 0

)
8̃±( · , · , k)

(
0 −1

1 0

)
. (34)

The last property is due to the symmetry of the matrix Ǔ: =Û−
ikqσ3:

Ǔ( · , · , k̄) =
(

0 1

−1 0

)
Ǔ( · , · , k)

(
0 −1

1 0

)
. (35)

Remark 2.2. Introducing the new variable x̂ as in Equation 26,

Equation 14 reduces to the (non-self-adjoint) Dirac equation for

8̆(x̂, t, k): =8̂(x(x̂, t), t, k):

8̆x̂ + ikσ38̆ = Ŭ8̆, (36)

where

Ŭ = 1

q

(
0 e−2muxx

−e2mūxx 0

)
. (37)

Equation 36 is the spatial equation from the Lax pair associated

with the focusing non-linear Schrödinger (fNLS) equation, see [12].

Therefore, the analytic properties of 8̃± stated above are the same

as in the case of the fNLS equation considered in [12].

Now, we introduce the scattering matrix s(k) as the matrix

relating the Jost solutions 8̂+ and 8̂− for those values of k where

all their columns are determined (i.e., for real k):

8̂+(x̂, t, k) = 8̂−(x̂, t, k)s(k), k ∈ R (38)

or, in terms of 8̃±,

8̃+(x̂, t, k) = 8̃−(x̂, t, k)e
−Q(x̂,t,k)s(k)eQ(x̂,t,k), k ∈ R. (39)

Notice that since 8̂+ and 8̂− are solutions of the same

differential equations (16), the matrix s(k) does not depend on x̂

and t. Consequently, s(k) can be determined by q(x, 0) only, by

s(k) = 8̃−1
− (0, 0, k)8̃+(0, 0, k).

Indeed, 8̃±(x̂, 0, k) are determined [see Equation 32] by Û(x, 0)

and q(x, 0) which, in turn, are determined by q(x, 0) alone.

Due to the symmetry (34) and the fact that eQ(x,t,k) satisfies the

same symmetry as well, the scattering matrix can be rewritten with

the help of two scalar spectral functions, a(k) and b(k), as follows:

s(k) =
(

a(k) b(k)

−b(k) a(k)

)
, k ∈ R. (40)

Taking into account Remark 2.2, the spectral functions have

properties, which are similar to those in case of the fNLS equation

in [12]:

1. a(k) and b(k) are determined by u(x, 0) through the solutions

8̃±(x, 0) of Equation 32, where Û = Û(x, 0) is defined by

Equation 23 with u replaced by u0(x) (same for q).

2. a(k) is analytic in {k| Im k > 0} and continuous in {k| Im k ≥
0}, moreover, a(k) → 1 as k → ∞.

3. b(k) is continuous for k ∈ R and b(k) → 0 as |k| → ∞.

4. |a(k)|2 + |b(k)|2 = 1 for k ∈ R.

5. Let {kj}N1 be the set of zeros of a(k) in {k| Im k > 0}. We will

make the genericity assumption that the amount of these zeros

is finite and there are no real zeros. Then, 8̂
(1)
− (x, t, kj) and

8̂
(2)
+ (x, t, kj) are linearly dependent solutions of Equation 14

and thus

8̃
(1)
− (x, t, kj) = e

2ikj x̂(x,t)+ t
2ikj 8̃

(2)
+ (x, t, kj)αj (41)

with the constants αj, which, similarly to r(k) are determined

by u0(x) setting t = 0 in Equation 41.
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3 The Riemann–Hilbert problem

3.1 A RH problem constructed from special
eigenfunctions

In this section, we consider the generic situation when all zeros

of a(k) in {k| Im k > 0} are simple. Then, the analytic properties

of 8̃± stated above allow us to rewrite the scattering relations

in Equation 39 as a jump relation for a meromorphic (w.r.t. k),

2×2matrix–valued function (depending on x and t as parameters).

DefineM(x, t, k) as follows (where the scalar factors are introduced

in order to provide detM ≡ 1):

M(x, t, k) =





(
8̃

(1)
− (x,t,k)

a(k)
8̃

(2)
+ (x, t, k)

)
, Im k > 0,(

8̃
(1)
+ (x, t, k)

8̃
(2)
− (x,t,k)

a(k)

)
, Im k < 0.

(42)

Define also the reflection coefficient:

r(k): =b(k)

a(k)
, k ∈ R. (43)

Then, the limiting values ofM as k approaches the real axis from

the domains± Im k > 0 (we denote them byM±(x, t, k), k ∈ R) are

related as follows:

M+(x, t, k) = M−(x, t, k)e
−Q(x,t,k)J0(k)e

Q(x,t,k), k ∈ R, (44)

where

J0(k) =
(
1+ |r(k)|2 r(k)

r(k) 1

)
. (45)

Taking into account the properties of 8̃± and s(k), the function

M(x, t, k) satisfies the following properties:

1. detM ≡ 1.

2. Normalization:M(·, ·, k) → I as k → ∞.

3. Symmetry:

M(·, ·, k) =
(

0 1

−1 0

)
M(·, ·, k)

(
0 −1

1 0

)
. (46)

4. M(1) has poles at the zeroes kj, j = 1, 2, . . . ,N, of a(k) (in the

upper half-plane),M(2) has poles at kj (in the lower half-plane),

and the following conditions are satisfied:

Resk=kj M
(1)(x, t, k) = iαje

2ikjx(x̂,t)+ t
2ikj M(2)(x, t, kj), (47)

Resk=kj
M(2)(x, t, k) = iαje

−2ikjx(x̂,t)− t

2ikj M(1)(x, t, kj) (48)

where αj, j = 1, 2, . . . ,N, are constants.

The idea of the Riemann-Hilbert approach in the inverse

scattering method consists of considering the jump relation in

Equation 44 complemented by the normalization conditionM → I

as k → ∞ and by the residue conditions (47) as the problem

of finding M(x, t, k) given the jump condition (44) (with a given

jumpmatrix) and the residue conditions (47) [i.e., given (kj,αj), j =
1, ...,N] at the singularities ofM.

As in the case of other Camassa–Holm-type equations

[particularly, the SPE, see [8]], one faces the problem that the

determination of the jump matrix (e−Q(x,t,k)J0(k)e
Q(x,t,k)) involves

not only the objects that are uniquely determined by the initial data

u(x, 0) [i.e., the spectral functions a(k) and b(k) involved in J0(k)]

but also Q(x, t, k), which is not determined by u(x, 0): Its definition

involves u(x, t) for t > 0.

We can resolve this problem by considering a RH problem

depending, instead of (x, t), on the parameters x̂ and t; in this way,

the jump and residue data become explicit (in terms of x̂ and t).

Actually, we introduce

M̂(x̂, t, k): =M(x(x̂, t), t, k). (49)

In terms of M̂(x̂, t, k), the jump condition takes the form:

M̂+(x̂, t, k) = M̂−(x̂, t, k)J(x̂, t, k), k ∈ R, (50)

where

J(x̂, t, k): =e−Q̂(x̂,t,k)J0(k)e
Q̂(x̂,t,k) (51)

with J0 defined by Equation 45 and

Q̂(x̂, t, k) =
(
ikx̂+ t

4ik

)
σ3 (52)

[so that Q̂(x̂, t, k) = Q(x(x̂, t), t, k)].

The residue conditions (47) also involve x̂ and t explicitly:

Resk=kj M̂
(1)(x̂, t, k) = iαje

2ikj x̂+ t
2ikj M̂(2)(x̂, t, kj), (53)

Resk=kj
M̂(2)(x̂, t, k) = iαje

−2ikj x̂− t

2ikj M̂(1)(x̂, t, kj) (54)

On the one hand, the jump and residue conditions above

were obtained assuming that there exists a solution u(x, t) of the

mfcSP equation which decays as x → ±∞ for any t > 0. On

the other hand, conditions (45), (50)–(53) can be considered as a

factorization problem of the Riemann–Hilbert type, whose data are

completely determined by u(x, 0).

RH problem. Given {r(k), k ∈ R; (kj,αj)
N
1 }, find a piece-

wise (w.r.t to R) meromorphic function M̂(x̂, t, k) that satisfies

conditions (45), (50)–(53) and the normalization condition:

M̂(x̂, t, k) → I as k → ∞. (55)

3.2 RH problem with second-order poles

In this section, to get more examples of “explicit” solutions

to the mfcSPE, see Section 6 below, we allow the scattering

function a(k) to have second-order zeroes in the upper half-plane,

meaning that M̂(x̂, t, k) has second-order poles. We develop the

generalization of the residue conditions on the columns of M̂ at

the poles, which provides the unique solvability of the respective

RH problem. These conditions include more relations between the

coefficients of the Laurent expansions of the columns of M̂(x̂, t, k).
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Let {kj}N1 be the set of second–order zeroes of a(k). Consider

the Laurent expansion of M̂(x̂, t, k) defined by Equation 42 and the

expansion of a(k) as k → kj:

M̂(1)(k) =
M̂

(1)
−2

(k− kj)2
+

M̂
(1)
−1

(k− kj)
+ M̂1

0 +O(k− kj), (56)

M̂(2)(k) = M̂
(2)
0 + M̂

(2)
1 (k− kj)+ M̂

(2)
1 (k− kj)

2 +O(k− kj)
3,

(57)

a(k) = a2(k− kj)
2 + a3(k− kj)

3 +O(k− kj)
4. (58)

The definition of the scattering matrix (38) provides us with the

equality

a(k) = det
(
8̂

(1)
− (x̂, t, k) 8̂

(2)
+ (x̂, t, k)

)
.

Since kj is a zero of a(k), the columns 8̂
(1)
− and 8̂2

+ are linearly

dependent; in terms of 8̃, this reads:

8̃
(2)
+ (x̂, t, kj)e

2ikj x̂+ t
2ikj = 8̃

(1)
− (x̂, t, kj)cj (59)

with some constant cj.

Passing to the limit k → kj for M̂(1)(k)(k − kj)
2, where M̂

is defined by Equation 42, and using Equation 59 we get our first

singularity condition:

M̂
(1)
−2(x̂, t) =

1

a2cj
e
2ikj x̂+ t

2ikj M̂
(2)
0 (x̂, t). (60)

Next, we consider the derivative of a(k). Taking into account

the linear dependence of 8̂
(1)
− (kj) and 8̂

(2)
+ (kj), we have

ȧ(kj) = det

(
˙̂
8

(1)
− (kj)−

1

cj

˙̂
8

(2)
+ (kj) 8̂

(2)
+ (kj)

)
= 0,

where the dot denotes the derivative w.r.t. k. Thus, we can introduce

dj(x̂, t) such that

˙̂
8

(1)
− (x̂, t, kj)−

1

cj

˙̂
8

(2)
+ (x̂, t, kj) = dj(x̂, t)8̂

(2)
+ (x̂, t, kj). (61)

Unlike cj, it is not clear immediately that dj is independent of

x̂ and t. To check this out, we differentiate Equation 61 w.r.t. x̂ and

consider the matrix entries 11 and 12:

(
˙̂
811

− )x̂ −
1

cj
(
˙̂
812

+ )x̂ = (dj)x̂8̂
12
+ + dj(

˙̂
812

+ )x̂. (62)

Rewriting the Lax pair equations (14) in the form

8̂x̂ = Ǔ8̂, 8̂t = V̌8̂

and also differentiating them w.r.t. k, Equation 62 can be written as

˙̌U118̂11
− + ˙̌U128̂21

− + Ǔ11 ˙̂811
−+

Ǔ12 ˙̂821
− − 1

cj
( ˙̌U118̂12

++

˙̌U128̂22
+ + Ǔ11 ˙̂812

+ + Ǔ12 ˙̂822
+ )

= (dj)x̂8̂
12
+ + dj(Ǔ

118̂12
+ + Ǔ128̂22

+ ). (63)

Now, using the linear dependence of 8̂
(1)
− and 8̂2

+ and

Equation 61, the respective terms in Equation 63 cancel out, thus

leaving us with (dj)x̂ = 0. Since these computations are not specific

for the derivative w.r.t. x̂, we can deduce (dj)t = 0 as well and thus

dj(x̂, t) = dj is independent of x̂ and t.

In terms of 8̃, equality (61) reads

˙̃8
(1)

− (x̂, t, kj)− 1
cj
e
2ikj x̂+ t

2ikj ˙̃8
(2)

+ (x̂, t, kj) =
(
dj +

2(ix̂− t

4ik2j

)

cj

)

e
2ikj x̂+ t

4ikj 8̃
(2)
+ (x̂, t, kj). (64)

To get the second singularity condition, we consider

M̂
(1)
−1 −

1

a2cj
e
2ikj x̂+ t

2ikj M̂
(2)
1 = lim

k→kj
(k− kj)

(
M̂(1) − 1

a2cj
e
2ikj x̂+ t

2ikj
M̂(2)

(k− kj)2

)

= lim
k→kj

8̃
(1)
− (k)− 1

cj
e
2ikj x̂+ t

2ikj (1+ a3
a2
(k− kj)+O(k− kj)

2)8̃
(2)
+ (k)

a2(k− kj)+O(k− kj)2
,

which, using Equation 64, leads to

M̂
(1)
−1 = 1

a2cj
e
2ikj x̂+ t

2ikj M̂
(2)
1 +

1
a2

(
dj +

2(ix̂− t

4ik2j

)

cj
− a3

cja2

)
e
2ikj x̂+ t

2ikj M̂
(2)
0 . (65)

Introducing αj = 1
a2cj

and βj = dj
a2

− a3
cja

2
2
, the singularity

conditions at kj take the form

M̂
(1)
−2(x̂, t) = αjM̂

(2)(x̂, t, kj)e
2ikj x̂+ t

2ikj , (66)

M̂
(1)
−1(x̂, t) =[
αj

˙̂M(2)(x̂, t, kj)+
(

βj + 2αj

(
ix̂− t

4ik2j

))
M̂(2)(x̂, t, kj)

]

e
2ikj x̂+ t

2ikj . (67)

By the symmetry (46), the respective conditions at kj are as follows:

M̂
(2)
−2(x̂, t) = −αjM̂

(1)(x̂, t, kj)e
−2ikj x̂− t

2ikj , (68)

M̂
(2)
−1(x̂, t) =

−αj
˙̂M(1)(x̂, t, kj)+


−β j + 2αj


ix̂− t

4ik
2

j




 M̂(1)(x̂, t, kj)




e
−2ikj x̂− t

2ikj . (69)

These conditions are direct generalization of the residue

conditions. Here, M̂
(1)
−1 is the residue itself, and since M̂ has higher

order poles, more singular coefficients appear in the expansions

at corresponding points; These coefficients are controlled by

conditions (66). Similarly to the case with simple poles, the

singularity conditions (66) ensure the uniqueness of the solution

of the RH problem via Liouville’s theorem. Indeed, assuming that

Frontiers in AppliedMathematics and Statistics 06 frontiersin.org

https://doi.org/10.3389/fams.2024.1466965
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Barkov and Shepelsky 10.3389/fams.2024.1466965

M and M̃ are two solutions of the RH problem with the singularity

conditions (66), direct calculations show that M̃M−1 = O(1) as

k → kj; complemented with the conditions that M̃M−1 has no

jump across R and M̃M−1 → I as k → ∞, this, by Liouville’s

theorem, gives M̃M−1 ≡ I.

3.3 Recovering the solution of the Cauchy
problem from the associated RH problem

In this section, we show that u(x, t) can be recovered in terms

of M̂(x̂, t, k), which is considered as the solution of the Riemann–

Hilbert problem (45), (50)–(55) (or its version with the singularity

conditions presented in Section 3.2) evaluated at k = 0. Recall that

the data for this problem are uniquely determined by the initial data

u0(x). Actually, this value of k is specific to Equation 10 because U

vanishes at k = 0.

To determine the behavior of M̂(x̂, t, k) as k → 0, it is

convenient to start with the original Lax pair (2) and write its

coefficients as U = −ikσ3 + U0 and V = − 1
4ik

σ3 + V0. In this

way, the Lax pair can be rewritten as

8x + ikσ38 = U08, (70)

8t +
1

4ik
σ38 = V08, (71)

where

U0 = −ik

(
−|ux|2 2ux
2ux |ux|2

)
, (72)

V0 =
(
−ik(1− |ux|2)|u|2 −u− 2ik|u|2ux
u− 2ik|u|2ux ik(1− |ux|2)|u|2

)
. (73)

Notice that U0 → 0 and V0 → 0 as |x| → ∞ and that

U0(x, t, 0) ≡ 0.

Introducing

Q0(x, t, k): =
(
ikx+ t

4ik

)
σ3 (74)

and

8̃0 = 8eQ0 , (75)

the Lax pair (70) can be rewritten as

8̃0x + [Q0x, 8̃0] = U08̃0, (76)

8̃0t + [Q0t , 8̃0] = V08̃0. (77)

The Jost solutions 8̃0±(x, t, k) of Equation 47 are determined,

similarly to above, as the solutions of the associated Volterra interal

equations:

8̃0±(x, t, k) = I +
∫ x

±∞
eik(y−x)σ3U0(y, t, k)8̃0±(y, t, k)e

ik(x−y)σ3dy.

(78)

SinceU0(x, t, 0) ≡ 0, we have the following important property:

8̃0±(x, t, k) ≡ I (79)

for all x and t. Moreover, solving Equation 78 by the Neumann

series, we obtain

Proposition 3.1. As k → 0,

8̃0±(x, t, k) = I−ik

(
−
∫ x
±∞|uy(y, t)|2dy 2u(x, t)

2u(x, t)
∫ x
±∞|uy(y, t)|2dy

)
+O(k2).

(80)

Now we notice that 8̃± and 8̃0± being related to the same

system of differential equations (2) are related as follows:

8̃±(x, t, k) = G(x, t)8̃0±(x, t, k)e
−Q0(x,t,k)C±(k)e

Q0(x,t,k), (81)

where C±(k) are some matrices independent of x and t. Passing to

the limits x → ±∞ allows us to determine C±(k):

C+(k) = I, C−(k) = e(ikγ+m(−∞))σ3 ,

where γ : =
∫ +∞
−∞ |uz|2dz.

Next, combining Proposition 3.1 with Equation 81, the first two

terms in the development of 8̃+(x, t, k) and 8̃−(x, t, k) as k → 0

follow:

8̃+(x, t, k) = G(x, t)

(
I − 2ik

(∫ +∞
x |uy|2dy u

u −
∫ +∞
x |uy|2dy

))
+

O(k2), (82)

8̃−(x, t, k) = G(x, t)
(
em(−∞)σ3 − 2ik

(
−em(−∞)

∫ +∞
x |uy|2dy e−m(−∞)u

em(−∞)u e−m(−∞)
∫ +∞
x |uy|2dy

))
+

O(k2). (83)

Using all these expansions in Equation 39, we arrive at the

development of the matrix entries of s(k) at k = 0:

a(k) = em(−∞)(1+ 2ikγ )+O(k2), b(k) = O(k2). (84)

Finally, substituting Equations 82, 84 into Equation 42, we get

the first two terms in the development of M̂:

M̂(x̂, t, k) = G(x(x̂, t), t, k)

(
I − 2ik

(
x(x̂, t)− x̂ u(x̂, t)

u(x̂, t) x̂− x(x̂, t)

))
+

O(k2), k → 0. (85)

Equation 85 allows us to express the solution of the initial value

problem (12) for the mfcSP equation in terms of the solution of the

associated RH problem.

Theorem 3.2 (representation). Assume that the Cauchy problem

(12) for the mfcSP equation has a solution u(x, t). Let {r(k), k ∈
R; {kj,αj}N1 } be the spectral data determined by u0(x), and let

M̂(x̂, t, k) be the solution of the associated RH problem (45), (50)–

(55). Then, evaluating M̂ as k → 0, the solution u(x, t) of the

Cauchy problem (12) can be given, in a parametric form, as follows:

u(x, t) = û(x̂(x, t), t), where

x(x̂, t) = x̂+ f1(x̂, t), (86)

û(x̂, t) = f2(x̂, t) (87)
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with f1 and f2 determined by

(
f1 f2
f̄2 −f1

)
(x̂, t): = lim

k→0

i

2k
(M̂−1(x̂, t, 0)M̂(x̂, t, k)− I). (88)

4 From the RH problem to a solution
of the mfcSP equation

All previous results, particularly Theorem 3.2, were obtained

under the assumption of existence of a solution u(x, t) to

the Cauchy problem (12). In this section, we, alternatively,

start with a RH problem with any appropriate r(k) (that

ensures the unique solvability of the RH problem), extract

from its solution (following the analysis above) certain

functions (of the parameters of the RH problem), and

verify that they satisfies non-linear equations equivalent to

the mfcSPE.

Theorem 4.1. Let u0(x) ∈ W2,1(R) and let {r(k), k ∈ R; {kj,αj}N1 }
be the spectral data associated with u0(x). Then:

1. The RH problem (45), (50)–(55) has a unique solution

M̂(x̂, t, k) for all x̂ ∈ R and t ≥ 0.

2. Introduce f1, f2 as in Equation 88 and x(x̂, t), û(x̂, t) as in

Equations 86, 87 and define

q̂(x̂, t): = 1

|α|2 , ŵ(x̂, t): =β

α
, (89)

where
(

α(x̂, t) β(x̂, t)

−β̄(x̂, t) ᾱ(x̂, t)

)
: =M̂(x̂, t, 0). (90)

Then, the following equations hold:

(a) xx̂ = 1
q̂
;

(b) ûx̂ = ŵ
q̂
;

(c) q̂t = q̂(ŵû+ ŵû).

Particularly, xx̂(·, t) is always real-valued, which provides a

correct change of variables (x̂, t) 7→ (x, t).

Proof. (i) The structures of the jump matrix and the residue

conditions are the same as in the case of the focusing NLS equation

(only the dependence on x̂ and t, which are just parameters for

the RH problem, is different). Therefore, the unique solvability of

the RH problem (45), (50)–(55) follows using the same reasons

as for the NLS equation [12]: Namely, according to the Gohberg–

Krein theory [11, 13], the RH problem with no residue conditions

has a unique solution provided the jump matrix J is such that

J + J∗ is positive definite (which guarantees that all partial

indices of the RH problem equal zero). Actually, this positivity

condition allows showing that the only solution of the associated

homogeneous RH problem (normalized, instead of Equation 55,

by the condition M̂(x̂, t, k) → 0 as k → ∞) is the trivial one

[see, for example, [21]]; then, the unique solvability of the non-

homogeneous RH problem follows by the Fredholm property of

the problem.

(ii) The matrix J satisfies the symmetry condition described

in Equation 46; this, by the uniqueness of the solution of the RH

problem, implies that the solution M̂ satisfies the same symmetry

(46) as well, which gives us the specific structure of the l.h.s. of

Equation 88. Moreover, |α|2 + |β|2 = det M̂(0) = 1.

The proof of equations (a), (b), and (c) is based on calculations

of 9x̂9
−1 and 9t9

−1, where

9(x̂, t, k): =M̂(x̂, t, k)e(−ikx̂− t
4ik

)σ3 .

Proof of (a) and (b). Consider 9x̂9
−1. Starting from the

expansion

M̂(x̂, t, k) = I + M̂1

ik
+O(k−2), k → ∞,

by direct computation we have:

9x̂9
−1(x̂, t, k) = −ikσ3 + [σ3, M̂1]+O(k−1),

k → ∞.

Moreover,9x̂9
−1(x̂, t, k) has neither jumps nor singularities in

k ∈ C; hence, by Liouville’s theorem,

9x̂9
−1(x̂, t, k) = −ikσ3 + [σ3, M̂1]. (91)

Now, we consider the development of M̂ at k = 0. Introducing

G0 and G1 by

M̂(x̂, t, k) = G0(x̂, t)(I − 2ikG1(x̂, t))+O(k2), k → 0,

we have

G0(x̂, t) = M̂(x̂, t, 0) =
(

α β

−β α

)

and

G1(x̂, t) = lim
k→0

i

2k
(M̂−1(x̂, t, 0)M̂(x̂, t, k)− I) =

(
f1 f2
f2 −f1

)
,

which yields the development of 9x̂9
−1 at k = 0:

9x̂9
−1(x̂, t, k) = G0x̂G

−1
0 −ikG0(2G1x̂+σ3)G

−1
0 +O(k2), k → 0.

(92)

Comparing this with Equation 91, we get, in particular, the

equality

σ3 = G0(x̂, t)(2G1x̂(x̂, t)+ σ3)G
−1
0 (x̂, t),

which in terms of f1, f2,α, and β reads

f1x̂ =
|α|2 − |β|2 − 1

2
, f2x̂ = αβ . (93)

Taking into account Equation 86 and the determinant relation

|α|2 + |β|2 = 1, we have the following expressions for xx̂ and ûx̂:

xx̂ = 1+ f1x̂ =
|α|2 − |β|2 + 1

2
= |α|2, ûx̂ = f2x̂ = αβ (94)
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and thus (a) and (b) follow in view of the definitions (89).

Proof of (c). Now, we consider9t9
−1. On the one hand, by the

normalization of M̂,

9t9
−1(x̂, t, k) = O(k−1), k → ∞.

On the other hand, similarly to Equation 92, we have

9t9
−1 = − 1

4ik
G0σ3G

−1
0 +(G0t+

1

2
G0[G1, σ3])G

−1
0 +O(k), k → 0.

Thus, by Liouville’s theorem,

G0t = −1

2
G0[G1, σ3],

which in terms of f1, f2,α, and β reads

αt = −βf2, βt = αf2.

Substituting this into q̂t obtained by differentiating Equation 89

by t, we arrive at (c) of Theorem 4.1.

Corollary 4.2. With the same assumptions and notations as in

Theorem 4.1, introduce

u(x, t): =û(x̂(x, t), t), q(x, t): =q̂(x̂(x, t), t).

Then, the three equations (a)–(c) from Theorem 4.1 reduce to

qt = (q|u|2)x, (95)

q = 1+ |ux|2. (96)

which is the mfcSP equation in the conservation law form.

Proof. First, it follows from (a) that x̂x(x, t) = q(x, t). Denoting

w(x, t): =ŵ(x̂(x, t)), from (b) we get ûx̂(x̂(x, t), t) = w(x,t)
q(x,t)

. Now

considering ux(x, t) = ûx̂(x̂(x, t), t)x̂x(x, t) leads to

w = ux. (97)

Thus, Equation 96 reads q = 1 + |w|2, or, equivalently, q̂ =
1+ |ŵ|2, which follows form definitions (89) of q̂ and ŵ.

To get the expression for qt , we start with ( 1
q̂
)t . Using (c), then

(b), and taking into account q̂ = q̂, we get:

(
1

q̂

)

t

= − q̂t

q̂2
= −q̂(ŵû+ ŵû)

q̂2
= −(ûx̂û+ ûx̂û) = −(ûû)x̂.

Thus, we get (c) in the conservation law form:

(
1

q̂

)

t

= −(|û|2)x̂. (98)

Now from (a) with Equation 98, we deduce

xt(x̂, t) = − ∂

∂t

(∫ +∞

x̂

(
1

q̂(ξ , t)
− 1

)
dξ

)
=

−
∫ +∞

x̂
(|û(ξ , t)|2)ξdξ = −|û(x̂, t)|2.

Substituting this into the identity q̂t = qxxt + qt and using (c)

gives

qt = q(wu+ wu)+ qx|u|2 = quxu+ quxu+ qxuu = (q|u|2)x.

Remark 4.3. Since xx̂(x̂, t) = |α(x, t)|2, the mapping x̂ 7→ x for a

fixed t has a bounded inverse provided α 6= 0. In this case, a smooth

solution û(x̂, t) gives rise to a smooth solution u(x, t) in the original

variables. Otherwise, u(x, t) associated with a smooth û(x̂, t) may

not be smooth even if it remains bounded. This indeed will be

observed in the next section devoted to soliton-type solutions of

the mfcSPE.

5 Solitons

5.1 One-soliton solutions from the RH with
one simple pole

Actually, solving the Riemann–Hilbert problem can be reduced

to solving a coupled system consisting of integral equations

generated by the jump condition and algebraic equations generated

by the residue or higher singularity conditions. In this settings, if

the jump condition is trivial (J = I), then the solution of RH

problem becomes a rational function of the spectral parameter, and

solving the RH problem reduces to the problem in which we have

to solve a system of linear algebraic equations only. The dimension

of such system is determined by the number of the poles in the

residue/singularity conditions.

Below consider the simplest, one-soliton solutions, which

correspond to the trivial jump condition and the singularity

conditions associated with one zero of a(k). The generalization

to the case of multi-solitons is straightforward but requires

more calculations related to solving larger systems of linear

algebraic equations. Notice that already one-soliton solutions allow

specifying various, qualitatively different solutions. Particularly, in

this section, we consider the case where a(k) has a single, simple

zero at k1 in the upper half-plane. Notice that in contrast with the

case of the SP equation, now a single zero of a(k) has not to be

purely imaginary.

As we mentioned above, solitons correspond to the situation in

which the jump condition for the RH problem is trivial (there is

no jump at all), and thus, we can search the solution of the RH

problem as a matrix with elements which are rational functions

of the spectral parameter. The form (up to specific element values

of coefficients as functions of x̂ and t) of that matrix elements is

dictated by the following:

1. The structure of the residue condition (dependence on k);

2. The normalization condition as k → ∞.

Combining these two conditions, we arrive at the following

form of M̂ as function of k (with some coefficients depending on

x̂ and t):

M̂(k) =
( k−B11

k−k1

B12
k−k1

B21
k−k1

k−B22
k−k1

)
.
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As mentioned in Theorem 4.1, M̂ satisfies the symmetry

condition (46), which reduces the number of unknown coefficients

Bij from 4 to 2: we have B22 = B̄11 and B21 = −B̄12
and thus

M̂(k) =




k−B11
k−k1

B12
k−k1

− B12
k−k1

k−B11
k−k1


 . (99)

Postponing for a moment the problem of determination of

the coefficients B11 and B12 from the details of the residue

conditions, we begin with finding the matrix

(
f1 f2
f2 −f1

)
determined

by Equation 86 in Theorem 3.2, which will give us the solution of

the mfcSPE. We have

M̂(0) =




B11
k1

− B12
k1

B12
k1

B11
k1


 (100)

with

M̂−1(0) = |k1|2
|B11|2 + |B12|2




B11
k1

B12
k1

− B12
k1

B11
k1


 . (101)

Notice that since det M̂(k) ≡ 1, from Equation 100 we get

|B11(x̂, t)|2 + |B12(x̂, t)|2 = |k1|2 (102)

for all x̂ and t.

Furthermore, from Equation 99 we have

M̂(k) =




B11
k1

+ B11−k1
k21

k − B12
k1

− B12

k21
k

B12
k1

+ B12
k21

k B11
k1

+ B11−k1

k21
k


+O(k2) (103)

and thus, using Equation 101,

M̂−1(0)M̂(k) = I + k|k1|2
|k1|2




|k1|2−B11k1
k1|k1|2 − B12

k21
B12
k21

|k1|2−B11k1
k1|k1|2


+O(k2).

(104)

Now, we are able to get the expressions for f1 and f2
and thus for û and x, see Equation 86, in terms of B12(x̂, t)

and B11(x̂, t):

(
f1 f2
f2 −f1

)
: =1

2
i




|k1|2−B11k1
k1|k1|2 − B12

k21
B12
k21

|k1|2−B11k1
k1|k1|2


 (105)

and thus

û(x̂, t) = f2(x̂, t) = − iB12(x̂, t)

2k21

(106)

and

x(x̂, t) = x̂+ f1(x̂, t) = x̂+ i(|k1|2 − B11(x̂, t)k1)

2k1|k1|2
. (107)

To have û and x explicitly as functions of x̂ and t, we use the

residue conditions (53), which take the following form in our case:

(
k1 − B11
−B12

)
= iα1e

2ik1 x̂+ t
2ik1




B12
k1−k1
k1−B11
k1−k1


 , (108)

(
B12

k1 − B11

)
= iα1e

−2ik1 x̂− t

2ik1




k1−B11
k1−k1

− B12
k1−k1


 . (109)

Notice that Equation 109 can be obtained from Equation 108

by complex conjugation. Introducing

E(x̂, t): = iα1

k1 − k1
e
2ik1 x̂+ t

2ik1 , (110)

Equation 108 can be written as a system of two linear equations

for B11(x̂, t) and B12(x̂, t):

{
B11 = k1 − EB12

B12 = Ē(B11 − k1)
, (111)

whose solutions are as follows:

B12 =
E(k1 − k1)

1+ |E|2 , (112)

B11 = k1 −
|E|2(k1 − k1)

1+ |E|2 , (113)

Substituting this into Equation 106, we get û(x̂, t) and x(x̂, t) in

terms of E(x̂, t):

û(x̂, t) = Im k1

k21

E(x̂, t)

1+ |E(x̂, t)|2 , (114)

x(x̂, t) = x̂+ Im k1

|k1|2
|E(x̂, t)|2

1+ |E(x̂, t)|2 . (115)

Equation 114 with Equation 110 give the representation of the

one-soliton solutions in the parametric form. Commonly with

other “Camassa–Holm-type” equations, see, for example,

[8], these solutions are smooth and rapidly decaying as

functions of x̂ in the variables (x̂, t), but their properties as

functions of the original variables (x, t) depend crucially on

the properties of the mapping x̂ 7→ x, see Equation 115.

Proposition 5.1. If k1 is purely imaginary, then the associated one-

soliton solution u(x, t) is of the cuspon type: It is smooth except

at the hump where ux equals to infinity. Otherwise, it is a smooth

function of x and t.

Proof. From Equations 110, 114, it follows that

∂x

∂ x̂
= 1− |α1|2

|k1|2(1+ |E|2) e
−4 Im k1

(
x̂+ t

4|k1 |2

)

(116)

and thus ∂x
∂ x̂

is strictly positive for all x̂ large enough. Now, let us

check whether ∂x
∂ x̂

can be equal to 0 for some x̂.
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If ∂x
∂ x̂

= 0 for some x̂, then we have

e
−4 Im k1

(
x̂+ t

4|k1 |2

)

= |k1|2(1+ |E|2)
|α1|2

,

which, introducing

e1 : = e
−4 Im k1

(
x̂+ t

4|k1 |2

)

and noticing that

|E|2 = |α1|2
4(Im k1)2

e1,

reads

|k1|2|α1|2
16(Im k1)4

e21 +
( |k1|2
2(Im k1)2

)
e1 +

|k1|2
|α1|2

= 0. (117)

Now, let us view Equation 117 as a quadratic equation w.r.t. e1
and calculate its discriminant:

D = |k1|4
4(Im k1)4

− |k1|2
(Im k1)2

+ 1− |k1|4
4(Im k1)4

= 1− |k1|2
(Im k1)2

=

− (Re k1)
2

(Im k1)2
.

It follows that if Re k1 6= 0, then Equation 117 has no real

solutions and thus ∂x
∂ x̂

is always strictly positive and approaches

1 as x → ±∞. Consequently, in this case, x(x̂, t) is invertible

for all t and thus the corresponding u(x, t) = û(x̂(x, t), t)

is smooth.

On the other hand, if Re k1 = 0, then Equation 117 has one real

solution

e1 =
4|k1|2
|α1|2

(118)

and thus ∂x
∂ x̂
(x̂, t) = 0 when

x̂+ t

4|k1|2
= − 1

2|k1|
log

2|k1|
|α1|

. (119)

Consequently, in this case, the solution u(x, t) = û(x̂(x, t), t) is

always bounded but its derivatives are unbounded along the lines

(119). One can check directly that in this case, ∂u
∂ x̂

= 0 along

these lines and thus u(x, t) indeed has the singularity of the cuspon

type (bounded peaks with unbounded derivatives at the hump)

propagating along the lines (119).

Remark 5.2. This is in a sharp contrast with the case of

the SP equation, where one-soliton solutions associated

with purely imaginary zeros of a(k) are of the loop type,

see [8]: there, the equation ∂x
∂ x̂
(x̂, t) = 0 always has

two different zeros and thus the map x̂ 7→ x is not

monotone.

5.2 Soliton-like solutions from the RH with
one second-order pole

Now, let us consider the soliton-like solutions, which

correspond to the trivial jump condition and one pair of singularity

conditions in the RH problem associated with one second-order

zero of a(k) in the upper half-plane (let this point be k1).

We deduce this solutions from the associated RH problem

in the same way we did for the simple pole case. Normalization

condition and poles structure forces matrix M̂ to have its entries

as rational functions of k of the following form:

M̂(k) =




k2+B11k+C11

(k−k1)2
B12k+C12

(k−k1)2

B21k+C21

(k−k1)2
k2+B22k+C22

(k−k1)2


 .

The symmetry condition (46) yields B22 = B11, C22 = C11,

B21 = −B12 and C21 = −C12 and thus

M̂(k) =




k2+B11k+C11

(k−k1)2
B12k+C12

(k−k1)2

− B12k+C12

(k−k1)2
k2+B11k+C11

(k−k1)2


 . (120)

We will use the singularity conditions to determine the

dependence of coefficients Bij andCij on x̂, t later. First, we compute

f1 and f2 determined by Equation (88) in Theorem 3.2. We have

M̂(0) =




C11

k21

C12

k
2
1

−C12

k21

C11

k
2
1


 , (121)

where

|C11(x̂, t)|2 + |C12(x̂, t)|2 = |k1|4 (122)

for all x̂ and t due to the condition detM(k) ≡ 1. Next, from

Equation 120, we compute

˙̂M(0) =




2C11+B11k1
k31

2C12+B12k1

k
3
1

− 2C12+B12k1
k31

2C11+B11k1

k
3
1


 . (123)

Finally, from Equation 88, we have

(
f1 f2
f2 −f1

)
= i

2
M̂−1(0) ˙̂M(0),

which yields

f1 = i

(
1

k1
+ B11C11 + B12C12

2|k1|4
)
, (124)

f2 =
i(B12C11 − B11C12)

2k
4

1

. (125)

To get these functions explicitly, we use conditions (66). For

this purpose, we expand M̂ from Equation (120) at k1:

M̂(k) =

1+ B11+2k1

k−k1
+ C11+B11k1+k21

(k−k1 )2
C12+B12k1
(k1−k1 )2

− 2C12+B12 (k1+k1 )

(k1−k1 )3
(k− k1)+O(k− k1)

2

− B12
k−k1

− C12+B12k1
(k−k1 )2

C11+B11k1+k21
(k1−k1 )2

− 2C11+B11 (k1+k1 )+2|k1 |2
(k1−k1 )3

(k− k1)+O(k− k1)
2


 .

(126)
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Now Equations 66, 67 give us two equations:

(
C11 + B11k1 + k21
−(C12 + B12k1)

)
= α1e

2ik1 x̂+ t
2ik1




C12+B12k1
(k1−k1)2

C11+B11k1+k21
(k1−k1)2


 , (127)

(
B11 + 2k1
−B12

)
=


α1


 − 2C12+B12(k1+k1)

(k1−k1)3

− 2C11+B11(k1+k1)+2|k1|2
(k1−k1)3


+

(β1 + 2α1(ix̂−
t

4ik21
))




C12+B12k1
(k1−k1)2

C11+B11k1+k21
(k1−k1)2




 e

2ik1 x̂+ t
2ik1 . (128)

In view of the symmetry, the singularity conditions

at k̄1 do not produce additional independent equations

on Cij and Bij. Introducing E(x̂, t): = α1e
2ik1 x̂+ t

2ik1

(k1−k1)3
and

F(x̂, t): =
(β1+2α1(ix̂− t

4ik21

))e
2ik1 x̂+ t

2ik1

(k1−k1)2
and taking the complex

conjugates where needed, Equation 127 can be written as





C11 + B11k1 + k21 = E(C12 + B12k1)(k1 − k1),

C12 + B12k1 = E(C11 + B11k1 + k
2

1)(k1 − k1),

B11 + 2k1 = −E(2C12 + B12(k1 + k1))+ F(C12 + B12k1),

B12 = E(2C11 + B11(k1 + k1)+ 2|k1|2)− F(C11 + B11k1 + k
2

1).

(129)

This is a linear system w.r.t. B11, B12, C11, and C12, with the

determinant

D = 1+(2EF+2EF−|F|2−6|E|2)(k1−k1)
2+|E|4(k1−k1)

4. (130)

Its solution

B11 = [−2|E|4k1(k1 − k1)
4 − 2k1

+ (2k1|E|2 − k1EF + 10k1|E|2 − 3k1EF − k1EF + k1|F|2−

3k1EF + k1|F|2)(k1 − k1)
2]

1

D
,

B12 = [−F(k1 − k1)
2 + E

2
(4E− F)(k1 − k1)

4]
1

D
,

C11 = [|E|4k21(k1 − k1)
4 + k21

+ (−k
2

1EF + 3|k1|2EF − |k1|2|F|2 + k
2

1|E|2 − 4|k1|2 + |k1|2EF

− 3k21|E|2 + k21EF)(k1 − k1)
2]

1

D
,

C12 = [−(k1 − k1)
2(−k1F − E(k1 − k1)+ E

2
(k1 − k1)

2

(k1E+ 3Ek1 − Fk1))]
1

D
.

being substituted into Equation 124 gives us the explicit expression

for û(x̂, t) and x(x̂, t).

6 Examples of one-soliton and
soliton-like solutions

6.1 One-soliton solutions associated with a
single, simple zero of a(k)

Case 1: Let k1 = i,α1 = −2. Then, (see Section 5.1)

E(x̂, t) = −e−2x̂−t/2 and thus û(x̂, t) = e−2x̂−t/2

1+e−4x̂−t . Notice

that in this case, û(x̂, t) is real-valued, which allows us to

plot it as a 3d graph, see Figure 1A. We can also compute

the relation between the spatial coordinates: x(x̂, t) = x̂ +
e−2x̂−t/2

1+e−4x̂−t and plot its 2d graphs for several values of parameter

t, see Figure 1B. Having both this functions explicitly, we

can numerically compute u(x, t) and plot its 3d graph, see

Figure 1C.

As discussed in Section 5, û(x̂, t) is a smooth function whereas

u(x, t) is a cuspon-type wave.

Case 2: k1 = 1 + i,α1 = −2. In this case, (see Section 5.1),

E(x̂, t) = −e−2x̂+2ix̂−t/4−it/4 and thus û(x̂, t) = −i
2

e−2x̂−2ix̂−t/4+it/4

1+e−4x̂−t/2 .

This function is complex-valued, and thus, we plot its absolute

values, see Figures 2A, C. The spatial coordinate relation in this case

is: x(x̂, t) = x̂+ 1
2

e−4x̂−t/2

1+e−4x̂−t/2 , see Figure 2B.

As expected, in this case, the solution u is smooth both in x̂ and

x variables because ∂x
∂ x̂

is nowhere zero.

6.2 Soliton-like solutions associated with a
single, double zero of a(k)

Case 3: k1 = i,α1 = −2i,β1 = 4. In this case (see Section 5.2),

E(x̂, t) = 1
4 e

−2x̂−t/2 and F(x̂, t) = (−1 − x̂ + t
4 )e

−2x̂−t/2. From

Equation 87, we get

û(x̂, t) =

2ie2x̂+t/2(4− t + 4x̂+ 4e4x̂+t(t − 4(2+ x̂)))

1+ 16e8x̂+2t + 4e4x̂+t(38+ t2 + 48x̂+ 16x̂2 − 4t(3+ 2x̂))
.

In this case, the solution is purely imaginary, and we can plot its

imaginary part, see Figures 3A, C. The spatial coordinate relation is

(Figure 3B)

x(x̂, t) =

x̂+1+ 1− 16e8x̂+2t − 8e4x̂+t(−6+ t − 4x̂)

1+ 16e8x̂+2t + 4e4x̂+t(38+ t2 + 48x̂+ 16x̂2 − 4t(3+ 2x̂))
.

7 Conclusion

In the study, we have developed the Riemann–Hilbert

approach to a complex-valued integrable modification of the

short pulse equation, named as the modified focusing complex

short pulse equation (mfcSPE). This equation shares the following
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FIGURE 1

Cuspon-type soliton. (A) û(x̂, t). (B) x(x̂, t) for three values of t. (C) u(x, t).

FIGURE 2

Smooth soliton. (A) |û(x̂, t)|. (B) x(x̂, t) for three values of t. (C) |u(x, t)|.

FIGURE 3

Soliton-type solution associated with a double zero of a(k). (A) Imu(x̂, t). (B) x(x̂, t) for three values of t. (C) Imu(x, t).

property with other Camassa–Holm-type non-linear integrable

equations (including the short pulse equation): The Riemann–

Hilbert formalism involves a change of variables playing the

role of parameters in the associated Riemann–Hilbert problem.

Consequently, the representation of the solution of the non-linear

PDE in question turns out to be intrinsically parametric, including

the construction of the simplest, soliton-like solutions. Particularly,

for one-soliton solutions associated with a simple zero of the

respective spectral function a(k), we have shown that depending on

the location of this zero in the complex plane, the solution either

is a smooth function of the original spatial and time variables or

has the form of a traveling wave with the cusped hump. Numerical

examples illustrate one-soliton solutions associated with both a

simple and a double zero of a(k).
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